1
|
Garone ME, Chase SE, Zhang C, Krendel M. Myosin 1e deficiency affects migration of 4T1 breast cancer cells. Cytoskeleton (Hoboken) 2024; 81:723-736. [PMID: 38140937 PMCID: PMC11193843 DOI: 10.1002/cm.21819] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/03/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Metastasis of breast cancer cells to distant tissue sites is responsible for the majority of deaths associated with breast cancer. Previously we have examined the role of class I myosin motor protein, myosin 1e (myo1e), in cancer metastasis using the Mouse Mammary Tumor Virus-Polyoma Middle T Antigen (MMTV-PyMT) mouse model. Mice deficient in myo1e formed tumors with a more differentiated phenotype relative to the wild-type mice and formed no detectable lung metastases. In the current study, we investigated how the absence of myo1e affects cell migration and invasion in vitro, using the highly invasive and migratory breast cancer cell line, 4T1. 4T1 cells deficient in myo1e exhibited an altered morphology and slower rates of migration in the wound-healing and transwell migration assays compared to the WT 4T1 cells. While integrin trafficking and Golgi reorientation did not appear to be altered upon myo1e loss, we observed lower rates of focal adhesion disassembly in myo1e-deficient cells, which could help explain the cell migration defect.
Collapse
Affiliation(s)
- Michael E. Garone
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Sharon E. Chase
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Chunling Zhang
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
2
|
Verdys P, Rey Barroso J, Girel A, Vermeil J, Bergert M, Sanchez T, Métais A, Mangeat T, Bellard E, Bigot C, Astarie-Dequeker C, Labrousse A, Girard JP, Maridonneau-Parini I, Vérollet C, Lagarrigue F, Diz-Muñoz A, Heuvingh J, Piel M, du Roure O, Le Cabec V, Carréno S, Poincloux R. Ezrin, radixin, and moesin are dispensable for macrophage migration and cellular cortex mechanics. EMBO J 2024; 43:4822-4845. [PMID: 39026000 PMCID: PMC11535515 DOI: 10.1038/s44318-024-00173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
The cellular cortex provides crucial mechanical support and plays critical roles during cell division and migration. The proteins of the ERM family, comprised of ezrin, radixin, and moesin, are central to these processes by linking the plasma membrane to the actin cytoskeleton. To investigate the contributions of the ERM proteins to leukocyte migration, we generated single and triple ERM knockout macrophages. Surprisingly, we found that even in the absence of ERM proteins, macrophages still form the different actin structures promoting cell migration, such as filopodia, lamellipodia, podosomes, and ruffles. Furthermore, we discovered that, unlike every other cell type previously investigated, the single or triple knockout of ERM proteins does not affect macrophage migration in diverse contexts. Finally, we demonstrated that the loss of ERMs in macrophages does not affect the mechanical properties of their cortex. These findings challenge the notion that ERMs are universally essential for cortex mechanics and cell migration and support the notion that the macrophage cortex may have diverged from that of other cells to allow for their uniquely adaptive cortical plasticity.
Collapse
Affiliation(s)
- Perrine Verdys
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Canada
| | - Javier Rey Barroso
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Adeline Girel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Joseph Vermeil
- PMMH, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Martin Bergert
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thibaut Sanchez
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Arnaud Métais
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Thomas Mangeat
- LITC Core Facility, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Elisabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Claire Bigot
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Catherine Astarie-Dequeker
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Arnaud Labrousse
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Christel Vérollet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Frédéric Lagarrigue
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Julien Heuvingh
- PMMH, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Olivia du Roure
- PMMH, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Véronique Le Cabec
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| | - Sébastien Carréno
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Canada.
