1
|
Pérez-Posada A, Lin CY, Fan TP, Lin CY, Chen YC, Gómez-Skarmeta JL, Yu JK, Su YH, Tena JJ. Hemichordate cis-regulatory genomics and the gene expression dynamics of deuterostomes. Nat Ecol Evol 2024; 8:2213-2227. [PMID: 39424956 PMCID: PMC11618098 DOI: 10.1038/s41559-024-02562-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/12/2024] [Indexed: 10/21/2024]
Abstract
Deuterostomes are one major group of bilaterians composed by hemichordates and echinoderms (collectively called Ambulacraria) and chordates. Comparative studies between these groups can provide valuable insights into the nature of the last common ancestor of deuterostomes and that of bilaterians. Indirect development of hemichordates, with larval phases similar to echinoderms and an adult body plan with an anteroposterior polarity like chordates and other bilaterians, makes them a suitable model for studying the molecular basis of development among deuterostomes. However, a comprehensive, quantitative catalogue of gene expression and chromatin dynamics in hemichordates is still lacking. In this study, we analysed the transcriptomes and chromatin accessibility of multiple developmental stages of the indirect-developing hemichordate Ptychodera flava. We observed that P. flava development is underpinned by a biphasic transcriptional program probably controlled by distinct genetic networks. Comparisons with other bilaterian species revealed similar transcriptional and regulatory dynamics during hemichordate gastrulation, cephalochordate neurulation and elongation stages of annelids. By means of regulatory networks analysis and functional validations by transgenesis experiments in echinoderms, we propose that gastrulation is the stage of highest molecular resemblance in deuterostomes and that much of the molecular basis of deuterostome development was probably present in the bilaterian last common ancestor.
Collapse
Affiliation(s)
- Alberto Pérez-Posada
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK.
| | - Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tzu-Pei Fan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Chih Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.
| |
Collapse
|
2
|
Chou C, Lin CY, Lin CY, Wang A, Fan TP, Wang KT, Yu JK, Su YH. Tracing the Evolutionary Origin of Chordate Somites in the Hemichordate Ptychodera flava. Integr Comp Biol 2024; 64:1226-1242. [PMID: 38637301 DOI: 10.1093/icb/icae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
Metameric somites are a novel character of chordates with unclear evolutionary origins. In the early branching chordate amphioxus, anterior somites are derived from the paraxial mesodermal cells that bud off the archenteron (i.e., enterocoely) at the end of gastrulation. Development of the anterior somites requires fibroblast growth factor (FGF) signaling, and distinct somite compartments express orthologs of vertebrate nonaxial mesodermal markers. Thus, it has been proposed that the amphioxus anterior somites are homologous to the vertebrate head mesoderm, paraxial mesoderm, and lateral plate mesoderm. To trace the evolutionary origin of somites, it is essential to study the chordates' closest sister group, Ambulacraria, which includes hemichordates and echinoderms. The anterior coeloms of hemichordate and sea urchin embryos (respectively called protocoel and coelomic pouches) are also formed by enterocoely and require FGF signals for specification and/or differentiation. In this study, we applied RNA-seq to comprehensively screen for regulatory genes associated with the mesoderm-derived protocoel of the hemichordate Ptychodera flava. We also used a candidate gene approach to identify P. flava orthologs of chordate somite markers. In situ hybridization results showed that many of these candidate genes are expressed in distinct or overlapping regions of the protocoel, which indicates that molecular compartments exist in the hemichordate anterior coelom. Given that the hemichordate protocoel and amphioxus anterior somites share a similar ontogenic process (enterocoely), induction signal (FGF), and characteristic expression of orthologous genes, we propose that these two anterior coeloms are indeed homologous. In the lineage leading to the emergence of chordates, somites likely evolved from enterocoelic, FGF-dependent, and molecularly compartmentalized anterior coeloms of the deuterostome last common ancestor.
Collapse
Affiliation(s)
- Cindy Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Ching-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Anthony Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Tzu-Pei Fan
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Kuang-Tse Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 26242 Yilan, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
| |
Collapse
|
3
|
Mörsdorf D, Knabl P, Genikhovich G. Highly conserved and extremely evolvable: BMP signalling in secondary axis patterning of Cnidaria and Bilateria. Dev Genes Evol 2024; 234:1-19. [PMID: 38472535 PMCID: PMC11226491 DOI: 10.1007/s00427-024-00714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Bilateria encompass the vast majority of the animal phyla. As the name states, they are bilaterally symmetric, that is with a morphologically clear main body axis connecting their anterior and posterior ends, a second axis running between their dorsal and ventral surfaces, and with a left side being roughly a mirror image of their right side. Bone morphogenetic protein (BMP) signalling has widely conserved functions in the formation and patterning of the second, dorso-ventral (DV) body axis, albeit to different extents in different bilaterian species. Whilst initial findings in the fruit fly Drosophila and the frog Xenopus highlighted similarities amongst these evolutionarily very distant species, more recent analyses featuring other models revealed considerable diversity in the mechanisms underlying dorsoventral patterning. In fact, as phylogenetic sampling becomes broader, we find that this axis patterning system is so evolvable that even its core components can be deployed differently or lost in different model organisms. In this review, we will try to highlight the diversity of ways by which BMP signalling controls bilaterality in different animals, some of which do not belong to Bilateria. Future research combining functional analyses and modelling is bound to give us some understanding as to where the limits to the extent of the evolvability of BMP-dependent axial patterning may lie.
