1
|
Islam A, Shaukat Z, Hussain R, Ricos MG, Dibbens LM, Gregory SL. Aneuploidy is Linked to Neurological Phenotypes Through Oxidative Stress. J Mol Neurosci 2024; 74:50. [PMID: 38693434 PMCID: PMC11062972 DOI: 10.1007/s12031-024-02227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Aneuploidy, having an aberrant genome, is gaining increasing attention in neurodegenerative diseases. It gives rise to proteotoxic stress as well as a stereotypical oxidative shift which makes these cells sensitive to internal and environmental stresses. A growing body of research from numerous laboratories suggests that many neurodegenerative disorders, especially Alzheimer's disease and frontotemporal dementia, are characterised by neuronal aneuploidy and the ensuing apoptosis, which may contribute to neuronal loss. Using Drosophila as a model, we investigated the effect of induced aneuploidy in GABAergic neurons. We found an increased proportion of aneuploidy due to Mad2 depletion in the third-instar larval brain and increased cell death. Depletion of Mad2 in GABAergic neurons also gave a defective climbing and seizure phenotype. Feeding animals an antioxidant rescued the climbing and seizure phenotype. These findings suggest that increased aneuploidy leads to higher oxidative stress in GABAergic neurons which causes cell death, climbing defects, and seizure phenotype. Antioxidant feeding represents a potential therapy to reduce the aneuploidy-driven neurological phenotype.
Collapse
Affiliation(s)
- Anowarul Islam
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, 5042, Australia
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Zeeshan Shaukat
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Rashid Hussain
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Michael G Ricos
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Leanne M Dibbens
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Stephen L Gregory
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, 5042, Australia.
| |
Collapse
|
2
|
Islam A, Shaukat Z, Newman DL, Hussain R, Ricos MG, Dibbens L, Gregory SL. Chromosomal Instability Causes Sensitivity to Polyamines and One-Carbon Metabolism. Metabolites 2023; 13:metabo13050642. [PMID: 37233683 DOI: 10.3390/metabo13050642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Aneuploidy, or having a disrupted genome, is an aberration commonly found in tumours but rare in normal tissues. It gives rise to proteotoxic stress as well as a stereotypical oxidative shift, which makes these cells sensitive to internal and environmental stresses. Using Drosophila as a model, we investigated the changes in transcription in response to ongoing changes to ploidy (chromosomal instability, CIN). We noticed changes in genes affecting one-carbon metabolism, specifically those affecting the production and use of s-adenosyl methionine (SAM). The depletion of several of these genes has led to cell death by apoptosis in CIN cells but not in normal proliferating cells. We found that CIN cells are particularly sensitive to SAM metabolism at least partly because of its role in generating polyamines. Feeding animals spermine was seen to rescue the cell death caused by the loss of SAM synthase in CIN tissues. The loss of polyamines led to decreased rates of autophagy and sensitivity to reactive oxygen species (ROS), which we have shown to contribute significantly to cell death in CIN cells. These findings suggest that a well-tolerated metabolic intervention such as polyamine inhibition has the potential to target CIN tumours via a relatively well-characterised mechanism.
Collapse
Affiliation(s)
- Anowarul Islam
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia 2 Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia 3 School of Biological Sciences, University of Adelaide, Adelaide 5006, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Zeeshan Shaukat
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - David L Newman
- School of Biological Sciences, University of Adelaide, Adelaide 5006, Australia
| | - Rashid Hussain
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Michael G Ricos
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Leanne Dibbens
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Stephen L Gregory
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia 2 Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia 3 School of Biological Sciences, University of Adelaide, Adelaide 5006, Australia
| |
Collapse
|
3
|
Bonea D, Noureddine J, Gazzarrini S, Zhao R. Oxidative and salt stresses alter the 26S proteasome holoenzyme and associated protein profiles in Arabidopsis thaliana. BMC PLANT BIOLOGY 2021; 21:486. [PMID: 34696730 PMCID: PMC8543921 DOI: 10.1186/s12870-021-03234-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/29/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND The 26S proteasome, canonically composed of multi-subunit 19S regulatory (RP) and 20S core (CP) particles, is crucial for cellular proteostasis. Proteasomes are re-modeled, activated, or re-localized and this regulation is critical for plants in response to environmental stresses. The proteasome holoenzyme assembly and dissociation are therefore highly dynamic in vivo. However, the stoichiometric changes of the plant proteasomes and how proteasome associated chaperones vary under common abiotic stresses have not been systematically studied. RESULTS Here, we studied the impact of abiotic stresses on proteasome structure, activity, and interacting partners in Arabidopsis thaliana. We analyzed available RNA expression data and observed that expressions of proteasome coding genes varied substantially under stresses; however, the protein levels of a few key subunits did not change significantly within 24 h. Instead, a switch in the predominant proteasome complex, from 26S to 20S, occurs under oxidative or salt stress. Oxidative stress also reduced the cellular ATP content and the association of HSP70-family proteins to the 20S proteasome, but enhanced the activity of cellular free form CP. Salt stress, on the other hand, did not affect cellular ATP level, but caused subtle changes in proteasome subunit composition and impacted bindings of assembly chaperones. Analyses of an array of T-DNA insertional mutant lines highlighted important roles for several putative assembly chaperones in seedling establishment and stress sensitivity. We also observed that knockout of PBAC1, one of the α-ring assembly chaperones, resulted in reduced germination and tearing of the seed coat following sterilization. CONCLUSIONS Our study revealed an evolutionarily conserved mechanism of proteasome regulation during oxidative stress, involving dynamic regulation of the holoenzyme formation and associated regulatory proteins, and we also identified a novel role of the PBAC1 proteasome assembly chaperone in seed coat development.
