1
|
Bezerra TO, Roque AC, Salum C. A Computational Model for the Simulation of Prepulse Inhibition and Its Modulation by Cortical and Subcortical Units. Brain Sci 2024; 14:502. [PMID: 38790479 PMCID: PMC11118907 DOI: 10.3390/brainsci14050502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
The sensorimotor gating is a nervous system function that modulates the acoustic startle response (ASR). Prepulse inhibition (PPI) phenomenon is an operational measure of sensorimotor gating, defined as the reduction of ASR when a high intensity sound (pulse) is preceded in milliseconds by a weaker stimulus (prepulse). Brainstem nuclei are associated with the mediation of ASR and PPI, whereas cortical and subcortical regions are associated with their modulation. However, it is still unclear how the modulatory units can influence PPI. In the present work, we developed a computational model of a neural circuit involved in the mediation (brainstem units) and modulation (cortical and subcortical units) of ASR and PPI. The activities of all units were modeled by the leaky-integrator formalism for neural population. The model reproduces basic features of PPI observed in experiments, such as the effects of changes in interstimulus interval, prepulse intensity, and habituation of ASR. The simulation of GABAergic and dopaminergic drugs impaired PPI by their effects over subcortical units activity. The results show that subcortical units constitute a central hub for PPI modulation. The presented computational model offers a valuable tool to investigate the neurobiology associated with disorder-related impairments in PPI.
Collapse
Affiliation(s)
- Thiago Ohno Bezerra
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo 09606-045, Brazil
| | - Antonio C. Roque
- Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Cristiane Salum
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo 09606-045, Brazil
- Interdisciplinary Applied Neuroscience Unit, Universidade Federal do ABC, São Bernardo do Campo 09606-045, Brazil
| |
Collapse
|
2
|
Viragh E, Asztalos L, Fenckova M, Szlanka T, Gyorgypal Z, Kovacs K, IntHout J, Cizek P, Konda M, Szucs E, Zvara A, Biro J, Csapo E, Lukacsovich T, Hegedus Z, Puskas L, Schenck A, Asztalos Z. Pre-Pulse Inhibition of an escape response in adult fruit fly, Drosophila melanogaster. RESEARCH SQUARE 2024:rs.3.rs-3853873. [PMID: 38343805 PMCID: PMC10854311 DOI: 10.21203/rs.3.rs-3853873/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Pre-Pulse Inhibition (PPI) is a neural process where suppression of a startle response is elicited by preceding the startling stimulus (Pulse) with a weak, non-startling one (Pre-Pulse). Defective PPI is widely employed as a behavioural endophenotype in humans and mammalian disorder-relevant models for neuropsychiatric disorders. We have developed a user-friendly, semi-automated, high-throughput-compatible Drosophila light-off jump response PPI paradigm, with which we demonstrate that PPI, with similar parameters measured in mammals, exists in adults of this model organism. We report that Drosophila PPI is affected by reduced expression of Dysbindin and both reduced and increased expression of Nmdar1 (N-methyl-D-aspartate receptor 1), perturbations associated with schizophrenia. Studying the biology of PPI in an organism that offers a plethora of genetic tools and a complex and well characterized connectome will greatly facilitate our efforts to gain deeper insight into the aetiology of human mental disorders, while reducing the need for mammalian models.