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
3
|
Krendel M, Leh S, Garone ME, Edwards-Richards A, Lin JJ, Brackman D, Knappskog P, Mikhailov A. Focal segmental glomerulosclerosis and proteinuria associated with Myo1E mutations: novel variants and histological phenotype analysis. Pediatr Nephrol 2023; 38:439-449. [PMID: 35723736 PMCID: PMC10506584 DOI: 10.1007/s00467-022-05634-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Pathogenic mutations in the non-muscle single-headed myosin, myosin 1E (Myo1e), are a rare cause of pediatric focal segmental glomerulosclerosis (FSGS). These mutations are biallelic, to date only reported as homozygous variants in consanguineous families. Myo1e regulates the actin cytoskeleton dynamics and cell adhesion, which are especially important for podocyte functions. METHODS DNA and RNA sequencing were used to identify novel MYO1E variants associated with FSGS. We studied the effects of these variants on the localization of Myo1e in kidney sections. We then analyzed the clinical and histological observations of all known pathogenic MYO1E variants. RESULTS We identified a patient compound heterozygote for two novel variants in MYO1E and a patient homozygous for a deletion of exon 19. Computer modeling predicted these variants to be disruptive. In both patients, Myo1e was mislocalized. As a rule, pathogenic MYO1E variants map to the Myo1e motor and neck domain and are most often associated with steroid-resistant nephrotic syndrome in children 1-11 years of age, leading to kidney failure in 4-10 years in a subset of patients. The ultrastructural features are the podocyte damage and striking diffuse and global Alport-like glomerular basement membrane (GBM) abnormalities. CONCLUSIONS We hypothesize that MYO1E mutations lead to disruption of the function of podocyte contractile actin cables resulting in abnormalities of the podocytes and the GBM and dysfunction of the glomerular filtration barrier. The characteristic clinicopathological data can help to tentatively differentiate this condition from other genetic podocytopathies and Alport syndrome until genetic testing is done. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Mira Krendel
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sabine Leh
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Michael E Garone
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | - Jen-Jar Lin
- Department of Pediatrics, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Damien Brackman
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Per Knappskog
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Alexei Mikhailov
- Department of Pathology, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, USA.
| |
Collapse
|
4
|
Johnson CA, Behbehani R, Buss F. Unconventional Myosins from Caenorhabditis elegans as a Probe to Study Human Orthologues. Biomolecules 2022; 12:biom12121889. [PMID: 36551317 PMCID: PMC9775386 DOI: 10.3390/biom12121889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Unconventional myosins are a superfamily of actin-based motor proteins that perform a number of roles in fundamental cellular processes, including (but not limited to) intracellular trafficking, cell motility, endocytosis, exocytosis and cytokinesis. 40 myosins genes have been identified in humans, which belong to different 12 classes based on their domain structure and organisation. These genes are widely expressed in different tissues, and mutations leading to loss of function are associated with a wide variety of pathologies while over-expression often results in cancer. Caenorhabditis elegans (C. elegans) is a small, free-living, non-parasitic nematode. ~38% of the genome of C. elegans has predicted orthologues in the human genome, making it a valuable tool to study the function of human counterparts and human diseases. To date, 8 unconventional myosin genes have been identified in the nematode, from 6 different classes with high homology to human paralogues. The hum-1 and hum-5 (heavy chain of an unconventional myosin) genes encode myosin of class I, hum-2 of class V, hum-3 and hum-8 of class VI, hum-6 of class VII and hum-7 of class IX. The hum-4 gene encodes a high molecular mass myosin (307 kDa) that is one of the most highly divergent myosins and is a member of class XII. Mutations in many of the human orthologues are lethal, indicating their essential properties. However, a functional characterisation for many of these genes in C. elegans has not yet been performed. This article reviews the current knowledge of unconventional myosin genes in C. elegans and explores the potential use of the nematode to study the function and regulation of myosin motors to provide valuable insights into their role in diseases.
