1
|
Costa FP, Wiedenmann B, Schöll E, Tuszynski J. Emerging cancer therapies: targeting physiological networks and cellular bioelectrical differences with non-thermal systemic electromagnetic fields in the human body - a comprehensive review. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1483401. [PMID: 39720338 PMCID: PMC11666389 DOI: 10.3389/fnetp.2024.1483401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024]
Abstract
A steadily increasing number of publications support the concept of physiological networks, and how cellular bioelectrical properties drive cell proliferation and cell synchronization. All cells, especially cancer cells, are known to possess characteristic electrical properties critical for physiological behavior, with major differences between normal and cancer cell counterparts. This opportunity can be explored as a novel treatment modality in Oncology. Cancer cells exhibit autonomous oscillations, deviating from normal rhythms. In this context, a shift from a static view of cellular processes is required for a better understanding of the dynamic connections between cellular metabolism, gene expression, cell signaling and membrane polarization as states in constant flux in realistic human models. In oncology, radiofrequency electromagnetic fields have produced sustained responses and improved quality of life in cancer patients with minimal side effects. This review aims to show how non-thermal systemic radiofrequency electromagnetic fields leads to promising therapeutic responses at cellular and tissue levels in humans, supporting this newly emerging cancer treatment modality with early favorable clinical experience specifically in advanced cancer.
Collapse
Affiliation(s)
| | | | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
| | - Jack Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB, Canada
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Turin, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
2
|
Shrivastava A, Kumar A, Aggarwal LM, Pradhan S, Choudhary S, Ashish A, Kashyap K, Mishra S. Evolution of Bioelectric Membrane Potentials: Implications in Cancer Pathogenesis and Therapeutic Strategies. J Membr Biol 2024; 257:281-305. [PMID: 39183198 DOI: 10.1007/s00232-024-00323-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Electrophysiology typically deals with the electrical properties of excitable cells like neurons and muscles. However, all other cells (non-excitable) also possess bioelectric membrane potentials for intracellular and extracellular communications. These membrane potentials are generated by different ions present in fluids available in and outside the cell, playing a vital role in communication and coordination between the cell and its organelles. Bioelectric membrane potential variations disturb cellular ionic homeostasis and are characteristic of many diseases, including cancers. A rapidly increasing interest has emerged in sorting out the electrophysiology of cancer cells. Compared to healthy cells, the distinct electrical properties exhibited by cancer cells offer a unique way of understanding cancer development, migration, and progression. Decoding the altered bioelectric signals influenced by fluctuating electric fields benefits understanding cancer more closely. While cancer research has predominantly focussed on genetic and molecular traits, the delicate area of electrophysiological characteristics has increasingly gained prominence. This review explores the historical exploration of electrophysiology in the context of cancer cells, shedding light on how alterations in bioelectric membrane potentials, mediated by ion channels and gap junctions, contribute to the pathophysiology of cancer.
Collapse
Affiliation(s)
- Anju Shrivastava
- Department of Physiology, Chhattisgarh Institute of Medical Sciences, Bilaspur, India.
| | - Amit Kumar
- Department of Anatomy, Chhattisgarh Institute of Medical Sciences, Bilaspur, India
| | - Lalit Mohan Aggarwal
- Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Satyajit Pradhan
- Radiation Oncology, Mahamana Pandit Madhan Mohan Malaviya Cancer Centre, Varanasi, India
| | - Sunil Choudhary
- Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ashish Ashish
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Keshav Kashyap
- Department of Physiology, Chhattisgarh Institute of Medical Sciences, Bilaspur, India
| | - Shivani Mishra
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Du L, Li J, Kong X, Lu D, Liu Z, Guo W. Understanding the K +/Na +-Selectivity-Enabled Osmotic Power Generation: High Selectivity May Not Be Indispensable. J Phys Chem Lett 2024; 15:7755-7762. [PMID: 39046908 DOI: 10.1021/acs.jpclett.4c01689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
By mixing ionic solutions, considerable energy can be harvested from entropy change. Recently, we proposed a concept of potassium-permselectivity enabled osmotic power generation (PoPee-OPG) by mixing equimolar KCl and NaCl solutions via artificial potassium ion channels (APICs, Natl. Sci. Rev. 2023, 10, nwad260). However, a fundamental understanding of the relationship between the K+/Na+ selectivity and optimal performance remains unexplored. Herein, we establish a primitive molecular thermodynamic model to investigate the energy extraction process. We find PoPee-OPG differs from previous charge-selectivity-based techniques, such as the salinity gradient power generation, in two distinct ways. First, the extractable energy density and efficiency positively depend on concentration. More surprisingly, a very high potassium selectivity is not indispensable for satisfactory efficiency and energy density. An optimal K+/Na+ selectivity region of 3 to 10 is found. This somewhat counterintuitive discovery provides a renewed understanding of the emerging PoPee-OPG, and it predicts a broad applicability among existing APICs.
