1
|
Stooke-Vaughan GA, Kim S, Yen ST, Son K, Banavar SP, Giammona J, Kimelman D, Campàs O. The physical roles of different posterior tissues in zebrafish axis elongation. Nat Commun 2025; 16:1839. [PMID: 39984461 PMCID: PMC11845790 DOI: 10.1038/s41467-025-56334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/16/2025] [Indexed: 02/23/2025] Open
Abstract
Shaping embryonic tissues requires spatiotemporal changes in genetic and signaling activity as well as in tissue mechanics. Studies linking specific molecular perturbations to changes in the tissue physical state remain sparse. Here we study how specific genetic perturbations affecting different posterior tissues during zebrafish body axis elongation change their physical state, the resulting large-scale tissue flows, and posterior elongation. Using a custom analysis software to reveal spatiotemporal variations in tissue fluidity, we show that dorsal tissues are most fluid at the posterior end, rigidify anterior of this region, and become more fluid again yet further anteriorly. In the absence of notochord (noto mutants) or when the presomitic mesoderm is substantially reduced (tbx16 mutants), dorsal tissues elongate normally. Perturbations of posterior-directed morphogenetic flows in dorsal tissues (vangl2 mutants) strongly affect the speed of elongation, highlighting the essential role of dorsal cell flows in delivering the necessary material to elongate the axis.
Collapse
Affiliation(s)
| | - Sangwoo Kim
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Shuo-Ting Yen
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Kevin Son
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Samhita P Banavar
- Department of Physics, University of California, Santa Barbara, CA, USA
- Department of Chemical and Biological Engineering, Princeton University, New Jersey, NJ, USA
| | - James Giammona
- Department of Physics, University of California, Santa Barbara, CA, USA
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| |
Collapse
|
2
|
Chakrabarti B, Shelley MJ, Fürthauer S. Collective Motion and Pattern Formation in Phase-Synchronizing Active Fluids. PHYSICAL REVIEW LETTERS 2023; 130:128202. [PMID: 37027863 DOI: 10.1103/physrevlett.130.128202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/21/2022] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Many active particles, such as swimming micro-organisms or motor proteins, do work on their environment by going though a periodic sequence of shapes. Interactions between particles can lead to synchronization of their duty cycles. Here, we study the collective dynamics of a suspension of active particles coupled through hydrodynamics. We find that at high enough density the system transitions to a state of collective motion by a mechanism that is distinct from other instabilities in active matter systems. Second, we demonstrate that the emergent nonequilibrium states feature stationary chimera patterns in which synchronized and phase-isotropic regions coexist. Third, we show that in confinement, oscillatory flows and robust unidirectional pumping states exist, and can be selected by choice of alignment boundary conditions. These results point toward a new route to collective motion and pattern formation and could guide the design of new active materials.
Collapse
Affiliation(s)
- Brato Chakrabarti
- Center for Computational Biology, Flatiron Institute, New York, New York 10010, USA
| | - Michael J Shelley
- Center for Computational Biology, Flatiron Institute, New York, New York 10010, USA
- Courant Institute, New York University, New York, New York 10012, USA
| | - Sebastian Fürthauer
- Center for Computational Biology, Flatiron Institute, New York, New York 10010, USA
- Institute of Applied Physics, TU Wien, A-1040 Wien, Austria
| |
Collapse
|
3
|
Uriu K, Liao BK, Oates AC, Morelli LG. From local resynchronization to global pattern recovery in the zebrafish segmentation clock. eLife 2021; 10:61358. [PMID: 33587039 PMCID: PMC7984840 DOI: 10.7554/elife.61358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/27/2021] [Indexed: 01/26/2023] Open
Abstract
Integrity of rhythmic spatial gene expression patterns in the vertebrate segmentation clock requires local synchronization between neighboring cells by Delta-Notch signaling and its inhibition causes defective segment boundaries. Whether deformation of the oscillating tissue complements local synchronization during patterning and segment formation is not understood. We combine theory and experiment to investigate this question in the zebrafish segmentation clock. We remove a Notch inhibitor, allowing resynchronization, and analyze embryonic segment recovery. We observe unexpected intermingling of normal and defective segments, and capture this with a new model combining coupled oscillators and tissue mechanics. Intermingled segments are explained in the theory by advection of persistent phase vortices of oscillators. Experimentally observed changes in recovery patterns are predicted in the theory by temporal changes in tissue length and cell advection pattern. Thus, segmental pattern recovery occurs at two length and time scales: rapid local synchronization between neighboring cells, and the slower transport of the resulting patterns across the tissue through morphogenesis.
Collapse
Affiliation(s)
- Koichiro Uriu
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Bo-Kai Liao
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.,Department of Cell and Developmental Biology, University College London, Gower Street, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrew C Oates
- Department of Cell and Developmental Biology, University College London, Gower Street, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Luis G Morelli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Polo Científico Tecnológico, Buenos Aires, Argentina.,Departamento de Física, FCEyN UBA, Ciudad Universitaria, Buenos Aires, Argentina.,Max Planck Institute for Molecular Physiology, Department of Systemic Cell Biology, Dortmund, Germany
| |
Collapse
|
4
|
Wüster S, Bhavna R. Spatial correlations in a finite-range Kuramoto model. Phys Rev E 2020; 101:052210. [PMID: 32575303 DOI: 10.1103/physreve.101.052210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/21/2020] [Indexed: 11/07/2022]
Abstract
We study spatial correlations between oscillator phases in the steady state of a Kuramoto model, in which phase oscillators that are randomly distributed in space interact with constant strength but within a limited range. Such a model could be relevant, for example, in the synchronization of gene expression oscillations in cells, where only oscillations of neighboring cells are coupled through cell-cell contacts. We analytically infer spatial phase-phase correlation functions from the known steady-state distribution of oscillators for the case of homogenous frequencies and show that these can contain information about the range and strength of interactions, provided the noise in the system can be estimated. We suggest a method for the latter, and also explore when correlations appear to be ergodic in this model, which would enable an experimental measurement of correlation functions to utilize temporal averages. Simulations show that our techniques also give qualitative results for the model with heterogenous frequencies. We illustrate our results by comparison with experimental data on genetic oscillations in the segmentation clock of zebrafish embryos.