Collapse
Affiliation(s)
- Erika Viragh
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- Aktogen Hungary Ltd., Szeged, Hungary
| | - Lenke Asztalos
- Aktogen Hungary Ltd., Szeged, Hungary
- Aktogen Ltd., Department of Genetics, University of Cambridge, Cambridge, United Kingdom; Current address: Aktogen Ltd. Ramsey, Huntingdon, United Kingdom
| | - Michaela Fenckova
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czechia
| | - Tamas Szlanka
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- Aktogen Hungary Ltd., Szeged, Hungary
| | - Zoltan Gyorgypal
- Institute of Biophysics & Core Facilities, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Karoly Kovacs
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Joanna IntHout
- Department for Health Evidence (HEV), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pavel Cizek
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihaly Konda
- Aktogen Hungary Ltd., Szeged, Hungary
- Voalaz Ltd., Szeged, Hungary
| | | | - Agnes Zvara
- Laboratory of Functional Genomics, HUN-REN Biological Research Centre Szeged, Hungary
| | | | | | | | - Zoltan Hegedus
- Institute of Biophysics & Core Facilities, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Laszlo Puskas
- Laboratory of Functional Genomics, HUN-REN Biological Research Centre Szeged, Hungary
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Zoltan Asztalos
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- Aktogen Hungary Ltd., Szeged, Hungary
- Aktogen Ltd., Department of Genetics, University of Cambridge, Cambridge, United Kingdom; Current address: Aktogen Ltd. Ramsey, Huntingdon, United Kingdom
| |
Collapse
|
3
|
Schiöth HB, Donzelli L, Arvidsson N, Williams MJ, Moulin TC. Evidence for Prepulse Inhibition of Visually Evoked Motor Response in Drosophila melanogaster. BIOLOGY 2023; 12:biology12040635. [PMID: 37106835 PMCID: PMC10135638 DOI: 10.3390/biology12040635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Prepulse inhibition (PPI) is a widely investigated behavior to study the mechanisms of disorders such as anxiety, schizophrenia, and bipolar mania. PPI has been observed across various vertebrate and invertebrate species; however, it has not yet been reported in adult Drosophila melanogaster. In this study, we describe the first detection of PPI of visually evoked locomotor arousal in flies. To validate our findings, we demonstrate that PPI in Drosophila can be partially reverted by the N-methyl D-aspartate (NMDA) receptor antagonist MK-801, known for inducing sensorimotor gating deficits in rodent models. Additionally, we show that the visually evoked response can be inhibited by multiple stimuli presentation, which can also be affected by MK-801. Given the versatility of Drosophila as a model organism for genetic screening and analysis, our results suggest that high-throughput behavioral screenings of adult flies can become a valuable tool for investigating the mechanisms behind PPI.
Collapse
Affiliation(s)
- Helgi B Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Laura Donzelli
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Nicklas Arvidsson
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Michael J Williams
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Thiago C Moulin
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
4
|
Furuya K, Katsumata Y, Ishibashi M, Matsumoto Y, Morimoto T, Aonishi T. Computational model predicts the neural mechanisms of prepulse inhibition in Drosophila larvae. Sci Rep 2022; 12:15211. [PMID: 36075992 PMCID: PMC9458643 DOI: 10.1038/s41598-022-19210-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Prepulse inhibition (PPI) is a behavioural phenomenon in which a preceding weaker stimulus suppresses the startle response to a subsequent stimulus. The effect of PPI has been found to be reduced in psychiatric patients and is a promising neurophysiological indicator of psychiatric disorders. Because the neural circuit of the startle response has been identified at the cellular level, investigating the mechanism underlying PPI in Drosophila melanogaster larvae through experiment-based mathematical modelling can provide valuable insights. We recently identified PPI in Drosophila larvae and found that PPI was reduced in larvae mutated with the Centaurin gamma 1A (CenG1A) gene, which may be associated with autism. In this study, we used numerical simulations to investigate the neural mechanisms underlying PPI in Drosophila larvae. We adjusted the parameters of a previously developed Drosophila larvae computational model and demonstrated that the model could reproduce several behaviours, including PPI. An analysis of the temporal changes in neuronal activity when PPI occurs using our neural circuit model suggested that the activity of specific neurons triggered by prepulses has a considerable effect on PPI. Furthermore, we validated our speculations on PPI reduction in CenG1A mutants with simulations.