Collapse
Affiliation(s)
- Linhan Du
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Jipeng Li
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Xian Kong
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Diannan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zheng Liu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Wei Guo
- Center for Quantum Physics and Intelligent Sciences, Department of Physics, Capital Normal University, Beijing 100048, China
| |
Collapse
|
4
|
Norfleet DA, Melendez AJ, Alting C, Kannan S, Nikitina AA, Caldeira Botelho R, Yang B, Kemp ML. Identification of Distinct, Quantitative Pattern Classes from Emergent Tissue-Scale hiPSC Bioelectric Properties. Cells 2024; 13:1136. [PMID: 38994988 PMCID: PMC11240333 DOI: 10.3390/cells13131136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Bioelectric signals possess the ability to robustly control and manipulate patterning during embryogenesis and tissue-level regeneration. Endogenous local and global electric fields function as a spatial 'pre-pattern', controlling cell fates and tissue-scale anatomical boundaries; however, the mechanisms facilitating these robust multiscale outcomes are poorly characterized. Computational modeling addresses the need to predict in vitro patterning behavior and further elucidate the roles of cellular bioelectric signaling components in patterning outcomes. Here, we modified a previously designed image pattern recognition algorithm to distinguish unique spatial features of simulated non-excitable bioelectric patterns under distinct cell culture conditions. This algorithm was applied to comparisons between simulated patterns and experimental microscopy images of membrane potential (Vmem) across cultured human iPSC colonies. Furthermore, we extended the prediction to a novel co-culture condition in which cell sub-populations possessing different ionic fluxes were simulated; the defining spatial features were recapitulated in vitro with genetically modified colonies. These results collectively inform strategies for modeling multiscale spatial characteristics that emerge in multicellular systems, characterizing the molecular contributions to heterogeneity of membrane potential in non-excitable cells, and enabling downstream engineered bioelectrical tissue design.
Collapse
Affiliation(s)
- Dennis Andre Norfleet
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Dr. NW, Atlanta, GA 30332, USA
| | - Anja J Melendez
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Dr. NW, Atlanta, GA 30332, USA
| | - Caroline Alting
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Dr. NW, Atlanta, GA 30332, USA
| | - Siya Kannan
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Dr. NW, Atlanta, GA 30332, USA
| | - Arina A Nikitina
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 931016, USA
| | - Raquel Caldeira Botelho
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Dr. NW, Atlanta, GA 30332, USA
| | - Bo Yang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Melissa L Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Dr. NW, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Doherty W, Benson S, Pepdjonovic L, Koppes AN, Koppes RA. Cell Line and Media Composition Influence the Production of Giant Plasma Membrane Vesicles. ACS Biomater Sci Eng 2024; 10:1880-1891. [PMID: 38374716 PMCID: PMC10934252 DOI: 10.1021/acsbiomaterials.3c01596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