Collapse
|
5
|
Diaz-Valencia JD, Estrada-Abreo LA, Rodríguez-Cruz L, Salgado-Aguayo AR, Patiño-López G. Class I Myosins, molecular motors involved in cell migration and cancer. Cell Adh Migr 2022; 16:1-12. [PMID: 34974807 PMCID: PMC8741282 DOI: 10.1080/19336918.2021.2020705] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 01/13/2023] Open
Abstract
Class I Myosins are a subfamily of motor proteins with ATPase activity and a characteristic structure conserved in all myosins: A N-Terminal Motor Domain, a central Neck and a C terminal Tail domain. Humans have eight genes for these myosins. Class I Myosins have different functions: regulate membrane tension, participate in endocytosis, exocytosis, intracellular trafficking and cell migration. Cell migration is influenced by many cellular components including motor proteins, like myosins. Recently has been reported that changes in myosin expression have an impact on the migration of cancer cells, the formation of infiltrates and metastasis. We propose that class I myosins might be potential markers for future diagnostic, prognostic or even as therapeutic targets in leukemia and other cancers.Abbreviations: Myo1g: Myosin 1g; ALL: Acute Lymphoblastic Leukemia, TH1: Tail Homology 1; TH2: Tail Homology 2; TH3: Tail Homology 3.
Collapse
Affiliation(s)
- Juan D. Diaz-Valencia
- Immunology and Proteomics Laboratory, Children’s Hospital of Mexico, Mexico City, Mexico
| | - Laura A. Estrada-Abreo
- Immunology and Proteomics Laboratory, Children’s Hospital of Mexico, Mexico City, Mexico
- Cell Biology and Flow Cytometry Laboratory, Metropolitan Autonomous University, México City, Mexico
| | - Leonor Rodríguez-Cruz
- Cell Biology and Flow Cytometry Laboratory, Metropolitan Autonomous University, México City, Mexico
| | - Alfonso R. Salgado-Aguayo
- Rheumatic Diseases Laboratory, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Genaro Patiño-López
- Immunology and Proteomics Laboratory, Children’s Hospital of Mexico, Mexico City, Mexico
| |
Collapse
|
6
|
Pernier J, Schauer K. Does the Actin Network Architecture Leverage Myosin-I Functions? BIOLOGY 2022; 11:biology11070989. [PMID: 36101369 PMCID: PMC9311500 DOI: 10.3390/biology11070989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022]
Abstract
The actin cytoskeleton plays crucial roles in cell morphogenesis and functions. The main partners of cortical actin are molecular motors of the myosin superfamily. Although our understanding of myosin functions is heavily based on myosin-II and its ability to dimerize, the largest and most ancient class is represented by myosin-I. Class 1 myosins are monomeric, actin-based motors that regulate a wide spectrum of functions, and whose dysregulation mediates multiple human diseases. We highlight the current challenges in identifying the “pantograph” for myosin-I motors: we need to reveal how conformational changes of myosin-I motors lead to diverse cellular as well as multicellular phenotypes. We review several mechanisms for scaling, and focus on the (re-) emerging function of class 1 myosins to remodel the actin network architecture, a higher-order dynamic scaffold that has potential to leverage molecular myosin-I functions. Undoubtfully, understanding the molecular functions of myosin-I motors will reveal unexpected stories about its big partner, the dynamic actin cytoskeleton.
Collapse
Affiliation(s)
- Julien Pernier
- Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), Commissariat à L’Énergie Atomique et aux Énergies Alternatives (CEA), Université Paris-Saclay, 91198 Gif-sur-Yvette, France;
| | - Kristine Schauer
- Tumor Cell Dynamics Unit, Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, 94800 Villejuif, France
- Correspondence:
| |
Collapse
|
7
|
Prospéri MT, Pernier J, Lachuer H, Coudrier E. Plekhh1, a partner of myosin 1 and an effector of EphB2 controls the cortical actin network for cell repulsion. J Cell Sci 2021; 134:272686. [PMID: 34723325 DOI: 10.1242/jcs.258802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022] Open
Abstract
EphB2/ephrinB signalling that plays a major role in cell segregation during embryonic development and tissue homeostasis, induces an important reorganization of the cortical actin network. We have previously reported that myosin 1b contributes to the reorganisation of the cortical actin network upon EphB2 signalling. In this report we have identified Plekhh1, as a new partner of members of the myosin 1 family and EphB2 receptors. Plekhh1 interacts with myosin 1b via its N-terminus domain and with EphB2 via its C-terminus domain. Furthermore, Plekhh1 is tyrosine-phosphorylated, and this depends on EphB2 kinase activity. Such as the manipulation of the expression level of myosin 1b and myosin 1c, manipulation of Plekhh1 expression levels reveals that Plekhh1 controls the formation of filopodia, the length of focal adhesions and the formation of blebs. Furthermore, binding of Plekhh1 interacting domain to myosin 1b increases the motor activity of myosin 1b in vitro. Together our data show that Plekhh1 is an effector of EphB2 and suggest that Plekhh1 regulates the cortical actin network via the interaction of its N-terminus domain with myosin 1 upon EphB2/ephrinB signalling.