Collapse
Affiliation(s)
- David Mörsdorf
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria
| | - Paul Knabl
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Vienna, Austria
| | - Grigory Genikhovich
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
4
|
Abstract
The goal of comparative developmental biology is identifying mechanistic differences in embryonic development between different taxa and how these evolutionary changes have led to morphological and organizational differences in adult body plans. Much of this work has focused on direct-developing species in which the adult forms straight from the embryo and embryonic modifications have direct effects on the adult. However, most animal lineages are defined by indirect development, in which the embryo gives rise to a larval body plan and the adult forms by transformation of the larva. Historically, much of our understanding of complex life cycles is viewed through the lenses of ecology and zoology. In this review, we discuss the importance of establishing developmental rather than morphological or ecological criteria for defining developmental mode and explicitly considering the evolutionary implications of incorporating complex life cycles into broad developmental comparisons of embryos across metazoans.
Collapse
Affiliation(s)
- Laurent Formery
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA;
- Department of Cell and Molecular Biology, University of California, Berkeley, California, USA
| | - Christopher J Lowe
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA;
- Chan Zuckerberg BioHub, San Francisco, California, USA
| |
Collapse
|
5
|
Tominaga H, Nishitsuji K, Satoh N. A single-cell RNA-seq analysis of early larval cell-types of the starfish, Patiria pectinifera: Insights into evolution of the chordate body plan. Dev Biol 2023; 496:52-62. [PMID: 36717049 DOI: 10.1016/j.ydbio.2023.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
Ambulacrarians (echinoderms and hemichordates) are a sister group to chordates; thus, their larval cell-types may provide clues about evolution of chordate body plans. Although most genic information accumulated to date pertains to sea urchin embryogenesis, starfish embryogenesis represents a more ancestral mode than that of sea urchins. We performed single-cell RNA-seq analysis of cell-types from gastrulae and bipinnarial larvae of the starfish, Patiria pectinifera, and categorized them into 22 clusters, each of which is composed of cells with specific, shared profiles of development-relevant gene expression. Oral and aboral ectoderm, apical plate, hindgut or archenteron, midgut or intestine, pharynx, endomesoderm, stomodeum, and mesenchyme of the gastrulae, and neurons, ciliary bands, enterocoel and muscle of larvae were characterized by expression profiles of at least two relevant transcription factor genes and signaling molecular genes. Expression of Hox2, Hox7, Hox9/10, and Hox11/13b was detected in cells of clusters that form the larval enterocoel. By comparing homologous gene expression profiles in chordate embryos, we discuss and propose how the chordate body plan evolved from a deuterostome ancestor, from which the echinoderm body plan also evolved.
Collapse
Affiliation(s)
- Hitoshi Tominaga
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
| | - Koki Nishitsuji
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
| |
Collapse
|
6
|
Comparisons of cell proliferation and cell death from tornaria larva to juvenile worm in the hemichordate Schizocardium californicum. EvoDevo 2022; 13:13. [PMID: 35668535 PMCID: PMC9169294 DOI: 10.1186/s13227-022-00198-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/13/2022] [Indexed: 12/06/2022] Open
Abstract
Background There are a wide range of developmental strategies in animal phyla, but most insights into adult body plan formation come from direct-developing species. For indirect-developing species, there are distinct larval and adult body plans that are linked together by metamorphosis. Some outstanding questions in the development of indirect-developing organisms include the extent to which larval tissue undergoes cell death during the process of metamorphosis and when and where the tissue that will give rise to the adult originates. How do the processes of cell division and cell death redesign the body plans of indirect developers? In this study, we present patterns of cell proliferation and cell death during larval body plan development, metamorphosis, and adult body plan formation, in the hemichordate Schizocardium californium (Cameron and Perez in Zootaxa 3569:79–88, 2012) to answer these questions. Results We identified distinct patterns of cell proliferation between larval and adult body plan formation of S. californicum. We found that some adult tissues proliferate during the late larval phase prior to the start of overt metamorphosis. In addition, using an irradiation and transcriptomic approach, we describe a genetic signature of proliferative cells that is shared across the life history states, as well as markers that are unique to larval or juvenile states. Finally, we observed that cell death is minimal in larval stages but begins with the onset of metamorphosis. Conclusions Cell proliferation during the development of S. californicum has distinct patterns in the formation of larval and adult body plans. However, cell death is very limited in larvae and begins during the onset of metamorphosis and into early juvenile development in specific domains. The populations of cells that proliferated and gave rise to the larvae and juveniles have a genetic signature that suggested a heterogeneous pool of proliferative progenitors, rather than a set-aside population of pluripotent cells. Taken together, we propose that the gradual morphological transformation of S. californicum is mirrored at the cellular level and may be more representative of the development strategies that characterize metamorphosis in many metazoan animals. Supplementary Information The online version contains supplementary material available at 10.1186/s13227-022-00198-1.
Collapse
|
7
|
Reddien PW. Positional Information and Stem Cells Combine to Result in Planarian Regeneration. Cold Spring Harb Perspect Biol 2022; 14:a040717. [PMID: 34518341 PMCID: PMC9121904 DOI: 10.1101/cshperspect.a040717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The capacity for regeneration is broad in the animal kingdom. Planarians are flatworms that can regenerate any missing body part and their regenerative powers have combined with ease of experimentation to make them a classic regeneration model for more than a century. Pluripotent stem cells called neoblasts generate missing planarian tissues. Fate specification happens in the neoblasts, and this can occur in response to regeneration instructions in the form of positional information. Fate specification can lead to differentiating cells in single steps rather than requiring a long lineage hierarchy. Planarians display constitutive expression of positional information from muscle cells, which is required for patterned maintenance of tissues in tissue turnover. Amputation leads to the rapid resetting of positional information in a process triggered by wound signaling and the resetting of positional information is required for regeneration. These findings suggest a model for planarian regeneration in which adult positional information resets after injury to regulate stem cells to bring about the replacement of missing parts.
