1
|
Saez-Carrion E, Aguilar-Aragon M, García-López L, Dominguez M, Uribe ML. Metabolic Adaptations in Cancer and the Host Using Drosophila Models and Advanced Tools. Cells 2024; 13:1977. [PMID: 39682725 DOI: 10.3390/cells13231977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/31/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer is a multifactorial process involving genetic, epigenetic, physiological, and metabolic changes. The ability of tumours to regulate new reactive pathways is essential for their survival. A key aspect of this involves the decision-making process of cancer cells as they balance the exploitation of surrounding and distant tissues for their own benefit while avoiding the rapid destruction of the host. Nutrition plays a central role in these processes but is inherently limited. Understanding how tumour cells interact with non-tumoural tissues to acquire nutrients is crucial. In this review, we emphasise the utility of Drosophila melanogaster as a model organism for dissecting the complex oncogenic networks underlying these interactions. By studying various levels-from individual tumour cells to systemic markers-we can gain new insights into how cancer adapts and thrives. Moreover, developing innovative technologies, such as high-throughput methods and metabolic interventions, enhances our ability to explore how tumours adapt to different conditions. These technological advances allow us to explore tumour adaptations and open new opportunities for potential therapeutic strategies.
Collapse
Affiliation(s)
- Ernesto Saez-Carrion
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández (UMH), Campus de Sant Joan, 03550 Sant Joan d'Alacant, Spain
| | - Mario Aguilar-Aragon
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández (UMH), Campus de Sant Joan, 03550 Sant Joan d'Alacant, Spain
| | - Lucia García-López
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández (UMH), Campus de Sant Joan, 03550 Sant Joan d'Alacant, Spain
- Faculty of Health Sciences, Universidad Europea de Valencia, 03016 Alicante, Spain
| | - Maria Dominguez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández (UMH), Campus de Sant Joan, 03550 Sant Joan d'Alacant, Spain
| | - Mary Luz Uribe
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández (UMH), Campus de Sant Joan, 03550 Sant Joan d'Alacant, Spain
| |
Collapse
|
2
|
Kim H, Yi X, Xue H, Yue G, Zhu J, Eh T, Wang S, Jin LH. Extracts ofHylotelephiumerythrostictum (miq.) H. Ohba ameliorate intestinal injury by scavenging ROS and inhibiting multiple signaling pathways in Drosophila. BMC Complement Med Ther 2024; 24:397. [PMID: 39543569 PMCID: PMC11566468 DOI: 10.1186/s12906-024-04686-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND The intestinal epithelial barrier is the first line of defense against pathogens and noxious substances entering the body from the outside world. Through proliferation and differentiation, intestinal stem cells play vital roles in tissue regeneration, repair, and the maintenance of intestinal homeostasis. Inflammatory bowel disease (IBD) is caused by the disruption of intestinal homeostasis through the invasion of toxic compounds and pathogenic microorganisms. Hylotelephium erythrostictum (Miq.) H. Ohba (H. erythrostictum) is a plant with diverse pharmacological properties, including antioxidant, anti-inflammatory, antidiabetic, and antirheumatic properties. However, the roles of H. erythrostictum and its bioactive compounds in the treatment of intestinal injury are unknown. METHODS We examined the protective effects of H. erythrostictum water extract (HEWE) and H. erythrostictum butanol extract (HEBE) on Drosophila intestinal injury caused by dextran sodium sulfate (DSS) or Erwinia carotovoracarotovora 15 (Ecc15). RESULTS Our findings demonstrated that both HEWE and HEBE significantly prolonged the lifespan of flies fed toxic compounds, reduced cell mortality, and maintained intestinal integrity and gut acid‒base homeostasis. Furthermore, both HEWE and HEBE eliminated DSS-induced ROS accumulation, alleviated the increases in antimicrobial peptides(AMPs) and intestinal lipid droplets caused by Ecc15 infection, and prevented excessive ISC proliferation and differentiation by inhibiting the JNK, EGFR, and JAK/STAT pathways. In addition, they reversed the significant changes in the proportions of the gut microbiota induced by DSS. The bioactive compounds contained in H. erythrostictum extracts have sufficient potential for use as natural therapeutic agents for the treatment of IBD in humans. CONCLUSION Our results suggest that HEWE and HEBE are highly effective in reducing intestinal inflammation and thus have the potential to be viable therapeutic agents for the treatment of gut inflammation. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Hyonil Kim
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang Province, China
- College of LifeScience, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Xinyu Yi
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Hongmei Xue
- Women and Children's Hospital, Peking University People's Hospital, Qingdao University, Qingdao, China
| | - Guanhua Yue
- Department of Basic Medical, Shenyang Medical College, Shenyang, China
| | - Jiahua Zhu
- Department of Basic Medical, Shenyang Medical College, Shenyang, China
| | - Tongju Eh
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang Province, China
- College of LifeScience, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Sihong Wang
- Analysis and Test Center, Yanbian University, Yanji, 133002, Jilin Province, PR China.