Collapse
Affiliation(s)
- Marie-Thérèse Prospéri
- Institut Curie, PSL Research University and C.N.R.S. UMR 144, 26 rue d'Ulm, Paris, France.,Sorbonne Université, 75005 Paris, France
| | - Julien Pernier
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France.,Sorbonne Université, 75005 Paris, France
| | - Hugo Lachuer
- Institut Curie, PSL Research University and C.N.R.S. UMR 144, 26 rue d'Ulm, Paris, France.,Sorbonne Université, 75005 Paris, France
| | - Evelyne Coudrier
- Institut Curie, PSL Research University and C.N.R.S. UMR 144, 26 rue d'Ulm, Paris, France.,Sorbonne Université, 75005 Paris, France
| |
Collapse
|
8
|
Schäringer K, Maxeiner S, Schalla C, Rütten S, Zenke M, Sechi A. LSP1-myosin1e bimolecular complex regulates focal adhesion dynamics and cell migration. FASEB J 2021; 35:e21268. [PMID: 33470457 DOI: 10.1096/fj.202000740rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 01/22/2023]
Abstract
Several cytoskeleton-associated proteins and signaling pathways work in concert to regulate actin cytoskeleton remodeling, cell adhesion, and migration. Although the leukocyte-specific protein 1 (LSP1) has been shown to interact with the actin cytoskeleton, its function in the regulation of actin cytoskeleton dynamics is, as yet, not fully understood. We have recently demonstrated that the bimolecular complex between LSP1 and myosin1e controls actin cytoskeleton remodeling during phagocytosis. In this study, we show that LSP1 downregulation severely impairs cell migration, lamellipodia formation, and focal adhesion dynamics in macrophages. Inhibition of the interaction between LSP1 and myosin1e also impairs these processes resulting in poorly motile cells, which are characterized by few and small lamellipodia. Furthermore, cells in which LSP1-myosin1e interaction is inhibited are typically associated with inefficient focal adhesion turnover. Collectively, our findings show that the LSP1-myosin1e bimolecular complex plays a pivotal role in the regulation of actin cytoskeleton remodeling and focal adhesion dynamics required for cell migration.
Collapse
Affiliation(s)
- Katja Schäringer
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Sebastian Maxeiner
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Carmen Schalla
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Stephan Rütten
- Electron Microscopy Facility, Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Antonio Sechi
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Richter S, Martin R, Gutzeit HO, Knölker HJ. In vitro and in vivo effects of inhibitors on actin and myosin. Bioorg Med Chem 2021; 30:115928. [PMID: 33341499 DOI: 10.1016/j.bmc.2020.115928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 11/18/2022]
Abstract
The interaction of actin and myosin is essential for cell migration. We have identified kaempferol and pentahalogenated pseudilins as efficient inhibitors of migration of MDA-MB-231 breast adenocarcinoma cells. The compounds were studied with respect to possible effects on myosin-2-ATPase activity. The pentahalogenated pseudilins inhibited the enzyme activity in vitro. Flavonoids showed no effect on enzyme activity. The polymerization dynamics of actin was measured to test whether the integrity of F-actin is essential for the migration of MDA-MB-231 cells. Quercetin and kaempferol depolymerized F-actin with similar efficiencies as found for the pentahalogenated pseudilins, whereas epigallocatechin showed the weakest effect. As the inhibitory effect on cell migration may be caused by a toxic effect, we have performed a cytotoxicity test and, furthermore, investigated the influence of the test compounds on cardiac function in eleutheroembryos of medaka (Oryzias latipes). Compared with the pentahalogenated pseudilins, the cytotoxic and cardiotoxic effects of flavonoids on medaka embryos were found to be moderate.