Collapse
Affiliation(s)
- Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, MIT, Cambridge, Massachusetts 02139, USA
- Department of Biology, MIT, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
8
|
Schmidt-Ott U, Yoon Y. Evolution and loss of ß-catenin and TCF-dependent axis specification in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100877. [PMID: 35104659 PMCID: PMC9133022 DOI: 10.1016/j.cois.2022.100877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Mechanisms and evolution of primary axis specification in insects are discussed in the context of the roles of ß-catenin and TCF in polarizing metazoan embryos. Three hypotheses are presented. First, insects with sequential segmentation and posterior growth use cell-autonomous mechanisms for establishing embryo polarity via the nuclear ratio of ß-catenin and TCF. Second, TCF homologs establish competence for anterior specification. Third, the evolution of simultaneous segmentation mechanisms, also known as long-germ development, resulted in primary axis specification mechanisms that are independent of ß-catenin but reliant on TCF, a condition that preceded the frequent replacement of anterior determinants in long germ insects.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- University of Chicago, Dept. of Organismal Biology and Anatomy, 1027 East 57th Street, Chicago, IL 60637, USA.
| | - Yoseop Yoon
- University of California, Irvine, Dept. of Microbiology and Molecular Genetics, School of Medicine, 811 Health Sciences Rd., Med Sci B262, CA 92617, USA
| |
Collapse
|
9
|
Abstract
Hemichordates, along with echinoderms and chordates, belong to the lineage of bilaterians called the deuterostomes. Their phylogenetic position as an outgroup to chordates provides an opportunity to investigate the evolutionary origins of the chordate body plan and reconstruct ancestral deuterostome characters. The body plans of the hemichordates and chordates are organizationally divergent making anatomical comparisons very challenging. The developmental underpinnings of animal body plans are often more conservative than the body plans they regulate, and offer a novel data set for making comparisons between morphologically divergent body architectures. Here I review the hemichordate developmental data generated over the past 20 years that further test hypotheses of proposed morphological affinities between the two taxa, but also compare the conserved anteroposterior, dorsoventral axial patterning programs and germ layer specification programs. These data provide an opportunity to determine which developmental programs are ancestral deuterostome or bilaterian innovations, and which ones occurred in stem chordates or vertebrates representing developmental novelties of the chordate body plan.
Collapse
|
10
|
Larouche‐Bilodeau C, Guilbeault‐Mayers X, Cameron CB. Filter feeding, deviations from bilateral symmetry, developmental noise, and heterochrony of hemichordate and cephalochordate gills. Ecol Evol 2020; 10:13544-13554. [PMID: 33304558 PMCID: PMC7713955 DOI: 10.1002/ece3.6962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/02/2022] Open
Abstract
We measured gill slit fluctuating asymmetry (FA), a measure of developmental noise, in adults of three invertebrate deuterostomes with different feeding modes: the cephalochordate Branchiostoma floridae (an obligate filter feeder), the enteropneusts Protoglossus graveolens (a facultative filter feeder/deposit feeder) and Saccoglossus bromophenolosus (a deposit feeder). FA was substantially and significantly low in B. floridae and P. graveolens and high in S. bromophenolosus. Our results suggest that the gills of species that have experienced a relaxation of the filter feeding trait exhibit elevated FA. We found that the timing of development of the secondary collagenous gill bars, compared to the primary gill bars, was highly variable in P. graveolens but not the other two species, demonstrating an independence of gill FA from gill bar heterochrony. We also discovered the occasional ectopic expression of a second set of paired gills posterior to the first set of gills in the enteropneusts and that these were more common in S. bromophenolosus. Moreover, our finding that gill slits in enteropneusts exhibit bilateral symmetry suggests that the left-sidedness of larval cephalochordate gills, and the directional asymmetry of Cambrian stylophoran echinoderm fossil gills, evolved independently from a bilaterally symmetrical ancestor.
Collapse
|
11
|
Heger P, Zheng W, Rottmann A, Panfilio KA, Wiehe T. The genetic factors of bilaterian evolution. eLife 2020; 9:e45530. [PMID: 32672535 PMCID: PMC7535936 DOI: 10.7554/elife.45530] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The Cambrian explosion was a unique animal radiation ~540 million years ago that produced the full range of body plans across bilaterians. The genetic mechanisms underlying these events are unknown, leaving a fundamental question in evolutionary biology unanswered. Using large-scale comparative genomics and advanced orthology evaluation techniques, we identified 157 bilaterian-specific genes. They include the entire Nodal pathway, a key regulator of mesoderm development and left-right axis specification; components for nervous system development, including a suite of G-protein-coupled receptors that control physiology and behaviour, the Robo-Slit midline repulsion system, and the neurotrophin signalling system; a high number of zinc finger transcription factors; and novel factors that previously escaped attention. Contradicting the current view, our study reveals that genes with bilaterian origin are robustly associated with key features in extant bilaterians, suggesting a causal relationship.