| | - Li Hua Jin
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
3
|
Vidal M, Arch M, Fuentes E, Cardona PJ. Drosophila melanogaster experimental model to test new antimicrobials: a methodological approach. Front Microbiol 2024; 15:1478263. [PMID: 39568995 PMCID: PMC11576456 DOI: 10.3389/fmicb.2024.1478263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
Given the increasing concern about antimicrobial resistance among the microorganisms that cause infections in our society, there is an urgent need for new drug discovery. Currently, this process involves testing many low-quality compounds, resulting from the in vivo testing, on mammal models, which not only wastes time, resources, and money, but also raises ethical questions. In this review, we have discussed the potential of D. melanogaster as an intermediary experimental model in this drug discovery timeline. We have tackled the topic from a methodological perspective, providing recommendations regarding the range of drug concentrations to test based on the mechanism of action of each compound; how to treat D. melanogaster, how to monitor that treatment, and what parameters we should consider when designing a drug screening protocol to maximize the study's benefits. We also discuss the necessary improvements needed to establish the D. melanogaster model of infection as a standard technique in the drug screening process. Overall, D. melanogaster has been demonstrated to be a manageable model for studying broad-spectrum infection treatment. It allows us to obtain valuable information in a cost-effective manner, which can improve the drug screening process and provide insights into our current major concern. This approach is also in line with the 3R policy in biomedical research, in particular on the replacement and reduce the use of vertebrates in preclinical development.
Collapse
Affiliation(s)
- Maria Vidal
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital (HUGTP), Badalona, Catalonia, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
| | - Marta Arch
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital (HUGTP), Badalona, Catalonia, Spain
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
| | - Esther Fuentes
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital (HUGTP), Badalona, Catalonia, Spain
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
| | - Pere-Joan Cardona
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital (HUGTP), Badalona, Catalonia, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
4
|
Mallick S, Kenney E, Eleftherianos I. The Activin Branch Ligand Daw Regulates the Drosophila melanogaster Immune Response and Lipid Metabolism against the Heterorhabditis bacteriophora Serine Carboxypeptidase. Int J Mol Sci 2024; 25:7970. [PMID: 39063211 PMCID: PMC11277151 DOI: 10.3390/ijms25147970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Despite impressive advances in the broad field of innate immunity, our understanding of the molecules and signaling pathways that control the host immune response to nematode infection remains incomplete. We have shown recently that Transforming Growth Factor-β (TGF-β) signaling in the fruit fly Drosophila melanogaster is activated by nematode infection and certain TGF-β superfamily members regulate the D. melanogaster anti-nematode immune response. Here, we investigate the effect of an entomopathogenic nematode infection factor on host TGF-β pathway regulation and immune function. We find that Heterorhabditis bacteriophora serine carboxypeptidase activates the Activin branch in D. melanogaster adults and the immune deficiency pathway in Activin-deficient flies, it affects hemocyte numbers and survival in flies deficient for Activin signaling, and causes increased intestinal steatosis in Activin-deficient flies. Thus, insights into the D. melanogaster signaling pathways and metabolic processes interacting with H. bacteriophora pathogenicity factors will be applicable to entomopathogenic nematode infection of important agricultural insect pests and vectors of disease.