Giant plasma membrane vesicles (GPMVs) have been utilized as a model to study phase separation in the plasma membrane. Additionally, GPMVs have been employed as vehicle for delivering molecular cargo, including small molecule drugs and nanoparticles. Nearly all examples of GPMV production use a defined salt buffer that is a stark contrast to typical cell culture medium. In this study, we demonstrate that the addition of formaldehyde and dithiothreitol to a standard culture medium was capable of generating GPMVs at a concentration equal to or higher than the traditional production buffer. These methods were evaluated for two human cell lines: kidney endothelial and Schwann cells (SCs). Morphological properties of the resultant GPMVs exhibited no significant differences between the two formulations. Factors such as pH and seeding density significantly influenced the production of GPMVs in both mediums. The cell type and seeding density was shown to influence the number of GPMVs to the greatest extent. SCs yield more GPMVs at higher seeding densities compared to endothelial cells. Stability of the membrane of the GPMVs produced in both mediums was evaluated by monitoring passive diffusion of two fluorescently tagged dextrans (3 and 10 kDa). Regardless of the production formulation or cell type, approximately 85% GPMVs are impermeable to either dextran. Cold storage for on-demand use and shipping are essential for broader use of GPMVs. Toward this aim, we have evaluated the GMPV number and morphologies following storage at -80 °C and in liquid nitrogen. A significant loss of the GPMV number, ∼30%, was observed following storage across production formulations as well as cell types. Our results indicate that smaller GMPVs, <5 μm are more stable for preservation. In conclusion, GPMVs can be produced in a broad range of formulations, exhibit a high degree of stability, and can undergo cold storage for further adoption.
Collapse
Affiliation(s)
- William Doherty
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Sarah Benson
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Lisa Pepdjonovic
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Abigail N. Koppes
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Department
of Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Ryan A. Koppes
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
González-Cuevas JA, Argüello R, Florentin M, André FM, Mir LM. Experimental and Theoretical Brownian Dynamics Analysis of Ion Transport During Cellular Electroporation of E. coli Bacteria. Ann Biomed Eng 2024; 52:103-123. [PMID: 37651029 DOI: 10.1007/s10439-023-03353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
Escherichia coli bacterium is a rod-shaped organism composed of a complex double membrane structure. Knowledge of electric field driven ion transport through both membranes and the evolution of their induced permeabilization has important applications in biomedical engineering, delivery of genes and antibacterial agents. However, few studies have been conducted on Gram-negative bacteria in this regard considering the contribution of all ion types. To address this gap in knowledge, we have developed a deterministic and stochastic Brownian dynamics model to simulate in 3D space the motion of ions through pores formed in the plasma membranes of E. coli cells during electroporation. The diffusion coefficient, mobility, and translation time of Ca2+, Mg2+, Na+, K+, and Cl- ions within the pore region are estimated from the numerical model. Calculations of pore's conductance have been validated with experiments conducted at Gustave Roussy. From the simulations, it was found that the main driving force of ionic uptake during the pulse is the one due to the externally applied electric field. The results from this work provide a better understanding of ion transport during electroporation, aiding in the design of electrical pulses for maximizing ion throughput, primarily for application in cancer treatment.
Collapse
Affiliation(s)
- Juan A González-Cuevas
- School of Engineering, National University of Asunción, Campus San Lorenzo, 2169, San Lorenzo, Paraguay.