Collapse
Affiliation(s)
- Diana Bonea
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5 Canada
| | - Jenan Noureddine
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5 Canada
| | - Sonia Gazzarrini
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5 Canada
| | - Rongmin Zhao
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5 Canada
| |
Collapse
|
4
|
Adeleke GE, Adaramoye OA. Betulinic acid abates N-nitrosodimethylamine-induced changes in lipid metabolism, oxidative stress, and inflammation in the liver and kidney of Wistar rats. J Biochem Mol Toxicol 2021; 35:e22901. [PMID: 34472159 DOI: 10.1002/jbt.22901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 08/03/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022]
Abstract
N-nitrosamines have been linked with cancer in humans due to their presence in drinking water and diets. This study evaluated the role of betulinic acid (BA) in abating oxidative stress, inflammation, and hyperlipidemia in rats treated with N-nitrosodimethylamine (NDMA). Twenty-four male rats were assigned into four equal groups. Group I served as the control, Group II received BA (25 mg/kg), Group III received NDMA (5 mg/kg) and, Group IV received BA (25 mg/kg) and NDMA (5 mg/kg). Results showed that the administration of NDMA significantly (p < 0.05) elevated malondialdehyde in the liver and kidney relative to controls. Activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase, and the level of glutathione were significantly (p < 0.05) decreased by NDMA, while treatment with BA elevated the activities of these enzymes in the liver and kidney. The BA lowered serum interleukin-6 and tumor necrosis factor-alpha levels against the NDMA effect. Furthermore, NDMA increased hepatic and renal triglyceride while phospholipids levels were decreased. NDMA significantly modulated the activities of drug-metabolizing enzymes (aniline hydroxylase, aminopyrine-N-demethylase, and uridyldiphosphoglucuronyltransferase), while BA was able to restore these enzymes to values close to controls. Histology revealed the presence of infiltration and fibroplasia in the liver, while cortical degeneration was noticed in the kidney in NDMA-administered rats. These lesions were reduced in the NDMA rats treated with BA. The findings suggest that BA improves NDMA-induced damage in the liver and kidney of rats through reactions that can be linked with antioxidant, anti-inflammatory, and lipid-lowering pathways.
