1
|
Soundararajan A, Jaysankar K, Doud E, Pasteurin RP, Surma M, Pattabiraman PP. Loss of Cathepsin K impairs collagen biogenesis and enhances actin polymerization in trabecular meshwork. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637394. [PMID: 39990379 PMCID: PMC11844368 DOI: 10.1101/2025.02.10.637394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Trabecular meshwork (TM) dysfunction and extracellular matrix (ECM) dysregulation contribute to increased intraocular pressure (IOP) in primary open-angle glaucoma (POAG). Earlier, we provide a proof-of-concept study identifying the regulation and the role of Cathepsin K (CTSK), a potent collagenase, in ECM homeostasis, actin bundling, and IOP regulation. Better understanding of the loss of CTSK function in TM remains unclear. Using siRNA-mediated knockdown of CTSK (siCTSK) in human TM cells, this study investigated the role of CTSK in actin and ECM homeostasis using an unbiased proteomics approach. Loss of CTSK significantly disrupted collagen biogenesis and ECM homeostasis. CTSK depletion also increased intracellular calcium levels, with proteomics data suggesting possible involvement of calcium-regulatory proteins. Additionally, PRKD1 activation enhanced actin polymerization through the LIMK1/SSH1/cofilin pathway, promoting focal adhesion maturation. Despite increased apoptotic markers (CASP3, CASP7, TRADD, PPM1F), caspase 3/7 activation was not induced, suggesting apoptosis-independent cellular remodeling. Notably, RhoQ and myosin motor proteins were significantly downregulated, indicating altered mechanotransduction in TM cells. These findings highlight the role of CTSK in maintaining ECM homeostasis, calcium signaling, and cytoskeletal regulation in TM. Its depletion induces actin polymerization, which may influence aqueous humor outflow. Targeting CTSK-related pathways may provide novel therapeutic strategies for regulating IOP and preventing glaucoma progression.
Collapse
|
2
|
Marie-Hardy L, Slimani L, Messa G, El Bourakkadi Z, Prigent A, Sayetta C, Koëth F, Pascal-Moussellard H, Wyart C, Cantaut-Belarif Y. Loss of CSF-contacting neuron sensory function is associated with a hyper-kyphosis of the spine reminiscent of Scheuermann's disease. Sci Rep 2023; 13:5529. [PMID: 37016154 PMCID: PMC10073078 DOI: 10.1038/s41598-023-32536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/29/2023] [Indexed: 04/06/2023] Open
Abstract
Scheuermann's disease, also referred to as Scheuermann's kyphosis, is the second most frequent spine deformity occurring in humans after adolescent idiopathic scoliosis (AIS), both with an unclear etiology. Recent genetic studies in zebrafish unraveled new mechanisms linked to AIS, highlighting the role of the Reissner fiber, an acellular polymer bathing in the cerebrospinal fluid (CSF) in close proximity with ciliated cells and mechanosensory neurons lining the central canal of the spinal cord (CSF-cNs). However, while the Reissner fiber and ciliary beating have been linked to AIS-like phenotypes in zebrafish, the relevance of the sensory functions of CSF-cNs for human spine disorders remains unknown. Here, we show that the thoracic hyper-kyphosis of the spine previously reported in adult pkd2l1 mutant zebrafish, in which the mechanosensory function of CSF-cNs is likely defective, is restricted to the sagittal plane and is not associated with vertebral malformations. By applying orthopedic criteria to analyze the amplitude of the curvature at the apex of the kyphosis, the curve pattern, the sagittal balance and sex bias, we demonstrate that pkd2l1 knock-outs develop a phenotype reminiscent of Scheuermann's disease. Altogether our work consolidates the benefit of combining genetics and analysis of spine deformities in zebrafish to model idiopathic spine disorders in humans.
Collapse
Affiliation(s)
- Laura Marie-Hardy
- Orthopedic Surgery and Trauma Center, Pitié-Salpêtrière Teaching Hospital (AP-HP), 47 Boulevard de L'Hôpital, 75013, Paris, France
- Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université (SU), 75013, Paris, France
| | - Lotfi Slimani
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Dental School University Paris Cité, and Life Imaging Platform (PIV), Montrouge, France
| | - Giulia Messa
- Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université (SU), 75013, Paris, France
| | - Zaineb El Bourakkadi
- Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université (SU), 75013, Paris, France
| | - Annick Prigent
- Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université (SU), 75013, Paris, France
| | - Celia Sayetta
- Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université (SU), 75013, Paris, France
| | - Fanny Koëth
- Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université (SU), 75013, Paris, France
| | - Hugues Pascal-Moussellard
- Orthopedic Surgery and Trauma Center, Pitié-Salpêtrière Teaching Hospital (AP-HP), 47 Boulevard de L'Hôpital, 75013, Paris, France
- Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université (SU), 75013, Paris, France
| | - Claire Wyart
- Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université (SU), 75013, Paris, France.
| | - Yasmine Cantaut-Belarif
- Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université (SU), 75013, Paris, France.
| |
Collapse
|
3
|
Carrington B, Bishop K, Sood R. A Comprehensive Review of Indel Detection Methods for Identification of Zebrafish Knockout Mutants Generated by Genome-Editing Nucleases. Genes (Basel) 2022; 13:857. [PMID: 35627242 PMCID: PMC9141975 DOI: 10.3390/genes13050857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
The use of zebrafish in functional genomics and disease modeling has become popular due to the ease of targeted mutagenesis with genome editing nucleases, i.e., zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9). These nucleases, specifically CRISPR/Cas9, are routinely used to generate gene knockout mutants by causing a double stranded break at the desired site in the target gene and selecting for frameshift insertions or deletions (indels) caused by the errors during the repair process. Thus, a variety of methods have been developed to identify fish with indels during the process of mutant generation and phenotypic analysis. These methods range from PCR and gel-based low-throughput methods to high-throughput methods requiring specific reagents and/or equipment. Here, we provide a comprehensive review of currently used indel detection methods in zebrafish. By discussing the molecular basis for each method as well as their pros and cons, we hope that this review will serve as a comprehensive resource for zebrafish researchers, allowing them to choose the most appropriate method depending upon their budget, access to required equipment and the throughput needs of the projects.
Collapse
Affiliation(s)
| | | | - Raman Sood
- Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.C.); (K.B.)
| |
Collapse
|
4
|
First person – Ivo de Vos. Biol Open 2020. [PMCID: PMC7790186 DOI: 10.1242/bio.057935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
First Person is a series of interviews with the first authors of a selection of papers published in Biology Open, helping early-career researchers promote themselves alongside their papers. Ivo de Vos is first author on ‘The novel zebrafish model pretzel demonstrates a central role for SH3PXD2B in defective collagen remodelling and fibrosis in Frank-Ter Haar syndrome’, published in BiO. Ivo conducted the research described in this article while a Research Fellow in Professor Maurice van Steensel's lab at the Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore. He is now a Postgraduate House Officer in Clinical Genetics, currently working in patient care in the Department of Genetics, at the University Medical Center Groningen (UMCG), The Netherlands, investigating pathophysiological mechanisms underlying common skin conditions by studying rare genetic skin disorders, ultimately improving patient care.
Collapse
|