| | - Ricardo Argüello
- School of Engineering, National University of Asunción, Campus San Lorenzo, 2169, San Lorenzo, Paraguay
| | - Marcos Florentin
- School of Chemistry, National University of Asunción, Campus San Lorenzo, 2169, San Lorenzo, Paraguay
| | - Franck M André
- Université Paris-Saclay, CNRS, Gustave Roussy, UMR 9018 METSY, 94805, Villejuif, France
| | - Lluis M Mir
- Université Paris-Saclay, CNRS, Gustave Roussy, UMR 9018 METSY, 94805, Villejuif, France
| |
Collapse
|
7
|
Lin X, Lin K, He S, Zhou Y, Li X, Lin X. Membrane Domain Anti-Registration Induces an Intrinsic Transmembrane Potential. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11621-11627. [PMID: 37563986 DOI: 10.1021/acs.langmuir.3c01137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Plasma membrane segregation into various nanoscale membrane domains is driven by distinct interactions between diverse lipids and proteins. Among them, liquid-ordered (Lo) membrane domains are defined as "lipid rafts" and liquid-disordered (Ld) ones as "lipid non-rafts". Using model membrane systems, both intra-leaflet and inter-leaflet dynamics of these membrane domains are widely studied. Nevertheless, the biological impact of the latter, which is accompanied by membrane domain registration/anti-registration, is far from clear. Hence, in this work, we studied the biological relevance of the membrane domain anti-registration using both all-atom molecular dynamics (MD) simulations and confocal fluorescence microscopy. All-atom MD simulations suggested an intrinsic transmembrane potential for the case of the membrane anti-registration (Lo/Ld). Meanwhile, confocal fluorescence microscopy experiments of HeLa and 293T cell lines indicated that membrane cholesterol depletion could significantly alter the transmembrane potential of cells. Considering differences in the cholesterol content between Lo and Ld membrane domains, our confocal fluorescence microscopy experiments are consistent with our all-atom MD simulations. In short, membrane domain anti-registration induces local membrane asymmetry and, thus, an intrinsic transmembrane potential.
Collapse
Affiliation(s)
- Xiaoqian Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Shen Yuan Honors College, Beihang University, Beijing 100191, China
| | - Kaidong Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Shiqi He
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yue Zhou
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiu Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xubo Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
8
|
Pai VP, Cooper BG, Levin M. Screening Biophysical Sensors and Neurite Outgrowth Actuators in Human Induced-Pluripotent-Stem-Cell-Derived Neurons. Cells 2022; 11:cells11162470. [PMID: 36010547 PMCID: PMC9406775 DOI: 10.3390/cells11162470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
All living cells maintain a charge distribution across their cell membrane (membrane potential) by carefully controlled ion fluxes. These bioelectric signals regulate cell behavior (such as migration, proliferation, differentiation) as well as higher-level tissue and organ patterning. Thus, voltage gradients represent an important parameter for diagnostics as well as a promising target for therapeutic interventions in birth defects, injury, and cancer. However, despite much progress in cell and molecular biology, little is known about bioelectric states in human stem cells. Here, we present simple methods to simultaneously track ion dynamics, membrane voltage, cell morphology, and cell activity (pH and ROS), using fluorescent reporter dyes in living human neurons derived from induced neural stem cells (hiNSC). We developed and tested functional protocols for manipulating ion fluxes, membrane potential, and cell activity, and tracking neural responses to injury and reinnervation in vitro. Finally, using morphology sensor, we tested and quantified the ability of physiological actuators (neurotransmitters and pH) to manipulate nerve repair and reinnervation. These methods are not specific to a particular cell type and should be broadly applicable to the study of bioelectrical controls across a wide range of combinations of models and endpoints.
Collapse
Affiliation(s)
- Vaibhav P. Pai
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Ben G. Cooper
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
- Correspondence:
| |
Collapse
|
9
|
Adelfio M, Bonzanni M, Levin M, Kaplan DL. Impact of Membrane Voltage on Formation and Stability of Human Renal Proximal Tubules in Vitro. ACS Biomater Sci Eng 2022; 8:1239-1246. [PMID: 35157435 PMCID: PMC9906498 DOI: 10.1021/acsbiomaterials.1c01163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
More than 15% of adults in the United States suffer from some form of chronic kidney disease (CKD). Current strategies for CKD consist of dialysis or kidney transplant, which, however, can take several years. In this light, tissue engineering and regenerative medicine approaches are the key to improving people's living conditions by advancing previous tissue engineering approaches and seeking new targets as intervention methods for kidney repair or replacement. The membrane voltage (Vm) dynamics of a cell have been associated with cell migration, cell cycle progression, differentiation, and pattern formation. Furthermore, bioelectrical stimuli have been used as a means in the treatment of diseases and wound healing. Here, we investigated the role of Vm as a novel target to guide and manipulate in vitro renal tissue models. Human-immortalized renal proximal tubule epithelial cells (RPTECs-TERT1) were cultured on Matrigel to support the formation of 3D proximal tubular-like structures with the incorporation of a voltage-sensitive dye indicator─bis-(1,3-dibutylbarbituric acid)timethine oxonol (DiBAC). The results demonstrated a correlation between the depolarization and the reorganization of human renal proximal tubule cells, indicating Vm as a candidate variable to control these events. Accordingly, Vm was pharmacologically manipulated using glibenclamide and pinacidil, KATP channel modulators, and proximal tubule formation and tubule stability over 21 days were assessed. Chronic manipulation of KATP channels induced changes in the tubular network topology without affecting lumen formation. Thus, a relationship was found between the preluminal tubulogenesis phase and KATP channels. This relationship may provide future options as a control point during kidney tissue development, treatment, and regeneration goals.