Collapse
Affiliation(s)
| | | | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA; (S.M.); (E.K.)
| |
Collapse
|
5
|
Liu M, Yang S, Yang J, Feng P, Luo F, Zhang Q, Yang L, Jiang H. BubR1 controls starvation-induced lipolysis via IMD signaling pathway in Drosophila. Aging (Albany NY) 2024; 16:3257-3279. [PMID: 38334966 PMCID: PMC10929803 DOI: 10.18632/aging.205533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
Lipolysis, the key process releasing fat acids to generate energy in adipose tissues, correlates with starvation resistance. Nevertheless, its detail mechanisms remain elusive. BubR1, an essential mitotic regulator, ensures proper chromosome alignment and segregation during mitosis, but its physiological functions are largely unknown. Here, we use Drosophila adult fat body, the major lipid storage organ, to study the functions of BubR1 in lipolysis. We show that both whole body- and fat body-specific BubR1 depletions increase lipid degradation and shorten the lifespan under fasting but not feeding. Relish, the conserved regulator of IMD signaling pathway, acts as the downstream target of BubR1 to control the expression level of Bmm and modulate the lipolysis upon fasting. Thus, our study reveals new functions of BubR1 in starvation-induced lipolysis and provides new insights into the molecular mechanisms of lipolysis mediated by IMD signaling pathway.
Collapse
Affiliation(s)
- Mengyou Liu
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shengye Yang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingsi Yang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Feng
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Feng Luo
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiaoqiao Zhang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Yang
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hao Jiang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Darby AM, Lazzaro BP. Interactions between innate immunity and insulin signaling affect resistance to infection in insects. Front Immunol 2023; 14:1276357. [PMID: 37915572 PMCID: PMC10616485 DOI: 10.3389/fimmu.2023.1276357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
An active immune response is energetically demanding and requires reallocation of nutrients to support resistance to and tolerance of infection. Insulin signaling is a critical global regulator of metabolism and whole-body homeostasis in response to nutrient availability and energetic needs, including those required for mobilization of energy in support of the immune system. In this review, we share findings that demonstrate interactions between innate immune activity and insulin signaling primarily in the insect model Drosophila melanogaster as well as other insects like Bombyx mori and Anopheles mosquitos. These studies indicate that insulin signaling and innate immune activation have reciprocal effects on each other, but that those effects vary depending on the type of pathogen, route of infection, and nutritional status of the host. Future research will be required to further understand the detailed mechanisms by which innate immunity and insulin signaling activity impact each other.
Collapse
Affiliation(s)
- Andrea M. Darby
- Department of Entomology, Cornell University, Ithaca, NY, United States
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States
| | - Brian P. Lazzaro
- Department of Entomology, Cornell University, Ithaca, NY, United States
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States
| |
Collapse
|
7
|
Li S, Wang J, Tian X, Toufeeq S, Huang W. Immunometabolic regulation during the presence of microorganisms and parasitoids in insects. Front Immunol 2023; 14:905467. [PMID: 37818375 PMCID: PMC10560992 DOI: 10.3389/fimmu.2023.905467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Multicellular organisms live in environments containing diverse nutrients and a wide variety of microbial communities. On the one hand, the immune response of organisms can protect from the intrusion of exogenous microorganisms. On the other hand, the dynamic coordination of anabolism and catabolism of organisms is a necessary factor for growth and reproduction. Since the production of an immune response is an energy-intensive process, the activation of immune cells is accompanied by metabolic transformations that enable the rapid production of ATP and new biomolecules. In insects, the coordination of immunity and metabolism is the basis for insects to cope with environmental challenges and ensure normal growth, development and reproduction. During the activation of insect immune tissues by pathogenic microorganisms, not only the utilization of organic resources can be enhanced, but also the activated immune cells can usurp the nutrients of non-immune tissues by generating signals. At the same time, insects also have symbiotic bacteria in their body, which can affect insect physiology through immune-metabolic regulation. This paper reviews the research progress of insect immune-metabolism regulation from the perspective of insect tissues, such as fat body, gut and hemocytes. The effects of microorganisms (pathogenic bacteria/non-pathogenic bacteria) and parasitoids on immune-metabolism were elaborated here, which provide guidance to uncover immunometabolism mechanisms in insects and mammals. This work also provides insights to utilize immune-metabolism for the formulation of pest control strategies.
