1
|
Prieto D, Egger B, Cantera R. Atypical soluble guanylyl cyclases control brain size in Drosophila. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001252. [PMID: 39185012 PMCID: PMC11344882 DOI: 10.17912/micropub.biology.001252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024]
Abstract
Hypoxia-induced proliferation of neural stem cells has a crucial role in brain development. In the brain of Drosophila melanogaster , the optic lobe exhibits progressive hypoxia during larval development. Here, we investigate an alternative oxygen-sensing mechanism within this brain compartment, distinct from the canonical hypoxia signaling pathway mediated by HIF. Using genetic tools, immunostaining, and confocal microscopy, we demonstrate that the loss of the atypical soluble guanylyl cyclase (asGC) subunit Gyc88E , or the ectopic expression of Gyc89Db in neural stem cells leads to increased optic lobe volume. We propose the existence of a link between cGMP signaling and neurogenesis in the developing brain.
Collapse
Affiliation(s)
- Daniel Prieto
- Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Boris Egger
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Rafael Cantera
- Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
2
|
Ramirez Flores RO, Schäfer PSL, Küchenhoff L, Saez-Rodriguez J. Complementing Cell Taxonomies with a Multicellular Analysis of Tissues. Physiology (Bethesda) 2024; 39:0. [PMID: 38319138 DOI: 10.1152/physiol.00001.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
The application of single-cell molecular profiling coupled with spatial technologies has enabled charting of cellular heterogeneity in reference tissues and in disease. This new wave of molecular data has highlighted the expected diversity of single-cell dynamics upon shared external queues and spatial organizations. However, little is known about the relationship between single-cell heterogeneity and the emergence and maintenance of robust multicellular processes in developed tissues and its role in (patho)physiology. Here, we present emerging computational modeling strategies that use increasingly available large-scale cross-condition single-cell and spatial datasets to study multicellular organization in tissues and complement cell taxonomies. This perspective should enable us to better understand how cells within tissues collectively process information and adapt synchronized responses in disease contexts and to bridge the gap between structural changes and functions in tissues.
Collapse
Affiliation(s)
- Ricardo Omar Ramirez Flores
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Sven Lars Schäfer
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Leonie Küchenhoff
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
3
|
Quadros-Mennella PS, Lucin KM, White RE. What can the common fruit fly teach us about stroke?: lessons learned from the hypoxic tolerant Drosophila melanogaster. Front Cell Neurosci 2024; 18:1347980. [PMID: 38584778 PMCID: PMC10995290 DOI: 10.3389/fncel.2024.1347980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Stroke, resulting in hypoxia and glucose deprivation, is a leading cause of death and disability worldwide. Presently, there are no treatments that reduce neuronal damage and preserve function aside from tissue plasminogen activator administration and rehabilitation therapy. Interestingly, Drosophila melanogaster, the common fruit fly, demonstrates robust hypoxic tolerance, characterized by minimal effects on survival and motor function following systemic hypoxia. Due to its organized brain, conserved neurotransmitter systems, and genetic similarity to humans and other mammals, uncovering the mechanisms of Drosophila's tolerance could be a promising approach for the development of new therapeutics. Interestingly, a key facet of hypoxic tolerance in Drosophila is organism-wide metabolic suppression, a response involving multiple genes and pathways. Specifically, studies have demonstrated that pathways associated with oxidative stress, insulin, hypoxia-inducible factors, NFκB, Wnt, Hippo, and Notch, all potentially contribute to Drosophila hypoxic tolerance. While manipulating the oxidative stress response and insulin signaling pathway has similar outcomes in Drosophila hypoxia and the mammalian middle cerebral artery occlusion (MCAO) model of ischemia, effects of Notch pathway manipulation differ between Drosophila and mammals. Additional research is warranted to further explore how other pathways implicated in hypoxic tolerance in Drosophila, such as NFκB, and Hippo, may be utilized to benefit mammalian response to ischemia. Together, these studies demonstrate that exploration of the hypoxic response in Drosophila may lead to new avenues of research for stroke treatment in humans.