Collapse
Affiliation(s)
- Peter Heger
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Wen Zheng
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Anna Rottmann
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Kristen A Panfilio
- Institute for Zoology: Developmental Biology, Cologne Biocenter, University of CologneCologneGermany
- School of Life Sciences, University of Warwick, Gibbet Hill CampusCoventryUnited Kingdom
| | - Thomas Wiehe
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| |
Collapse
|
12
|
Bukys MA, Mihas A, Finney K, Sears K, Trivedi D, Wang Y, Oberholzer J, Jensen J. High-Dimensional Design-Of-Experiments Extracts Small-Molecule-Only Induction Conditions for Dorsal Pancreatic Endoderm from Pluripotency. iScience 2020; 23:101346. [PMID: 32745983 PMCID: PMC7398937 DOI: 10.1016/j.isci.2020.101346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 04/15/2020] [Accepted: 07/02/2020] [Indexed: 01/27/2023] Open
Abstract
The derivation of endoderm and descendant organs, such as pancreas, liver, and intestine, impacts disease modeling and regenerative medicine. Use of TGF-β signaling agonism is a common method for induction of definitive endoderm from pluripotency. By using a data-driven, High-Dimensional Design of Experiments (HD-DoE)-based methodology to address multifactorial problems in directed differentiation, we found instead that optimal conditions demanded BMP antagonism and retinoid input leading to induction of dorsal foregut endoderm (DFE). We demonstrate that pancreatic identity can be rapidly, and robustly, induced from DFE and that such cells are of dorsal pancreatic identity. The DFE population was highly competent to differentiate into both stomach organoids and pancreatic tissue types and able to generate fetal-type β cells through two subsequent differentiation steps using only small molecules. This alternative, rapid, and low-cost basis for generating pancreatic insulin-producing cells may have impact for the development of cell-based therapies for diabetes. Method development for addressing multifactorial problems in directed differentiation Generation of endodermal populations without the use of TGF-β agonism Small-molecule-based pancreatic differentiation protocol
Collapse
Affiliation(s)
- Michael A Bukys
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Alexander Mihas
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Krystal Finney
- Trailhead Biosystems Inc, 10000 Cedar Avenue, Cleveland, OH, USA; Cleveland Clinic, Cleveland, OH 44195, USA
| | - Katie Sears
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Divya Trivedi
- Trailhead Biosystems Inc, 10000 Cedar Avenue, Cleveland, OH, USA; Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yong Wang
- Division of Transplantation, University of Virginia, Charlottesville, VA 22903, USA
| | - Jose Oberholzer
- Division of Transplantation, University of Virginia, Charlottesville, VA 22903, USA
| | - Jan Jensen
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Trailhead Biosystems Inc, 10000 Cedar Avenue, Cleveland, OH, USA; Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
13
|
Capela R, Garric J, Castro LFC, Santos MM. Embryo bioassays with aquatic animals for toxicity testing and hazard assessment of emerging pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135740. [PMID: 31838430 DOI: 10.1016/j.scitotenv.2019.135740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
This review article gathers the available information on the use of embryo-tests as high-throughput tools for toxicity screening, hazard assessment and prioritization of new and existing chemical compounds. The approach is contextualized considering the new legal trends for animal experimentation, fostering the 3R policy, with reduction of experimental animals, addressing the potential of embryo-tests as high-throughput toxicity screening and prioritizing tools. Further, the current test guidelines, such as the ones provided by OECD and EPA, focus mainly in a limited number of animal lineages, particularly vertebrates and arthropods. To extrapolate hazard assessment to the ecosystem scale, a larger diversity of taxa should be tested. The use of new experimental animal models in toxicity testing, from a representative set of taxa, was thoroughly revised and discussed in this review. Here, we critically review current tools and the main advantages and drawbacks of different animal models and set researcher priorities.
Collapse
Affiliation(s)
- Ricardo Capela
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; IRSTEA - National Research Institute of Science and Technology for Environment and Agriculture - Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS20244, 69625 Villeurbanne Cedex, Lyon-Villeurbanne, France
| | - Jeanne Garric
- IRSTEA - National Research Institute of Science and Technology for Environment and Agriculture - Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS20244, 69625 Villeurbanne Cedex, Lyon-Villeurbanne, France.
| | - Luís Filipe Costa Castro
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Miguel Machado Santos
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
14
|
BMP controls dorsoventral and neural patterning in indirect-developing hemichordates providing insight into a possible origin of chordates. Proc Natl Acad Sci U S A 2019; 116:12925-12932. [PMID: 31189599 DOI: 10.1073/pnas.1901919116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A defining feature of chordates is the unique presence of a dorsal hollow neural tube that forms by internalization of the ectodermal neural plate specified via inhibition of BMP signaling during gastrulation. While BMP controls dorsoventral (DV) patterning across diverse bilaterians, the BMP-active side is ventral in chordates and dorsal in many other bilaterians. How this phylum-specific DV inversion occurs and whether it is coupled to the emergence of the dorsal neural plate are unknown. Here we explore these questions by investigating an indirect-developing enteropneust from the hemichordate phylum, which together with echinoderms form a sister group of the chordates. We found that in the hemichordate larva, BMP signaling is required for DV patterning and is sufficient to repress neurogenesis. We also found that transient overactivation of BMP signaling during gastrulation concomitantly blocked mouth formation and centralized the nervous system to the ventral ectoderm in both hemichordate and sea urchin larvae. Moreover, this mouthless, neurogenic ventral ectoderm displayed a medial-to-lateral organization similar to that of the chordate neural plate. Thus, indirect-developing deuterostomes use BMP signaling in DV and neural patterning, and an elevated BMP level during gastrulation drives pronounced morphological changes reminiscent of a DV inversion. These findings provide a mechanistic basis to support the hypothesis that an inverse chordate body plan emerged from an indirect-developing ancestor by tinkering with BMP signaling.