Collapse
Affiliation(s)
- Shirong Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Jing Wang
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Xing Tian
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Shahzad Toufeeq
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
Wrońska AK, Kaczmarek A, Boguś MI, Kuna A. Lipids as a key element of insect defense systems. Front Genet 2023; 14:1183659. [PMID: 37359377 PMCID: PMC10289264 DOI: 10.3389/fgene.2023.1183659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
The relationship between insect pathogenic fungi and their insect hosts is a classic example of a co-evolutionary arms race between pathogen and target host: parasites evolve towards mechanisms that increase their advantage over the host, and the host increasingly strengthens its defenses. The present review summarizes the literature data describing the direct and indirect role of lipids as an important defense mechanism during fungal infection. Insect defense mechanisms comprise anatomical and physiological barriers, and cellular and humoral response mechanisms. The entomopathogenic fungi have the unique ability to digest the insect cuticle by producing hydrolytic enzymes with chitin-, lipo- and proteolytic activity; besides the oral tract, cuticle pays the way for fungal entry within the host. The key factor in insect resistance to fungal infection is the presence of certain types of lipids (free fatty acids, waxes or hydrocarbons) which can promote or inhibit fungal attachment to cuticle, and might also have antifungal activity. Lipids are considered as an important source of energy, and as triglycerides are stored in the fat body, a structure analogous to the liver and adipose tissue in vertebrates. In addition, the fat body plays a key role in innate humoral immunity by producing a range of bactericidal proteins and polypeptides, one of which is lysozyme. Energy derived from lipid metabolism is used by hemocytes to migrate to the site of fungal infection, and for phagocytosis, nodulation and encapsulation. One polyunsaturated fatty acid, arachidonic acid, is used in the synthesis of eicosanoids, which play several crucial roles in insect physiology and immunology. Apolipoprotein III is important compound with antifungal activity, which can modulate insect cellular response and is considered as important signal molecule.
Collapse
Affiliation(s)
- Anna Katarzyna Wrońska
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Kuna
- Independent Researcher, Warsaw, Poland
| |
Collapse
|
9
|
Deshpande R, Lee B, Qiao Y, Grewal SS. TOR signalling is required for host lipid metabolic remodelling and survival following enteric infection in Drosophila. Dis Model Mech 2022; 15:dmm049551. [PMID: 35363274 PMCID: PMC9118046 DOI: 10.1242/dmm.049551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 12/29/2022] Open
Abstract
When infected by enteric pathogenic bacteria, animals need to initiate local and whole-body defence strategies. Although most attention has focused on the role of innate immune anti-bacterial responses, less is known about how changes in host metabolism contribute to host defence. Using Drosophila as a model system, we identify induction of intestinal target-of-rapamycin (TOR) kinase signalling as a key adaptive metabolic response to enteric infection. We find that enteric infection induces both local and systemic induction of TOR independently of the Immune deficiency (IMD) innate immune pathway, and we see that TOR functions together with IMD signalling to promote infection survival. These protective effects of TOR signalling are associated with remodelling of host lipid metabolism. Thus, we see that TOR is required to limit excessive infection-mediated wasting of host lipid stores by promoting an increase in the levels of gut- and fat body-expressed lipid synthesis genes. Our data support a model in which induction of TOR represents a host tolerance response to counteract infection-mediated lipid wasting in order to promote survival. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | - Savraj S. Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
10
|
Fedele G, Loh SHY, Celardo I, Leal NS, Lehmann S, Costa AC, Martins LM. Suppression of intestinal dysfunction in a Drosophila model of Parkinson's disease is neuroprotective. NATURE AGING 2022; 2:317-331. [PMID: 37117744 DOI: 10.1038/s43587-022-00194-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/16/2022] [Indexed: 04/30/2023]
Abstract