Collapse
Affiliation(s)
| | - Kurt M. Lucin
- Department of Biology, Eastern Connecticut State University, Willimantic, CT, United States
| | - Robin E. White
- Department of Biology, Westfield State University, Westfield, MA, United States
| |
Collapse
|
4
|
Valamparamban GF, Spéder P. Homemade: building the structure of the neurogenic niche. Front Cell Dev Biol 2023; 11:1275963. [PMID: 38107074 PMCID: PMC10722289 DOI: 10.3389/fcell.2023.1275963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Neural stem/progenitor cells live in an intricate cellular environment, the neurogenic niche, which supports their function and enables neurogenesis. The niche is made of a diversity of cell types, including neurons, glia and the vasculature, which are able to signal to and are structurally organised around neural stem/progenitor cells. While the focus has been on how individual cell types signal to and influence the behaviour of neural stem/progenitor cells, very little is actually known on how the niche is assembled during development from multiple cellular origins, and on the role of the resulting topology on these cells. This review proposes to draw a state-of-the art picture of this emerging field of research, with the aim to expose our knowledge on niche architecture and formation from different animal models (mouse, zebrafish and fruit fly). We will span its multiple aspects, from the existence and importance of local, adhesive interactions to the potential emergence of larger-scale topological properties through the careful assembly of diverse cellular and acellular components.
Collapse
Affiliation(s)
| | - Pauline Spéder
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| |
Collapse
|
5
|
Gonzalez AC, Abreu C, Pantano S, Comini M, Malacrida L, Egger B, Cantera R, Prieto D. A FRET-based cGMP biosensor in Drosophila. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000887. [PMID: 38094098 PMCID: PMC10716684 DOI: 10.17912/micropub.biology.000887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/17/2023] [Accepted: 11/24/2023] [Indexed: 02/01/2024]
Abstract
CUTie2 is a FRET-based cGMP biosensor tested so far only in cells. To expand its use to multicellular organisms we generated two transgenic Drosophila melanogaster strains that express the biosensor in a tissue-dependent manner. CUTie2 expression and subcellular localization was verified by confocal microscopy. The performance of CUTie2 was analyzed on dissected larval brains by hyperspectral microscopy and flow cytometry. Both approaches confirmed its responsivity, and the latter showed a rapid and reversible change in the fluorescence of the FRET acceptor upon cGMP treatment. This validated reporter system may prove valuable for studying cGMP signaling at organismal level.
Collapse
Affiliation(s)
- Ana Clara Gonzalez
- Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Montevideo, Uruguay
| | - Cecilia Abreu
- Molecular, Cellular and Animal Technology Program, Institut Pasteur de Montevideo, Montevideo, Montevideo, Uruguay
| | - Sergio Pantano
- BioMolecular Simulation Group, Institut Pasteur de Montevideo, Montevideo, Montevideo, Uruguay
| | - Marcelo Comini
- Redox Biology of Trypanosomes Lab, Institut Pasteur de Montevideo, Montevideo, Montevideo, Uruguay
| | - Leonel Malacrida
- Advanced Bioimaging Unit, Institut Pasteur de Montevideo, Montevideo, Montevideo, Uruguay
- Universidad de la República, Montevideo, Montevideo, Uruguay
| | - Boris Egger
- Department of Biology, University of Fribourg, Fribourg, Fribourg, Switzerland
| | - Rafael Cantera
- Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Montevideo, Uruguay
| | - Daniel Prieto
- Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Montevideo, Uruguay
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Montevideo, Uruguay
| |
Collapse
|
6
|
Wang F, Yang Z, Li J, Ma Y, Tu Y, Zeng X, Wang Q, Jiang Y, Huang S, Yi Q. The involvement of hypoxia inducible factor-1α on the proportion of three types of haemocytes in Chinese mitten crab under hypoxia stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104598. [PMID: 36511346 DOI: 10.1016/j.dci.2022.104598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Hypoxia triggers diverse cell physiological processes, and the hypoxia inducible factors (HIFs) are a family of heterodimeric transcription factors that function as master regulators to respond to hypoxia in different cells. However, the knowledge about the hypoxic responses especially cell alteration mediated by HIFs under hypoxia stress is still limited in crustaceans. In the present study, a hypoxia-inducible factor-1α (HIF-1α) gene was identified (designed as EsHIF-1α). The relative mRNA expression level of EsHIF-1α was highest in hyalinocytes and lowest in granulocytes among three types of haemocytes in crabs. Hypoxia could significantly increase the EsHIF-1α protein expression level in haemocytes. Meanwhile, the proportion of hyalinocytes began to increase from 3 h post hypoxia treatment, and reached the highest level at 24 h. However, the opposite variation in proportion of granulocytes was observed under hypoxia stress. Further investigation showed that the inhibition of EsHIF-1α induced by KC7F2 (HIF-1α inhibitor) could lead to the significant decrease in the proportion of hyalinocytes under hypoxia stress, and also resulted in an increase of granulocytes proportion. While, after EsHIF-1α was activated by IOX4 (HIF-1α activator), the proportion of hyalinocytes was significantly up-regulated and the proportion of granulocytes was significantly down-regulated under post hypoxia treatment. These results collectively suggested that EsHIF-1α was involved in the regulation of proportion of three types of haemocytes induced by hypoxia stress, which provided vital insight into the understanding of the crosstalk between hypoxia and cell development in invertebrates.
