1
|
Xie B, Liang J, Jiang J, Zeng T, Liu L, Xie D, Zhu G, Xiong L, Zhang K, Liu D, Gong J, Chen X, Lai R, Xie H. Zebrafish myo7aa affects congenital hearing by regulating Rho-GTPase signaling. Front Mol Neurosci 2024; 17:1405109. [PMID: 39081296 PMCID: PMC11287254 DOI: 10.3389/fnmol.2024.1405109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/31/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction myo7aa, the homolog of the human Usher 1B syndrome pathogenic gene, myo7A, plays an important role in stereociliary development and maintenance, therefore, is critical for hearing and balance. However, the molecular mechanisms that myo7aa regulate hearing and balance still need to be studied. Methods In this study, we generated two independent zebrafish myo7aa knockout lines using CRISPR/Cas9 technology. To investigate the effects of myo7aa on hearing, YO-PRO-1 staining and startle response assay were used. To gain insight into the specific molecular mechanisms by which myo7aa affects hearing, transcriptome sequencing and bioinformatics analysis were employed. Results Our study showed that hair cells of myo7aa-/- zebrafish can not take up YO-PRO-1 fluorescent dye and are insensitive to acoustic stimulation in myo7aa-/- zebrafish compared to wild type. Genes related to the Rho GTPase signaling pathway, such as arhgap33, dab2ip, and arghef40, are significantly down-regulated in myo7aa-/- zebrafish embryos at 3 dpf. GTP and ATP compensation can partially rescue the hair cell defects in myo7aa knockout zebrafish. Discussion Our findings suggest that zebrafish myo7aa affects congenital hearing by regulating Rho GTPase signaling, and loss of myo7aa leads to abnormal Rho GTPase signaling and impairs hair cell function. myo7aa, myo7A, arhgap33, dab2ip, arghef40 and myo7aa-/- fonts in the abstract are italicized. -/- is a superscript format.
Collapse
Affiliation(s)
- Binling Xie
- Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, Hunan, China
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, China
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jiaxin Liang
- Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, Hunan, China
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, China
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jifan Jiang
- Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, Hunan, China
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Ting Zeng
- Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, Hunan, China
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Ling Liu
- Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, Hunan, China
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Dinghua Xie
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ganghua Zhu
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lei Xiong
- Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, Hunan, China
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, China
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Kanjia Zhang
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dong Liu
- Nantong Laboratory of Development and Diseases, Key Laboratory of Neuroregeneration of Jiangsu and MOE, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Jie Gong
- Nantong Laboratory of Development and Diseases, Key Laboratory of Neuroregeneration of Jiangsu and MOE, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiangding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ruosha Lai
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huaping Xie
- Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
2
|
Pang L, Zhang Z, Shen Y, Cheng Z, Gao X, Zhang B, Wang X, Tian H. Mutant dlx3b disturbs normal tooth mineralization and bone formation in zebrafish. PeerJ 2020; 8:e8515. [PMID: 32117623 PMCID: PMC7035872 DOI: 10.7717/peerj.8515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 01/05/2020] [Indexed: 12/22/2022] Open
Abstract
Background Tricho-dento-osseous (TDO) syndrome is an autosomal dominant disorder characterized by anomalies in hair, teeth and bone (OMIM190320). Various mutations of Distal-Less 3 (DLX3) gene are found to be responsible for human TDO. The aim of this study was to investigate effects of DLX3 on tooth and bone development using a zebrafish model. Methods The dlx3b mutant zebrafish lines were established using the gene targeting tool transcription activator-like effector nuclease (TALEN). Micro-computed tomography was used to render the three-dimensional skeletal structures of mutant fishes. The pharyngeal bone along with connected teeth was isolated and stained by Alizarine Red S, then observed under stereomicroscope. Scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) were used to examine the tooth surface morphology and mineral composition. Quantitative real-time PCR was used to analyze gene expression. Results A moderate curvature of the spine toward the dorsal side was found at the early larval stages, appearing in 86 out of 100 larvae in dlx3b-/- group as compared to 3 out of 99 in the dlx3b+/+ group. At the adult stage, three of the thirty dlx3b-/- homozygotes exhibited prominent abnormal curvature in the spine. SEM revealed morphological surface changes in pharyngeal teeth enameloid, accompanied by a decrease in the mineral content detected by EDS. Furthermore, specific secretory calcium-binding phosphoprotein (SCPP) genes, including odam, scpp9, spp1, scpp1, and scpp5 were significantly downregulated in dlx3b mutants. Conclusion The findings of this study suggest that dlx3b is critical for enamel mineralization and bone formation in zebrafish. Moreover, the discovery of the downregulation of SCPP genes in dlx3b mutants sheds new light on the molecular mechanisms underlying TDO syndrome.