The innate immune response mounts a defense against foreign invaders and declines with age. An inappropriate induction of this response can cause diseases. Previous studies showed that mitochondria can be repurposed to promote inflammatory signaling. Damaged mitochondria can also trigger inflammation and promote diseases. Mutations in pink1, a gene required for mitochondrial health, cause Parkinson's disease, and Drosophila melanogaster pink1 mutants accumulate damaged mitochondria. Here, we show that defective mitochondria in pink1 mutants activate Relish targets and demonstrate that inflammatory signaling causes age-dependent intestinal dysfunction in pink1-mutant flies. These effects result in the death of intestinal cells, metabolic reprogramming and neurotoxicity. We found that Relish signaling is activated downstream of a pathway stimulated by cytosolic DNA. Suppression of Relish in the intestinal midgut of pink1-mutant flies restores mitochondrial function and is neuroprotective. We thus conclude that gut-brain communication modulates neurotoxicity in a fly model of Parkinson's disease through a mechanism involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Giorgio Fedele
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Ivana Celardo
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Susann Lehmann
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Ana C Costa
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
11
|
Wang L, Lin J, Yu J, Yang K, Sun L, Tang H, Pan L. Downregulation of Perilipin1 by the Immune Deficiency Pathway Leads to Lipid Droplet Reconfiguration and Adaptation to Bacterial Infection in Drosophila. THE JOURNAL OF IMMUNOLOGY 2021; 207:2347-2358. [PMID: 34588219 DOI: 10.4049/jimmunol.2100343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022]
Abstract
Lipid droplets (LDs), the highly dynamic intracellular organelles, are critical for lipid metabolism. Dynamic alterations in the configurations and functions of LDs during innate immune responses to bacterial infections and the underlying mechanisms, however, remain largely unknown. In this study, we trace the time-course morphology of LDs in fat bodies of Drosophila after transient bacterial infection. Detailed analysis shows that perilipin1 (plin1), a core gene involved in the regulation of LDs, is suppressed by the immune deficiency signaling, one major innate immune pathway in Drosophila During immune activation, downregulated plin1 promotes the enlargement of LDs, which in turn alleviates immune reaction-associated reactive oxygen species stress. Thus, the growth of LDs is likely an active adaptation to maintain redox homeostasis in response to immune deficiency activation. Therefore, our study provides evidence that plin1 serves as a modulator on LDs' reconfiguration in regulating infection-induced pathogenesis, and plin1 might be a potential therapeutic target for coordinating inflammation resolution and lipid metabolism.
Collapse
Affiliation(s)
- Lei Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,The Center for Microbes, Development, and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Lin
- The Center for Microbes, Development, and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Junjing Yu
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China; and
| | - Kaiyan Yang
- The Center for Microbes, Development, and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Li Sun
- The Center for Microbes, Development, and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Hong Tang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China;
| | - Lei Pan
- The Center for Microbes, Development, and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China; .,University of Chinese Academy of Sciences, Beijing, China.,Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Redhai S, Boutros M. The Role of Organelles in Intestinal Function, Physiology, and Disease. Trends Cell Biol 2021; 31:485-499. [PMID: 33551307 DOI: 10.1016/j.tcb.2021.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
The intestine maintains homeostasis by coordinating internal biological processes to adjust to fluctuating external conditions. The intestinal epithelium is continuously renewed and comprises multiple cell types, including absorptive cells, secretory cells, and resident stem cells. An important feature of this organ is its ability to coordinate many processes including cell proliferation, differentiation, regeneration, damage/stress response, immune activity, feeding behavior, and age-related changes by using conserved signaling pathways. However, the subcellular spatial organization of these signaling events and the organelles involved has only recently been studied in detail. Here we discuss how organelles of intestinal cells serve to initiate, mediate, and terminate signals, that are vital for homeostasis.
Collapse
Affiliation(s)
- Siamak Redhai
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, BioQuant and Medical Faculty Mannheim, D-69120 Heidelberg, Germany.