Collapse
|
15
|
DuBuc TQ, Ryan JF, Martindale MQ. "Dorsal-Ventral" Genes Are Part of an Ancient Axial Patterning System: Evidence from Trichoplax adhaerens (Placozoa). Mol Biol Evol 2019; 36:966-973. [PMID: 30726986 PMCID: PMC6501881 DOI: 10.1093/molbev/msz025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Placozoa are a morphologically simplistic group of marine animals found globally in tropical and subtropical environments. They consist of two named species, Trichoplax adhaerens and more recently Hoilungia hongkongensis, both with roughly six morphologically distinct cell types. With a sequenced genome, a limited number of cell types, and a simple flattened morphology, Trichoplax is an ideal model organism from which to explore the biology of an animal with a cellular complexity analagous to that of the earliest animals. Using a new approach for identification of gene expression patterns, this research looks at the relationship of Chordin/TgfΒ signaling and the axial patterning system of Placozoa. Our results suggest that placozoans have an oral-aboral axis similar to cnidarians and that the parahoxozoan ancestor (common ancestor of Placozoa and Cnidaria) was likely radially symmetric.
Collapse
Affiliation(s)
- Timothy Q DuBuc
- Whitney Lab for Marine Bioscience and the Department of Biology, University of Florida, St. Augustine, FL
- Kewalo Marine Laboratory and the Department of Biology, University of Hawaii, Manoa, Honolulu, HI
- Centre for Chromosome Biology, Bioscience Building, National University of Ireland Galway, Galway, Ireland
| | - Joseph F Ryan
- Whitney Lab for Marine Bioscience and the Department of Biology, University of Florida, St. Augustine, FL
| | - Mark Q Martindale
- Whitney Lab for Marine Bioscience and the Department of Biology, University of Florida, St. Augustine, FL
| |
Collapse
|
16
|
Ono H, Koop D, Holland LZ. Nodal and Hedgehog synergize in gill slit formation during development of the cephalochordate Branchiostoma floridae. Development 2018; 145:dev.162586. [PMID: 29980563 DOI: 10.1242/dev.162586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 06/14/2018] [Indexed: 12/16/2022]
Abstract
The larval pharynx of the cephalochordate Branchiostoma (amphioxus) is asymmetrical. The mouth is on the left, and endostyle and gill slits are on the right. At the neurula, Nodal and Hedgehog (Hh) expression becomes restricted to the left. To dissect their respective roles in gill slit formation, we inhibited each pathway separately for 20 min at intervals during the neurula stage, before gill slits penetrate, and monitored the effects on morphology and expression of pharyngeal markers. The results pinpoint the short interval spanning the gastrula/neurula transition as the critical period for specification and positioning of future gill slits. Thus, reduced Nodal signaling shifts the gill slits ventrally, skews the pharyngeal domains of Hh, Pax1/9, Pax2/5/8, Six1/2 and IrxC towards the left, and reduces Hh and Tbx1/10 expression in endoderm and mesoderm, respectively. Nodal auto-regulates. Decreased Hh signaling does not affect gill slit positions or Hh or Nodal expression, but it does reduce the domain of Gli, the Hh target, in the pharyngeal endoderm. Thus, during the neurula stage, Nodal and Hh cooperate in gill slit development - Hh mediates gill slit formation and Nodal establishes their left-right position.
Collapse
Affiliation(s)
- Hiroki Ono
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| | - Demian Koop
- Discipline of Anatomy and Histology, University of Sydney, Sydney, NSW 2006, Australia
| | - Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| |
Collapse
|
17
|
Fan TP, Ting HC, Yu JK, Su YH. Reiterative use of FGF signaling in mesoderm development during embryogenesis and metamorphosis in the hemichordate Ptychodera flava. BMC Evol Biol 2018; 18:120. [PMID: 30075704 PMCID: PMC6091094 DOI: 10.1186/s12862-018-1235-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/26/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Mesoderm is generally considered to be a germ layer that is unique to Bilateria, and it develops into diverse tissues, including muscle, and in the case of vertebrates, the skeleton and notochord. Studies on various deuterostome animals have demonstrated that fibroblast growth factor (FGF) signaling is required for the formation of many mesodermal structures, such as vertebrate somites, from which muscles are differentiated, and muscles in sea urchin embryos, suggesting an ancient role of FGF signaling in muscle development. However, the formation of trunk muscles in invertebrate chordates is FGF-independent, leading to ambiguity about this ancient role in deuterostomes. To further understand the role of FGF signaling during deuterostome evolution, we investigated the development of mesodermal structures during embryogenesis and metamorphosis in Ptychodera flava, an indirect-developing hemichordate that has larval morphology similar to echinoderms and adult body features that are similar to chordates. RESULTS Here we show that genes encoding FGF ligands, FGF receptors and transcription factors that are known to be involved in mesoderm formation and myogenesis are expressed dynamically during embryogenesis and metamorphosis. FGF signaling at the early gastrula stage is required for the specification of the mesodermal cell fate in P. flava. The mesoderm cells are then differentiated stepwise into the hydroporic canal, the pharyngeal muscle and the muscle string; formation of the last two muscular structures are controlled by FGF signaling. Moreover, augmentation of FGF signaling during metamorphosis accelerated the process, facilitating the transformation from cilia-driven swimming larvae into muscle-driven worm-like juveniles. CONCLUSIONS Our data show that FGF signaling is required for mesoderm induction and myogenesis in the P. flava embryo, and it is reiteratively used for the morphological transition during metamorphosis. The dependence of muscle development on FGF signaling in both planktonic larvae and sand-burrowing worms supports its ancestral role in deuterostomes.