Collapse
Affiliation(s)
- Liping Pang
- Department of Cariology and Endodontology & National Clinical Research Center for Oral Disease & Beijing Key Laboratory of Digital Stomatology, School and Hospital of Stomatology, Peking University, Beijing, PR China
| | - Zhichun Zhang
- Department of Cariology and Endodontology & National Clinical Research Center for Oral Disease & Beijing Key Laboratory of Digital Stomatology, School and Hospital of Stomatology, Peking University, Beijing, PR China
| | - Yan Shen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking Universiy, Beijing, PR China
| | - Zhenchao Cheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking Universiy, Beijing, PR China
| | - Xuejun Gao
- Department of Cariology and Endodontology & National Clinical Research Center for Oral Disease & Beijing Key Laboratory of Digital Stomatology, School and Hospital of Stomatology, Peking University, Beijing, PR China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking Universiy, Beijing, PR China
| | - Xiaoyan Wang
- Department of Cariology and Endodontology & National Clinical Research Center for Oral Disease & Beijing Key Laboratory of Digital Stomatology, School and Hospital of Stomatology, Peking University, Beijing, PR China
| | - Hua Tian
- Department of Cariology and Endodontology & National Clinical Research Center for Oral Disease & Beijing Key Laboratory of Digital Stomatology, School and Hospital of Stomatology, Peking University, Beijing, PR China
| |
Collapse
|
3
|
Sun P, Zhang Y, Zhao F, Wu JP, Pun SH, Peng C, Du M, Vai MI, Liu D, Chen F. An Assay for Systematically Quantifying the Vestibulo-Ocular Reflex to Assess Vestibular Function in Zebrafish Larvae. Front Cell Neurosci 2018; 12:257. [PMID: 30186115 PMCID: PMC6113563 DOI: 10.3389/fncel.2018.00257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 07/27/2018] [Indexed: 12/25/2022] Open
Abstract
Zebrafish (Danio rerio) larvae are widely used to study otic functions because they possess all five typical vertebrate senses including hearing and balance. Powerful genetic tools and the transparent body of the embryo and larva also make zebrafish a unique vertebrate model to study otic development. Due to its small larval size and moisture requirement during experiments, accurately acquiring the vestibulo-ocular reflex (VOR) of zebrafish larva is challenging. In this report, a new VOR testing device has been developed for quantifying linear VOR (LVOR) in zebrafish larva, evoked by the head motion about the earth horizontal axis. The system has a newly designed larva-shaped chamber, by which live fish can be steadily held without anesthesia, and the system is more compact and easier to use than its predecessors. To demonstrate the efficacy of the system, the LVORs in wild-type (WT), dlx3b and dlx4b morphant zebrafish larvae were measured and the results showed that LVOR amplitudes were consistent with the morphological changes of otoliths induced by morpholino oligonucleotides (MO). Our study represents an important advance to obtain VOR and predict the vestibular conditions in zebrafish.
Collapse
Affiliation(s)
- Peng Sun
- State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Taipa, China.,Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yingla Zhang
- School of Life Sciences, Peking University, Beijing, China
| | - Feng Zhao
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jian-Ping Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.,SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Sio Hang Pun
- State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Taipa, China
| | - Cheng Peng
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Meide Du
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Mang I Vai
- State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Taipa, China.,Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, China
| | - Dong Liu
- School of Life Sciences, Peking University, Beijing, China.,Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
4
|
Naert T, Vleminckx K. CRISPR/Cas9 disease models in zebrafish and Xenopus: The genetic renaissance of fish and frogs. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 28:41-52. [PMID: 30205880 DOI: 10.1016/j.ddtec.2018.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022]
Abstract
The speed by which clinical genomics is currently identifying novel potentially pathogenic variants is outperforming the speed by which these can be functionally (genotype-phenotype) annotated in animal disease models. However, over the past few years the emergence of CRISPR/Cas9 as a straight-forward genome editing technology has revolutionized disease modeling in vertebrate non-mammalian model organisms such as zebrafish, medaka and Xenopus. It is now finally possible, by CRISPR/Cas9, to rapidly establish clinically relevant disease models in these organisms. Interestingly, these can provide both cost-effective genotype-phenotype correlations for gene-(variants) and genomic rearrangements obtained from clinical practice, as well as be exploited to perform translational research to improve prospects of disease afflicted patients. In this review, we show an extensive overview of these new CRISPR/Cas9-mediated disease models and provide future prospects that will allow increasingly accurate modeling of human disease in zebrafish, medaka and Xenopus.
Collapse
Affiliation(s)
- Thomas Naert
- Department of Biomedical Molecular Biology, Ghent University, Belgium; Cancer Research Institute Ghent, Belgium
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, Belgium; Center for Medical Genetics, Ghent University, Belgium; Cancer Research Institute Ghent, Belgium.
| |
Collapse
|