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, BioQuant and Medical Faculty Mannheim, D-69120 Heidelberg, Germany.
| |
Collapse
|
13
|
Zhao X, Karpac J. The Drosophila midgut and the systemic coordination of lipid-dependent energy homeostasis. CURRENT OPINION IN INSECT SCIENCE 2020; 41:100-105. [PMID: 32898765 PMCID: PMC7669600 DOI: 10.1016/j.cois.2020.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/19/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
The evolution of complex organ systems in metazoans has dictated that the maintenance of energy homeostasis requires coordinating local and systemic energy demands between organs with specialized functions. The gastrointestinal tract is one of many organs that is indispensable for the systemic coordination of energy substrate uptake, storage, and usage, and the spatial organization of this organ (i.e. proximity to other metabolic organs) within a complex body plan underlies its role in organ crosstalk. Studies of various arthropod intestines, and in particular insects, have shed light on the evolution and function of the gastrointestinal tract in the maintenance of energy homeostasis. This brief review focuses on studies and theories derived from the insect intestine (particularly the midgut) of adult Drosophila melanogaster to inform on the how, what, and why of the gastrointestinal tract in the systemic regulation of lipids, the most common form of stored energy in insects.
Collapse
Affiliation(s)
- Xiao Zhao
- Dept. of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Jason Karpac
- Dept. of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
14
|
Zhou X, Ding G, Li J, Xiang X, Rushworth E, Song W. Physiological and Pathological Regulation of Peripheral Metabolism by Gut-Peptide Hormones in Drosophila. Front Physiol 2020; 11:577717. [PMID: 33117196 PMCID: PMC7552570 DOI: 10.3389/fphys.2020.577717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
The gastrointestinal (GI) tract in both vertebrates and invertebrates is now recognized as a major source of signals modulating, via gut-peptide hormones, the metabolic activities of peripheral organs, and carbo-lipid balance. Key advances in the understanding of metabolic functions of gut-peptide hormones and their mediated interorgan communication have been made using Drosophila as a model organism, given its powerful genetic tools and conserved metabolic regulation. Here, we summarize recent studies exploring peptide hormones that are involved in the communication between the midgut and other peripheral organs/tissues during feeding conditions. We also highlight the emerging impacts of fly gut-peptide hormones on stress sensing and carbo-lipid metabolism in various disease models, such as energy overload, pathogen infection, and tumor progression. Due to the functional similarity of intestine and its derived peptide hormones between Drosophila and mammals, it can be anticipated that findings obtained in the fly system will have important implications for the understanding of human physiology and pathology.
Collapse
Affiliation(s)
- Xiaoya Zhou
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Guangming Ding
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jiaying Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xiaoxiang Xiang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Elisabeth Rushworth
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Wei Song
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Harsh S, Eleftherianos I. Tumor induction in Drosophila imaginal epithelia triggers modulation of fat body lipid droplets. Biochimie 2020; 179:65-68. [PMID: 32946989 DOI: 10.1016/j.biochi.2020.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
Our understanding of cancer-specific metabolic changes is currently unclear. In recent years, the fruit fly Drosophila melanogaster with its powerful genetic tools has become an attractive model for studying both tumor autonomous and the systemic processes resulting from the tumor growth. Here we investigated the effect of tumorigenesis on the modulation of lipid droplets (LDs) in the larval fat bodies (mammalian equivalent of adipose tissue). We have overexpressed Notch signaling alone or in combination with the developmental regulator Myocyte enhancer factor 2 (Mef2) using wing-specific and eye-specific drivers, quantified the size of LDs in the fat body of the different tumor bearing larvae, and estimated the expression of genes associated with lipolysis and lipogenesis. We have found that hyperplastic and neoplastic tumor induced by overexpression of Notch and co-expression of Notch and Mef2 respectively triggers impaired lipid metabolism marked by increased size of fat body LDs. The impaired lipid metabolism in tumor carrying larvae is linked to the altered expression of genes that participate in lipolysis and lipogenesis. These findings reveal modulation of LDs as one of the host's specific response upon tumor initiation. This information could potentially uncover mechanisms for designing innovative approaches to modulate cancer growth.
Collapse
Affiliation(s)
- Sneh Harsh
- Infection and Innate Immunity Lab, Institute for Biomedical Sciences, Department of Biological Sciences, Science and Engineering Hall, 800 22nd St NW, The George Washington University, Washington, DC, 20052, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, Alexandria Center for Life Science, 450 East 29th Street, New York, NY, 10016, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Institute for Biomedical Sciences, Department of Biological Sciences, Science and Engineering Hall, 800 22nd St NW, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|