Collapse
Affiliation(s)
- Sebastian Wüster
- Department of Physics, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462 023, India
| | - Rajasekaran Bhavna
- Department of Biological Sciences, Tata Institute of Fundamental Research, 400005 Mumbai, India
| |
Collapse
|
5
|
Bhavna R. Segmentation clock dynamics is strongly synchronized in the forming somite. Dev Biol 2020; 460:55-69. [PMID: 30926261 DOI: 10.1016/j.ydbio.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
Abstract
During vertebrate somitogenesis an inherent segmentation clock coordinates the spatiotemporal signaling to generate segmented structures that pattern the body axis. Using our experimental and quantitative approach, we study the cell movements and the genetic oscillations of her1 expression level at single-cell resolution simultaneously and scale up to the entire pre-somitic mesoderm (PSM) tissue. From the experimentally determined phases of PSM cellular oscillators, we deduced an in vivo frequency profile gradient along the anterior-posterior PSM axis and inferred precise mathematical relations between spatial cell-level period and tissue-level somitogenesis period. We also confirmed a gradient in the relative velocities of cellular oscillators along the axis. The phase order parameter within an ensemble of oscillators revealed the degree of synchronization in the tailbud and the posterior PSM being only partial, whereas synchronization can be almost complete in the presumptive somite region but with temporal oscillations. Collectively, the degree of synchronization itself, possibly regulated by cell movement and the synchronized temporal phase of the transiently expressed clock protein Her1, can be an additional control mechanism for making precise somite boundaries.
Collapse
Affiliation(s)
- Rajasekaran Bhavna
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany; Tata Institute of Fundamental Research, 400005, Mumbai, India.
| |
Collapse
|
6
|
Petrungaro G, Uriu K, Morelli LG. Synchronization dynamics of mobile oscillators in the presence of coupling delays. Phys Rev E 2019; 99:062207. [PMID: 31330742 DOI: 10.1103/physreve.99.062207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Indexed: 06/10/2023]
Abstract
Individual biological oscillators can synchronize to generate a collective rhythm. During vertebrate development, mobile cells exchange signals to synchronize a rhythmic pattern generator that makes the embryonic segments. Previous theoretical works have shown that cell mobility can enhance synchronization of coupled oscillators when signal exchange is instantaneous. However, in vertebrate segmentation, the exchange of signals is thought to comprise delays from signal sending and processing, which could alter the effect of mobility on synchronization. Here, we study synchronization dynamics of mobile phase oscillators in the presence of coupling delays. We find that mobility can speed up synchronization when coupling delays are present. We derive an analytical expression for the characteristic time of synchronization dynamics, which is in very good agreement with numerical simulations. This analytical expression suggests a subdivision of the mobility range into different dynamical regimes and reveals that, with delayed coupling, synchronization is enhanced at a lower mobility rate than with instantaneous coupling. We argue that these results may be relevant to the synchronization of mobile oscillators in vertebrate segmentation.
Collapse
Affiliation(s)
- Gabriela Petrungaro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Polo Científico Tecnológico, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina
- Departamento de Física, FCEyN UBA, Ciudad Universitaria, 1428 Buenos Aires, Argentina
- Institute for Biological Physics, University of Cologne, Zülpicher Strasse 47a, 50674 Köln, Germany
| | - Koichiro Uriu
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Luis G Morelli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Polo Científico Tecnológico, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina
- Departamento de Física, FCEyN UBA, Ciudad Universitaria, 1428 Buenos Aires, Argentina
- Max Planck Institute for Molecular Physiology, Department of Systemic Cell Biology, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
| |
Collapse
|
7
|
Petrungaro G, Uriu K, Morelli LG. Mobility-induced persistent chimera states. Phys Rev E 2017; 96:062210. [PMID: 29347445 DOI: 10.1103/physreve.96.062210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 06/07/2023]
Abstract
We study the dynamics of mobile, locally coupled identical oscillators in the presence of coupling delays. We find different kinds of chimera states in which coherent in-phase and antiphase domains coexist with incoherent domains. These chimera states are dynamic and can persist for long times for intermediate mobility values. We discuss the mechanisms leading to the formation of these chimera states in different mobility regimes. This finding could be relevant for natural and technological systems composed of mobile communicating agents.
Collapse
Affiliation(s)
- Gabriela Petrungaro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Polo Científico Tecnológico, Godoy Cruz 2390, Buenos Aires C1425FQD, Argentina
- Departamento de Física, FCEyN UBA, Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Koichiro Uriu
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Luis G Morelli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Polo Científico Tecnológico, Godoy Cruz 2390, Buenos Aires C1425FQD, Argentina
- Departamento de Física, FCEyN UBA, Ciudad Universitaria, Buenos Aires 1428, Argentina
- Max Planck Institute for Molecular Physiology, Department of Systemic Cell Biology, Otto-Hahn-Strasse 11, Dortmund D-44227, Germany
| |
Collapse
|