Collapse
Affiliation(s)
- Tzu-Pei Fan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsiu-Chi Ting
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang, Taipei, 11529, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang, Taipei, 11529, Taiwan
| | - Yi-Hsien Su
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan. .,Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang, Taipei, 11529, Taiwan. .,Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
18
|
Lanza AR, Seaver EC. An organizing role for the TGF-β signaling pathway in axes formation of the annelid Capitella teleta. Dev Biol 2018; 435:26-40. [DOI: 10.1016/j.ydbio.2018.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 01/12/2023]
|
19
|
Darras S, Fritzenwanker JH, Uhlinger KR, Farrelly E, Pani AM, Hurley IA, Norris RP, Osovitz M, Terasaki M, Wu M, Aronowicz J, Kirschner M, Gerhart JC, Lowe CJ. Anteroposterior axis patterning by early canonical Wnt signaling during hemichordate development. PLoS Biol 2018; 16:e2003698. [PMID: 29337984 PMCID: PMC5786327 DOI: 10.1371/journal.pbio.2003698] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/26/2018] [Accepted: 12/22/2017] [Indexed: 12/28/2022] Open
Abstract
The Wnt family of secreted proteins has been proposed to play a conserved role in early specification of the bilaterian anteroposterior (A/P) axis. This hypothesis is based predominantly on data from vertebrate embryogenesis as well as planarian regeneration and homeostasis, indicating that canonical Wnt (cWnt) signaling endows cells with positional information along the A/P axis. Outside of these phyla, there is strong support for a conserved role of cWnt signaling in the repression of anterior fates, but little comparative support for a conserved role in promotion of posterior fates. We further test the hypothesis by investigating the role of cWnt signaling during early patterning along the A/P axis of the hemichordate Saccoglossus kowalevskii. We have cloned and investigated the expression of the complete Wnt ligand and Frizzled receptor complement of S. kowalevskii during early development along with many secreted Wnt modifiers. Eleven of the 13 Wnt ligands are ectodermally expressed in overlapping domains, predominantly in the posterior, and Wnt antagonists are localized predominantly to the anterior ectoderm in a pattern reminiscent of their distribution in vertebrate embryos. Overexpression and knockdown experiments, in combination with embryological manipulations, establish the importance of cWnt signaling for repression of anterior fates and activation of mid-axial ectodermal fates during the early development of S. kowalevskii. However, surprisingly, terminal posterior fates, defined by posterior Hox genes, are unresponsive to manipulation of cWnt levels during the early establishment of the A/P axis at late blastula and early gastrula. We establish experimental support for a conserved role of Wnt signaling in the early specification of the A/P axis during deuterostome body plan diversification, and further build support for an ancestral role of this pathway in early evolution of the bilaterian A/P axis. We find strong support for a role of cWnt in suppression of anterior fates and promotion of mid-axial fates, but we find no evidence that cWnt signaling plays a role in the early specification of the most posterior axial fates in S. kowalevskii. This posterior autonomy may be a conserved feature of early deuterostome axis specification.
Collapse
Affiliation(s)
- Sébastien Darras
- Institut de Biologie du Développement de Marseille, Aix-Marseille Université, CNRS UMR 7288, Marseille, France
| | - Jens H. Fritzenwanker
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, California
| | - Kevin R. Uhlinger
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, California
| | - Ellyn Farrelly
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Ariel M. Pani
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Imogen A. Hurley
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Rachael P. Norris
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Michelle Osovitz
- Department of Natural Sciences, St. Petersburg College, Clearwater, Florida
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Mike Wu
- Department of Molecular and Cellular Biology, University of California Berkeley, Berkeley, California
| | - Jochanan Aronowicz
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Marc Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - John C. Gerhart
- Department of Molecular and Cellular Biology, University of California Berkeley, Berkeley, California
| | - Christopher J. Lowe
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, California
| |
Collapse
|
20
|
Morov AR, Ukizintambara T, Sabirov RM, Yasui K. Acquisition of the dorsal structures in chordate amphioxus. Open Biol 2017; 6:rsob.160062. [PMID: 27307516 PMCID: PMC4929940 DOI: 10.1098/rsob.160062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/17/2016] [Indexed: 02/04/2023] Open
Abstract
Acquisition of dorsal structures, such as notochord and hollow nerve cord, is likely to have had a profound influence upon vertebrate evolution. Dorsal formation in chordate development thus has been intensively studied in vertebrates and ascidians. However, the present understanding does not explain how chordates acquired dorsal structures. Here we show that amphioxus retains a key clue to answer this question. In amphioxus embryos, maternal nodal mRNA distributes asymmetrically in accordance with the remodelling of the cortical cytoskeleton in the fertilized egg, and subsequently lefty is first expressed in a patch of blastomeres across the equator where wnt8 is expressed circularly and which will become the margin of the blastopore. The lefty domain co-expresses zygotic nodal by the initial gastrula stage on the one side of the blastopore margin and induces the expression of goosecoid, not-like, chordin and brachyury1 genes in this region, as in the oral ectoderm of sea urchin embryos, which provides a basis for the formation of the dorsal structures. The striking similarity in the gene regulations and their respective expression domains when comparing dorsal formation in amphioxus and the determination of the oral ectoderm in sea urchin embryos suggests that chordates derived from an ambulacrarian-type blastula with dorsoventral inversion.