Collapse
Affiliation(s)
- Miryam Adelfio
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford 02155, Massachusetts, United States
| | - Mattia Bonzanni
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford 02155, Massachusetts, United States
| | - Michael Levin
- Biology Department, and Allen Discovery Center at Tufts University, Tufts University, 200 Boston Avenue, Medford 02155, Massachusetts, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford 02155, Massachusetts, United States
| |
Collapse
|
10
|
Drexler K, Schmidt KM, Jordan K, Federlin M, Milenkovic VM, Liebisch G, Artati A, Schmidl C, Madej G, Tokarz J, Cecil A, Jagla W, Haerteis S, Aung T, Wagner C, Kolodziejczyk M, Heinke S, Stanton EH, Schwertner B, Riegel D, Wetzel CH, Buchalla W, Proescholdt M, Klein CA, Berneburg M, Schlitt HJ, Brabletz T, Ziegler C, Parkinson EK, Gaumann A, Geissler EK, Adamski J, Haferkamp S, Mycielska ME. Cancer-associated cells release citrate to support tumour metastatic progression. Life Sci Alliance 2021; 4:e202000903. [PMID: 33758075 PMCID: PMC7994318 DOI: 10.26508/lsa.202000903] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Citrate is important for lipid synthesis and epigenetic regulation in addition to ATP production. We have previously reported that cancer cells import extracellular citrate via the pmCiC transporter to support their metabolism. Here, we show for the first time that citrate is supplied to cancer by cancer-associated stroma (CAS) and also that citrate synthesis and release is one of the latter's major metabolic tasks. Citrate release from CAS is controlled by cancer cells through cross-cellular communication. The availability of citrate from CAS regulated the cytokine profile, metabolism and features of cellular invasion. Moreover, citrate released by CAS is involved in inducing cancer progression especially enhancing invasiveness and organ colonisation. In line with the in vitro observations, we show that depriving cancer cells of citrate using gluconate, a specific inhibitor of pmCiC, significantly reduced the growth and metastatic spread of human pancreatic cancer cells in vivo and muted stromal activation and angiogenesis. We conclude that citrate is supplied to tumour cells by CAS and citrate uptake plays a significant role in cancer metastatic progression.