Collapse
Affiliation(s)
- Gbadebo E Adeleke
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Oluwatosin A Adaramoye
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
5
|
Yan L, Zhao Z, Wang X, Lyu T, Li J, Qi Y, Wang X, Guo X. Short-term in vitro glutamine restriction differentially impacts the chromosomal stability of transformed and non-transformed cells. Mutagenesis 2020; 35:geaa026. [PMID: 33043986 DOI: 10.1093/mutage/geaa026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/10/2020] [Indexed: 11/13/2022] Open
Abstract
Glutamine (Gln) is a non-essential amino acid central for generating building blocks and cellular energy in tumours and rapidly proliferating non-transformed cells. However, the influence of Gln on regulating chromosomal stability of transformed and non-transformed cells remain poorly understand. We hypothesised that Gln is required for maintaining a homeostatic level of chromosomal stability. To this end, transformed cells HeLa and A375 and non-transformed cells NCM460 and HUVEC cells were intervened with varying concentrations of Gln (10, 1, 0.1 and 0.01 mM), with or without cisplatin (0.1 µg/ml), for 24 h. The cytokinesis-block micronucleus (MN) assay was used to determine chromosomal instability (CIN), the extent of which is reflected by the frequency of MN, nucleoplasmic bridge (NPB) and nuclear bud (NB). We demonstrated an unexpected decrease in the spontaneous rate of MN, but not NPB and NB, after Gln restriction in HeLa and A375 cells. Gln restriction reduced cisplatin-induced MN, but not NPB and NB, in HeLa and A375 cells. We further revealed that Gln restriction suppressed the proliferation of HeLa cells with high CIN induced by nocodazole, partially explaining why Gln restriction decreased the frequency of spontaneous and cisplatin-induced MN in transformed cells. In contrast, Gln restriction increased MN and NB, but not NPB, in NCM460 cells. In HUVEC cells, Gln restriction increased MN, NPB and NB. Meanwhile, Gln restriction sensitised NCM460 cells to cisplatin-induced genotoxicity. A similar but more pronounced pattern was observed in HUVEC cells. Collectively, these results suggest that the in vitro influences of Gln metabolism on CIN depend on cellular contexts: Transformed cells require high Gln to fine tune their CIN in an optimal rate to maximise genomic heterogeneity and fitness, whereas non-transformed cells need high Gln to prevent CIN.
Collapse
Affiliation(s)
- Ling Yan
- School of Life Sciences, Yunnan Normal University, Chenggong District, Kunming, Yunnan, China
| | - Ziru Zhao
- School of Life Sciences, Yunnan Normal University, Chenggong District, Kunming, Yunnan, China
| | - Xiaoran Wang
- School of Life Sciences, Yunnan Normal University, Chenggong District, Kunming, Yunnan, China
| | - Ting Lyu
- School of Life Sciences, Yunnan Normal University, Chenggong District, Kunming, Yunnan, China
| | - Jianfei Li
- School of Life Sciences, Yunnan Normal University, Chenggong District, Kunming, Yunnan, China
| | - Yanmei Qi
- School of Life Sciences, Yunnan Normal University, Chenggong District, Kunming, Yunnan, China
| | - Xu Wang
- School of Life Sciences, Yunnan Normal University, Chenggong District, Kunming, Yunnan, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Chenggong District, Kunming, Yunnan, China
- Yunnan Environmental Society, Chenggong District, Kunming, Yunnan, China
| | - Xihan Guo
- School of Life Sciences, Yunnan Normal University, Chenggong District, Kunming, Yunnan, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Chenggong District, Kunming, Yunnan, China
- Yunnan Environmental Society, Chenggong District, Kunming, Yunnan, China
| |
Collapse
|
6
|
de Moraes Filho AV, Manso JAX, Martins WE, Marinho NA, de Oliveira Santos M, Perim Neto J, Duarte SSM, da Cruz AD, da Silva CC, Barbosa MS, de Jesus Pires D, Carneiro LC. Genotoxicity and mutagenicity research in Quilombola communities. Sci Rep 2020; 10:14225. [PMID: 32848182 PMCID: PMC7450063 DOI: 10.1038/s41598-020-71195-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/10/2020] [Indexed: 01/03/2023] Open
Abstract
The Quilombola communities are mostly isolated and deprived of sources of treated water, garbage collection and sewage, consuming fresh water from wells, streams, lakes, among others. This lack of basic infrastructure can be a relevant factor in exposing residents to substances and factors that are harmful to the integrity of their genetic material that can lead to carcinogenesis. Based on this, the objective of this study was to evaluate the genomic and mutagenic/cytotoxic damage in the adult population of two Quilombola communities (one urban and another rural region), in the state of Goiás, Brazil. For this purpose, the leukocyte of peripheral blood Comet Assay in 68 individuals and Micronucleus Test from exfoliated buccal cells of oral mucosa in 21 volunteers were performed. The results evidenced genomic damage, especially for the community of Aparecida de Goiânia city, which detected significant values (p < 0.05), for the length of the comet's tail and for of the Olive Tail Moment. In the micronucleus test, significant differences were only detected (p < 0.05), when it came to the distribution of nuclear changes among the groups. Therefore, it is essential to perform constant population biomonitoring studies to help guarantee health and, consequently, the quality of life.