Collapse
Affiliation(s)
- Arseniy R Morov
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan Department of Zoology and General Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Street, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Tharcisse Ukizintambara
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Rushan M Sabirov
- Department of Zoology and General Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Street, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Kinya Yasui
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
21
|
A bipolar role of the transcription factor ERG for cnidarian germ layer formation and apical domain patterning. Dev Biol 2017; 430:346-361. [PMID: 28818668 DOI: 10.1016/j.ydbio.2017.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/29/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023]
Abstract
Germ layer formation and axial patterning are biological processes that are tightly linked during embryonic development of most metazoans. In addition to canonical WNT, it has been proposed that ERK-MAPK signaling is involved in specifying oral as well as aboral territories in cnidarians. However, the effector and the molecular mechanism underlying latter phenomenon is unknown. By screening for potential effectors of ERK-MAPK signaling in both domains, we identified a member of the ETS family of transcription factors, Nverg that is bi-polarily expressed prior to gastrulation. We further describe the crucial role of NvERG for gastrulation, endomesoderm as well as apical domain formation. The molecular characterization of the obtained NvERG knock-down phenotype using previously described as well as novel potential downstream targets, provides evidence that a single transcription factor, NvERG, simultaneously controls expression of two different sets of downstream targets, leading to two different embryonic gene regulatory networks (GRNs) in opposite poles of the developing embryo. We also highlight the molecular interaction of cWNT and MEK/ERK/ERG signaling that provides novel insight into the embryonic axial organization of Nematostella, and show a cWNT repressive role of MEK/ERK/ERG signaling in segregating the endomesoderm in two sub-domains, while a common input of both pathways is required for proper apical domain formation. Taking together, we build the first blueprint for a global cnidarian embryonic GRN that is the foundation for additional gene specific studies addressing the evolution of embryonic and larval development.
Collapse
|
22
|
Gonzalez P, Uhlinger KR, Lowe CJ. The Adult Body Plan of Indirect Developing Hemichordates Develops by Adding a Hox-Patterned Trunk to an Anterior Larval Territory. Curr Biol 2016; 27:87-95. [PMID: 27939313 DOI: 10.1016/j.cub.2016.10.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/12/2016] [Accepted: 10/25/2016] [Indexed: 01/27/2023]
Abstract
Many animals are indirect developers with distinct larval and adult body plans [1]. The molecular basis of differences between larval and adult forms is often poorly understood, adding a level of uncertainty to comparative developmental studies that use data from both indirect and direct developers. Here we compare the larval and adult body plans of an indirect developing hemichordate, Schizocardium californicum [2]. We describe the expression of 27 transcription factors with conserved roles in deuterostome ectodermal anteroposterior (AP) patterning in developing embryos, tornaria larvae, and post-metamorphic juveniles and show that the tornaria larva of S. californicum is transcriptionally similar to a truncated version of the adult. The larval ectoderm has an anterior molecular signature, while most of the trunk, defined by the expression of hox1-7, is absent. Posterior ectodermal activation of Hox is initiated in the late larva prior to metamorphosis, in preparation for the transition to the adult form, in which the AP axis converges on a molecular architecture similar to that of the direct developing hemichordate Saccoglossus kowalevskii. These results identify a molecular correlate of a major difference in body plan between hemichordate larval and adult forms and confirm the hypothesis that deuterostome larvae are "swimming heads" [3]. This will allow future comparative studies with hemichordates to take into account molecular differences caused by early life history evolution within the phylum. Additionally, comparisons with other phyla suggest that a delay in trunk development is a feature of indirect development shared across distantly related phyla.
Collapse
Affiliation(s)
- Paul Gonzalez
- Hopkins Marine Station, Department of Biology, Stanford University, 120 Ocean View Boulevard, Pacific Grove, CA 93950, USA
| | - Kevin R Uhlinger
- Hopkins Marine Station, Department of Biology, Stanford University, 120 Ocean View Boulevard, Pacific Grove, CA 93950, USA
| | - Christopher J Lowe
- Hopkins Marine Station, Department of Biology, Stanford University, 120 Ocean View Boulevard, Pacific Grove, CA 93950, USA.
| |
Collapse
|
23
|
Sampath K, Robertson EJ. Keeping a lid on nodal: transcriptional and translational repression of nodal signalling. Open Biol 2016; 6:150200. [PMID: 26791244 PMCID: PMC4736825 DOI: 10.1098/rsob.150200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nodal is an evolutionarily conserved member of the transforming growth factor-β (TGF-β) superfamily of secreted signalling factors. Nodal factors are known to play key roles in embryonic development and asymmetry in a variety of organisms ranging from hydra and sea urchins to fish, mice and humans. In addition to embryonic patterning, Nodal signalling is required for maintenance of human embryonic stem cell pluripotency and mis-regulated Nodal signalling has been found associated with tumour metastases. Therefore, precise and timely regulation of this pathway is essential. Here, we discuss recent evidence from sea urchins, frogs, fish, mice and humans that show a role for transcriptional and translational repression of Nodal signalling during early development.