Collapse
Affiliation(s)
- Fengchi Wang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zhichao Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jiaming Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Ma
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Tu
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Xiaorui Zeng
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Qingyao Wang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yusheng Jiang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Shu Huang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China.
| | - Qilin Yi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China.
| |
Collapse
|
7
|
Petridi S, Dubal D, Rikhy R, van den Ameele J. Mitochondrial respiration and dynamics of in vivo neural stem cells. Development 2022; 149:285126. [PMID: 36445292 PMCID: PMC10112913 DOI: 10.1242/dev.200870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Neural stem cells (NSCs) in the developing and adult brain undergo many different transitions, tightly regulated by extrinsic and intrinsic factors. While the role of signalling pathways and transcription factors is well established, recent evidence has also highlighted mitochondria as central players in NSC behaviour and fate decisions. Many aspects of cellular metabolism and mitochondrial biology change during NSC transitions, interact with signalling pathways and affect the activity of chromatin-modifying enzymes. In this Spotlight, we explore recent in vivo findings, primarily from Drosophila and mammalian model systems, about the role that mitochondrial respiration and morphology play in NSC development and function.
Collapse
Affiliation(s)
- Stavroula Petridi
- Department of Clinical Neurosciences and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Dnyanesh Dubal
- Department of Clinical Neurosciences and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK.,Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Jelle van den Ameele
- Department of Clinical Neurosciences and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
8
|
Damage-responsive neuro-glial clusters coordinate the recruitment of dormant neural stem cells in Drosophila. Dev Cell 2022; 57:1661-1675.e7. [PMID: 35716661 DOI: 10.1016/j.devcel.2022.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 11/23/2022]
Abstract
Recruitment of stem cells is crucial for tissue repair. Although stem cell niches can provide important signals, little is known about mechanisms that coordinate the engagement of disseminated stem cells across an injured tissue. In Drosophila, adult brain lesions trigger local recruitment of scattered dormant neural stem cells suggesting a mechanism for creating a transient stem cell activation zone. Here, we find that injury triggers a coordinated response in neuro-glial clusters that promotes the spread of a neuron-derived stem cell factor via glial secretion of the lipocalin-like transporter Swim. Strikingly, swim is induced in a Hif1-α-dependent manner in response to brain hypoxia. Mammalian Swim (Lcn7) is also upregulated in glia of the mouse hippocampus upon brain injury. Our results identify a central role of neuro-glial clusters in promoting neural stem cell activation at a distance, suggesting a conserved function of the HIF1-α/Swim/Wnt module in connecting injury-sensing and regenerative outcomes.
Collapse
|
9
|
Nguyen PK, Cheng LY. Non-autonomous regulation of neurogenesis by extrinsic cues: a Drosophila perspective. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac004. [PMID: 38596708 PMCID: PMC10913833 DOI: 10.1093/oons/kvac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 04/11/2024]
Abstract
The formation of a functional circuitry in the central nervous system (CNS) requires the correct number and subtypes of neural cells. In the developing brain, neural stem cells (NSCs) self-renew while giving rise to progenitors that in turn generate differentiated progeny. As such, the size and the diversity of cells that make up the functional CNS depend on the proliferative properties of NSCs. In the fruit fly Drosophila, where the process of neurogenesis has been extensively investigated, extrinsic factors such as the microenvironment of NSCs, nutrients, oxygen levels and systemic signals have been identified as regulators of NSC proliferation. Here, we review decades of work that explores how extrinsic signals non-autonomously regulate key NSC characteristics such as quiescence, proliferation and termination in the fly.