Collapse
Affiliation(s)
- Kotaro Furuya
- School of Computing, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Yokohama-shi, Kanagawa, 226-8503, Japan.
| | - Yuki Katsumata
- School of Computing, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Yokohama-shi, Kanagawa, 226-8503, Japan
| | - Masayuki Ishibashi
- School of Computing, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Yokohama-shi, Kanagawa, 226-8503, Japan
| | - Yutaro Matsumoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo, 192-0392, Japan
| | - Takako Morimoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo, 192-0392, Japan
| | - Toru Aonishi
- School of Computing, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Yokohama-shi, Kanagawa, 226-8503, Japan.
| |
Collapse
|
5
|
Effects of Importin α1/KPNA1 deletion and adolescent social isolation stress on psychiatric disorder-associated behaviors in mice. PLoS One 2021; 16:e0258364. [PMID: 34767585 PMCID: PMC8589199 DOI: 10.1371/journal.pone.0258364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/25/2021] [Indexed: 01/12/2023] Open
Abstract
Importin α1/KPNA1 is a member of the Importin α family widely present in the mammalian brain and has been characterized as a regulator of neuronal differentiation, synaptic functionality, and anxiety-like behavior. In humans, a de novo mutation of the KPNA1 (human Importin α5) gene has been linked with schizophrenia; however, the precise roles of KPNA1 in disorder-related behaviors are still unknown. Moreover, as recent studies have highlighted the importance of gene-environment interactions in the development of psychiatric disorders, we investigated the effects of Kpna1 deletion and social isolation stress, a paradigm that models social stress factors found in human patients, on psychiatric disorder-related behaviors in mice. Through assessment in a behavioral battery, we found that Kpna1 knockout resulted in the following behavioral phenotype: (1) decreased anxiety-like behavior in an elevated plus maze test, (2) short term memory deficits in novel object recognition test (3) impaired sensorimotor gating in a prepulse inhibition test. Importantly, exposure to social isolation stress resulted in additional behavioral abnormalities where isolated Kpna1 knockout mice exhibited: (1) impaired aversive learning and/or memory in the inhibitory avoidance test, as well as (2) increased depression-like behavior in the forced swim test. Furthermore, we investigated whether mice showed alterations in plasma levels of stress-associated signal molecules (corticosterone, cytokines, hormones, receptors), and found that Kpna1 knockout significantly altered levels of corticosterone and LIX (CXCL5). Moreover, significant decreases in the level of prolactin were found in all groups except for group-housed wild type mice. Our findings demonstrate that Kpna1 deletion can trigger widespread behavioral abnormalities associated with psychiatric disorders, some of which were further exacerbated by exposure to adolescent social isolation. The use of Kpna1 knockout mice as a model for psychiatric disorders may show promise for further investigation of gene-environment interactions involved in the pathogenesis of psychiatric disorders.
Collapse
|
6
|
Social context influences sensorimotor gating in female African cichlid fish Astatotilapia burtoni. Behav Brain Res 2019; 370:111925. [PMID: 31102599 DOI: 10.1016/j.bbr.2019.111925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 11/23/2022]
Abstract
Disruption in prepulse inhibition (PPI), a sensorimotor gating phenomenon found in many species, has been associated with various psychiatric disorders in humans. Social defeat has been identified as a mediator of naturally evoked reductions of PPI in African cichlid fish Astatotilapia burtoni where males reversibly alter social status and their sensorimotor gating abilities. Here we investigated A. burtoni females, which establish a male-like social hierarchy with dominant (DOM) and subordinate (SUB) individuals when housed in communities without males. We asked if DOM and SUB females demonstrate socially induced PPI differences comparable to their male DOM and SUB counterparts. Results suggest that social defeat reduced PPI in SUB females as compared to DOM females (p = 0.033) and mixed-sex community female controls (p = 0.017). However, socially defeated females in same-sex communities remained proactive when engaging in antagonistic behaviors, which appears beneficial in avoiding substantial reductions in PPI as seen in reactive, socially defeated males. In open field swimming tests, SUB females exhibited increased anxiety-related behavior (thigmotaxis) as compared to females from mixed-sex communities (COM). Taken together, our results emphasize social defeat is a reliable modulator of PPI independent of sex, and anxiety related to social defeat might be a factor in mediating PPI plasticity.
Collapse
|