Collapse
Affiliation(s)
- Karuna Sampath
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AJ, UK
| | | |
Collapse
|
24
|
Hemichordate models. Curr Opin Genet Dev 2016; 39:71-78. [DOI: 10.1016/j.gde.2016.05.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/28/2016] [Accepted: 05/30/2016] [Indexed: 11/23/2022]
|
25
|
Li P, Sun D, Li X, He Y, Li W, Zhao J, Wang Y, Wang H, Xin Y. Elevated expression of Nodal and YAP1 is associated with poor prognosis of gastric adenocarcinoma. J Cancer Res Clin Oncol 2016; 142:1765-73. [PMID: 27325246 PMCID: PMC4954832 DOI: 10.1007/s00432-016-2188-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE To investigate the correlation between Nodal and YAP1 expression and the clinicopathological characteristics of gastric adenocarcinoma (GAC). METHODS Quantitative real-time RT-PCR, Western blot, and immunohistochemistry were performed to measure Nodal and YAP1 mRNA and protein in 20 fresh frozen samples and 220 paraffin-embedded GAC tissues with their paired non-tumor mucosa (PNTM). The prognostic values of Nodal and YAP1 were evaluated in 161 GAC patients using univariate and multivariate analyses. RESULTS Both mRNA and protein expression of Nodal and YAP1 were significantly increased in GAC compared to PNTM (P < 0.05). Immunohistochemistry showed that Nodal was more highly expressed in 56.4 % GAC samples compared to PNTM; additionally, Nodal expression correlated with depth of tumor invasion, lymph node metastasis, and distant metastasis (all P < 0.05). There was no association between Nodal and YAP1 in GAC (P = 0.171). Kaplan-Meier analysis showed that the outcome of Nodal-high patients was significantly worse than those with low Nodal expression (χ (2) = 30.452, P < 0.001). Cox multivariate regression showed that high Nodal expression was an independent risk factor affecting the prognosis of GAC patients (P = 0.000, RR = 2.976). Furthermore, patients with tumors in which both Nodal and YAP1 were expressed at high levels had the worst prognosis. CONCLUSIONS Elevated Nodal expression is a marker of poor prognosis in gastric cancer. Patient outcome is further worsened if Nodal and YAP1 are both expressed in the same tumor. The datas we present here suggest that the inhibition of Nodal signaling may represent a new therapeutic strategy for the treatment of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Ping Li
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Dan Sun
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Xiaoting Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yingjian He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Wenhui Li
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Jing Zhao
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Ying Wang
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Huan Wang
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Yan Xin
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
26
|
Chang YC, Pai CY, Chen YC, Ting HC, Martinez P, Telford MJ, Yu JK, Su YH. Regulatory circuit rewiring and functional divergence of the duplicate admp genes in dorsoventral axial patterning. Dev Biol 2016; 410:108-18. [DOI: 10.1016/j.ydbio.2015.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 10/22/2022]
|
27
|
Kaji T, Reimer JD, Morov AR, Kuratani S, Yasui K. Amphioxus mouth after dorso-ventral inversion. ZOOLOGICAL LETTERS 2016; 2:2. [PMID: 26855789 PMCID: PMC4744632 DOI: 10.1186/s40851-016-0038-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 02/03/2016] [Indexed: 05/12/2023]
Abstract
INTRODUCTION Deuterostomes (animals with 'secondary mouths') are generally accepted to develop the mouth independently of the blastopore. However, it remains largely unknown whether mouths are homologous among all deuterostome groups. Unlike other bilaterians, in amphioxus the mouth initially opens on the left lateral side. This peculiar morphology has not been fully explained in the evolutionary developmental context. We studied the developmental process of the amphioxus mouth to understand whether amphioxus acquired a new mouth, and if so, how it is related to or differs from mouths in other deuterostomes. RESULTS The left first somite in amphioxus produces a coelomic vesicle between the epidermis and pharynx that plays a crucial role in the mouth opening. The vesicle develops in association with the amphioxus-specific Hatschek nephridium, and first opens into the pharynx and then into the exterior as a mouth. This asymmetrical development of the anterior-most somites depends on the Nodal-Pitx signaling unit, and the perturbation of laterality-determining Nodal signaling led to the disappearance of the vesicle, producing a symmetric pair of anterior-most somites that resulted in larvae lacking orobranchial structures. The vesicle expressed bmp2/4, as seen in ambulacrarian coelomic pore-canals, and the mouth did not open when Bmp2/4 signaling was blocked. CONCLUSIONS We conclude that the amphioxus mouth, which uniquely involves a mesodermal coelomic vesicle, shares its evolutionary origins with the ambulacrarian coelomic pore-canal. Our observations suggest that there are at least three types of mouths in deuterostomes, and that the new acquisition of chordate mouths was likely related to the dorso-ventral inversion that occurred in the last common ancestor of chordates.
Collapse
Affiliation(s)
- Takao Kaji
- />Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526 Japan
- />Present address: Department of Diabetes Technology, Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579 Japan
| | - James D. Reimer
- />Department of Biology, Chemistry and Marine Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 Japan
| | - Arseniy R. Morov
- />Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526 Japan
- />Department of Zoology and General Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., Kazan, 420008 Republic of Tatarstan Russian Federation
| | - Shigeru Kuratani
- />Evolutionary Morphology Laboratory, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Kinya Yasui
- />Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526 Japan
| |
Collapse
|
28
|
Lin CY, Tung CH, Yu JK, Su YH. Reproductive periodicity, spawning induction, and larval metamorphosis of the hemichordate acorn worm Ptychodera flava. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 326:47-60. [PMID: 26663879 DOI: 10.1002/jez.b.22665] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/24/2015] [Indexed: 02/05/2023]
Abstract
The indirect-developing enteropneust acorn worm Ptychodera flava has been used as a hemichordate model system for studying the developmental evolution of deuterostome body plans and the origins of chordate characteristics. However, research progress has been hindered by the limited accessibility of its embryonic materials and metamorphosing larvae. In this study, we identified an abundant population of P. flava in Penghu, Taiwan, and examined the feasibility of using this animal for developmental studies. Through histological examination, we established that the reproductive season of this population is between September and December, with a peak breeding period in October and November. In addition, we have developed new procedures that can induce P. flava spawning at any time of the day during the breeding season, with a higher successful rate than that achieved using a previously published method. Moreover, the culturing system we developed enables rearing of P. flava larvae through various planktonic stages and eventual metamorphosis into benthic juveniles, all under laboratory conditions. We anticipate that the animal resources and new technical procedures reported here will further facilitate the use of P. flava as a model organism for evolutionary and developmental biology research.
Collapse
Affiliation(s)
- Ching-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan.,Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Che-Huang Tung
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan.,Department of Aquatic Biosciences, National Chiayi University, Chiayi, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan.,Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| |
Collapse
|