Collapse
Affiliation(s)
- Aroldo Vieira de Moraes Filho
- Graduate Program in Health Sciences, Federal University of Goiás, Institute of Tropical Pathology and Public Health, Biotechnology Laboratory of Microorganisms, Federal University of Goiás, Goiânia, Goiás, Brazil.
| | - João Antonio Xavier Manso
- Replicon Research Center, Master's Program in Genetics, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goiás, Goiânia, Goiás, Brazil
| | - Wanderléia Eleutério Martins
- Graduate Program in Health Sciences, Federal University of Goiás, Institute of Tropical Pathology and Public Health, Biotechnology Laboratory of Microorganisms, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Núbia Aguiar Marinho
- Graduate Program in Health Sciences, Federal University of Goiás, Institute of Tropical Pathology and Public Health, Biotechnology Laboratory of Microorganisms, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Mônica de Oliveira Santos
- Graduate Program in Health Sciences, Federal University of Goiás, Institute of Tropical Pathology and Public Health, Biotechnology Laboratory of Microorganisms, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - José Perim Neto
- Replicon Research Center, Master's Program in Genetics, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goiás, Goiânia, Goiás, Brazil
| | - Sabrina Sara Moreira Duarte
- Replicon Research Center, Master's Program in Genetics, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goiás, Goiânia, Goiás, Brazil
| | - Aparecido Divino da Cruz
- Replicon Research Center, Master's Program in Genetics, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goiás, Goiânia, Goiás, Brazil
| | - Cláudio Carlos da Silva
- Replicon Research Center, Master's Program in Genetics, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goiás, Goiânia, Goiás, Brazil
| | - Mônica Santiago Barbosa
- Graduate Program in Health Sciences, Federal University of Goiás, Institute of Tropical Pathology and Public Health, Biotechnology Laboratory of Microorganisms, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Lílian Carla Carneiro
- Graduate Program in Health Sciences, Federal University of Goiás, Institute of Tropical Pathology and Public Health, Biotechnology Laboratory of Microorganisms, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
7
|
Abstract
Cancer is a genetic disease that involves the gradual accumulation of mutations. Human tumours are genetically unstable. However, the current knowledge about the origins and implications of genomic instability in this disease is limited. Understanding the biology of cancer requires the use of animal models. Here, we review relevant studies addressing the implications of genomic instability in cancer by using the fruit fly, Drosophila melanogaster, as a model system. We discuss how this invertebrate has helped us to expand the current knowledge about the mechanisms involved in genomic instability and how this hallmark of cancer influences disease progression.
Collapse
Affiliation(s)
- Stephan U Gerlach
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Co-Operation between Aneuploidy and Metabolic Changes in Driving Tumorigenesis. Int J Mol Sci 2019; 20:ijms20184611. [PMID: 31540349 PMCID: PMC6770258 DOI: 10.3390/ijms20184611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
Alterations from the normal set of chromosomes are extremely common as cells progress toward tumourigenesis. Similarly, we expect to see disruption of normal cellular metabolism, particularly in the use of glucose. In this review, we discuss the connections between these two processes: how chromosomal aberrations lead to metabolic disruption, and vice versa. Both processes typically result in the production of elevated levels of reactive oxygen species, so we particularly focus on their role in mediating oncogenic changes.
Collapse
|
9
|
Abstract
Genomic instability is a common feature of tumours that has a wide range of disruptive effects on cellular homeostasis. In this review we briefly discuss how instability comes about, then focus on the impact of gain or loss of DNA (aneuploidy) on oxidative stress. We discuss several mechanisms that lead from aneuploidy to the production of reactive oxygen species, including the effects on protein complex stoichiometry, endoplasmic reticulum stress and metabolic disruption. Each of these are involved in positive feedback loops that amplify relatively minor genetic changes into major cellular disruption or cell death, depending on the capacity of the cell to induce antioxidants or processes such as mitophagy that can moderate the disruption. Finally we examine the direct effects of reactive oxygen species on mitosis and how oxidative stress can compromise centrosome number, cytoskeletal integrity and signalling processes that are vital for mitotic fidelity.
Collapse
Affiliation(s)
- David L Newman
- a Department of Molecular and Biomedical Science, University of Adelaide , Adelaide , Australia
| | - Lauren A Thurgood
- b Discipline of Molecular Medicine and Pathology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University , Adelaide , Australia
| | - Stephen L Gregory
- a Department of Molecular and Biomedical Science, University of Adelaide , Adelaide , Australia.,b Discipline of Molecular Medicine and Pathology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University , Adelaide , Australia
| |
Collapse
|