Collapse
Affiliation(s)
- Phuong-Khanh Nguyen
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Louise Y Cheng
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
10
|
Lehmann P, Javal M, Du Plessis A, Tshibalanganda M, Terblanche JS. X-ray micro-tomographic data of live larvae of the beetle Cacosceles newmannii. GIGABYTE 2021; 2021:gigabyte18. [PMID: 36824336 PMCID: PMC9631955 DOI: 10.46471/gigabyte.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/19/2021] [Indexed: 11/09/2022] Open
Abstract
Quantifying insect respiratory structures and their variation has remained challenging due to their microscopic size. Here we measure insect tracheal volume using X-ray micro-tomography (μCT) scanning (at 15 μm resolution) on living, sedated larvae of the cerambycid beetle Cacosceles newmannii across a range of body sizes. In this paper we provide the full volumetric data and 3D models for 12 scans, providing novel data on repeatability of imaging analyses and structural tracheal trait differences provided by different image segmentation methods. The volume data is provided here with segmented tracheal regions as 3D models.
Collapse
Affiliation(s)
- Philipp Lehmann
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
- Department of Zoology, Stockholm University, Sweden
| | - Marion Javal
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Anton Du Plessis
- CT Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch, South Africa
| | - Muofhe Tshibalanganda
- CT Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch, South Africa
| | - John S. Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
11
|
Lehmann P, Javal M, Plessis AD, Terblanche JS. Using µCT in live larvae of a large wood-boring beetle to study tracheal oxygen supply during development. JOURNAL OF INSECT PHYSIOLOGY 2021; 130:104199. [PMID: 33549568 DOI: 10.1016/j.jinsphys.2021.104199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
How respiratory structures vary with, or are constrained by, an animal's environment is of central importance to diverse evolutionary and comparative physiology hypotheses. To date, quantifying insect respiratory structures and their variation has remained challenging due to their microscopic size, hence only a handful of species have been examined. Several methods for imaging insect respiratory systems are available, in many cases however, the analytical process is lethal, destructive, time consuming and labour intensive. Here, we explore and test a different approach to measuring tracheal volume using X-ray micro-tomography (µCT) scanning (at 15 µm resolution) on living, sedated larvae of the cerambycid beetle Cacosceles newmannii across a range of body sizes at two points in development. We provide novel data on resistance of the larvae to the radiation dose absorbed during µCT scanning, repeatability of imaging analyses both within and between time-points and, structural tracheal trait differences provided by different image segmentation methods. By comparing how tracheal dimension (reflecting metabolic supply) and basal metabolic rate (reflecting metabolic demand) increase with mass, we show that tracheal oxygen supply capacity increases during development at a comparable, or even higher rate than metabolic demand. Given that abundant gas delivery capacity in the insect respiratory system may be costly (due to e.g. oxygen toxicity or space restrictions), there are probably balancing factors requiring such a capacity that are not linked to direct tissue oxygen demand and that have not been thoroughly elucidated to date, including CO2 efflux. Our study provides methodological insights and novel biological data on key issues in rapidly quantifying insect respiratory anatomy on live insects.
Collapse
Affiliation(s)
- Philipp Lehmann
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa; Department of Zoology, Stockholm University, Sweden.
| | - Marion Javal
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Anton Du Plessis
- CT Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch, South Africa
| | - John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
12
|
First person – Martín Baccino-Calace. Biol Open 2020. [PMCID: PMC7449792 DOI: 10.1242/bio.055483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
First Person is a series of interviews with the first authors of a selection of papers published in Biology Open, helping early-career researchers promote themselves alongside their papers. Martín Baccino-Calace is first author on ‘Compartment and cell-type specific hypoxia responses in the developing Drosophila brain’, published in BiO. Martín conducted the research described in this article while a master's student in Rafael Cantera's lab at the Department of Neurodevelopment Biology, IIBCE, Uruguay. He is now a graduate student in the lab of Martin Müller at the Department of Molecular Life Sciences, University of Zurich, Switzerland, investigating synaptic physiology.
Collapse
|