Collapse
Affiliation(s)
- Konstantin Drexler
- Department of Dermatology, University Medical Centre, Regensburg, Germany
| | | | - Katrin Jordan
- Department of Surgery, University Medical Center, Regensburg, Germany
| | - Marianne Federlin
- Department of Conservative Dentistry and Periodontology, University Medical Center, Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Anna Artati
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Christian Schmidl
- Regensburg Center for Interventional Immunology, Regensburg, Germany
| | - Gregor Madej
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Janina Tokarz
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Alexander Cecil
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Wolfgang Jagla
- Institute of Pathology, Kaufbeuren-Ravensburg, Kaufbeuren, Germany
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Thiha Aung
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
- Center of Plastic, Aesthetic, Hand and Reconstructive Surgery, University of Regensburg, Regensburg, Germany
| | - Christine Wagner
- Department of Surgery, University Medical Center, Regensburg, Germany
| | | | - Stefanie Heinke
- Department of Surgery, University Medical Center, Regensburg, Germany
| | - Evan H Stanton
- Department of Surgery, University Medical Center, Regensburg, Germany
| | - Barbara Schwertner
- Department of Dermatology, University Medical Centre, Regensburg, Germany
| | - Dania Riegel
- Regensburg Center for Interventional Immunology, Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Medical Center, Regensburg, Germany
| | - Martin Proescholdt
- Department of Neurosurgery, University Hospital Regensburg, Regensburg, Germany
| | - Christoph A Klein
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology, University Medical Centre, Regensburg, Germany
| | - Hans J Schlitt
- Department of Surgery, University Medical Center, Regensburg, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Friedrich-Alexander-University Erlangen, Erlangen, Germany
| | - Christine Ziegler
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Eric K Parkinson
- Centre for Immunobiology and Regenerative Medicine, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Andreas Gaumann
- Institute of Pathology, Kaufbeuren-Ravensburg, Kaufbeuren, Germany
| | - Edward K Geissler
- Department of Surgery, University Medical Center, Regensburg, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Munich, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Maria E Mycielska
- Department of Surgery, University Medical Center, Regensburg, Germany
| |
Collapse
|
11
|
Yurinskaya VE, Vereninov IA, Vereninov AA. Balance of Na +, K +, and Cl - Unidirectional Fluxes in Normal and Apoptotic U937 Cells Computed With All Main Types of Cotransporters. Front Cell Dev Biol 2020; 8:591872. [PMID: 33240889 PMCID: PMC7677585 DOI: 10.3389/fcell.2020.591872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/30/2020] [Indexed: 12/30/2022] Open
Abstract
Fluxes of monovalent ions through the multiple pathways of the plasma membrane are highly interdependent, and their assessment by direct measurement is difficult or even impossible. Computation of the entire flux balance helps to identify partial flows and study the functional expression of individual transporters. Our previous computation of unidirectional fluxes in real cells ignored the ubiquitous cotransporters NKCC and KCC. Here, we present an analysis of the entire balance of unidirectional Na+, K+, and Cl- fluxes through the plasma membrane in human lymphoid U937 cells, taking into account not only the Na/K pump and electroconductive channels but all major types of cotransporters NC, NKCC, and KCC. Our calculations use flux equations based on the fundamental principles of macroscopic electroneutrality of the system, water balance, and the generally accepted thermodynamic dependence of ion fluxes on the driving force, and they do not depend on hypotheses about the molecular structure of the channel and transporters. A complete list of the major inward and outward Na+, K+, and Cl- fluxes is obtained for human lymphoid U937 cells at rest and during changes in the ion and water balance for the first 4 h of staurosporine-induced apoptosis. It is shown how the problem of the inevitable multiplicity of solutions to the flux equations, which arises with an increase in the number of ion pathways, can be solved in real cases by analyzing the ratio of ouabain-sensitive and ouabain-resistant parts of K+ (Rb+) influx (OSOR) and using additional experimental data on the effects of specific inhibitors. It is found that dynamics of changes in the membrane channels and transporters underlying apoptotic changes in the content of ions and water in cells, calculated without taking into account the KCC and NKCC cotransporters, differs only in details from that calculated for cells with KCC and NKCC. The developed approach to the assessment of unidirectional fluxes may be useful for understanding functional expression of ion channels and transporters in other cells under various conditions. Attached software allows reproduction of all calculated data under presented conditions and to study the effects of the condition variation.
Collapse
Affiliation(s)
- Valentina E Yurinskaya
- Laboratory of Cell Physiology, Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Igor A Vereninov
- Peter the Great St-Petersburg Polytechnic University, St-Petersburg, Russia
| | - Alexey A Vereninov
- Laboratory of Cell Physiology, Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| |
Collapse
|
12
|
First person – Samantha Payne. Biol Open 2020. [PMCID: PMC6994948 DOI: 10.1242/bio.050302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Biology Open, helping early-career researchers promote themselves alongside their papers. Samantha Payne is first author on ‘Defined extracellular ionic solutions to study and manipulate the cellular resting membrane potential’, published in BiO. Samantha is a postdoctoral scholar in the lab of Madeleine Oudin at Tufts University, Medford, USA, investigating bioelectric signaling in cancer and regeneration.
Collapse
|