Collapse
Affiliation(s)
- Sabine Richter
- Faculty of Biology, TU Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | - René Martin
- Faculty of Chemistry, TU Dresden, Bergstrasse 66, 01069 Dresden, Germany
| | - Herwig O Gutzeit
- Faculty of Biology, TU Dresden, Zellescher Weg 20b, 01217 Dresden, Germany.
| | | |
Collapse
|
10
|
Nakamura S, Masuyama R, Sakai K, Fukuda K, Takeda K, Tanimura S. SH3P2 suppresses osteoclast differentiation through restricting membrane localization of myosin 1E. Genes Cells 2020; 25:707-717. [PMID: 32916757 DOI: 10.1111/gtc.12806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/23/2020] [Accepted: 09/02/2020] [Indexed: 01/21/2023]
Abstract
Osteoclasts are multinucleated cells responsible for bone resorption. Src homology 3 (SH3) domain-containing protein-2 (SH3P2)/osteoclast-stimulating factor-1 regulates osteoclast differentiation, but its exact role remains elusive. Here, we show that SH3P2 suppresses osteoclast differentiation. SH3P2 knockout (KO) mice displayed decreased femoral trabecular bone mass and enhanced localization of osteoclasts on the tibial trabecular bone surface, suggesting that SH3P2 suppresses bone resorption by osteoclasts. Osteoclast differentiation based on cellular multinuclearity induced by macrophage colony-stimulating factor and receptor activator of nuclear factor-κB ligand (RANKL) was enhanced in bone marrow-derived macrophages lacking SH3P2. RANKL induced SH3P2 dephosphorylation, which increased the association of actin-dependent motor protein myosin 1E (Myo1E) with SH3P2 and thereby prevented Myo1E localization to the plasma membrane. Consistent with this, Myo1E in the membrane fraction increased in SH3P2-KO cells. Together with the attenuated osteoclast differentiation in Myo1E knocked down cells, SH3P2 may suppress osteoclast differentiation by preventing their cell-to-cell fusion depending on Myo1E membrane localization.
Collapse
Affiliation(s)
- Shota Nakamura
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ritsuko Masuyama
- Department of Gastronomy Management, College of Gastronomy Management, Ritsumeikan University, Kusatsu, Japan
| | - Kosuke Sakai
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Karin Fukuda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kohsuke Takeda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Susumu Tanimura
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
11
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
12
|
Actin polymerization downstream of integrins: signaling pathways and mechanotransduction. Biochem J 2020; 477:1-21. [PMID: 31913455 DOI: 10.1042/bcj20170719] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/17/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
A cell constantly adapts to its environment. Cell decisions to survive, to proliferate or to migrate are dictated not only by soluble growth factors, but also through the direct interaction of the cell with the surrounding extracellular matrix (ECM). Integrins and their connections to the actin cytoskeleton are crucial for monitoring cell attachment and the physical properties of the substratum. Cell adhesion dynamics are modulated in complex ways by the polymerization of branched and linear actin arrays, which in turn reinforce ECM-cytoskeleton connection. This review describes the major actin regulators, Ena/VASP proteins, formins and Arp2/3 complexes, in the context of signaling pathways downstream of integrins. We focus on the specific signaling pathways that transduce the rigidity of the substrate and which control durotaxis, i.e. directed migration of cells towards increased ECM rigidity. By doing so, we highlight several recent findings on mechanotransduction and put them into a broad integrative perspective that is the result of decades of intense research on the actin cytoskeleton and its regulation.
Collapse
|
13
|
Abstract
The regulation of actin dynamics is essential for various cellular processes. Former evidence suggests a correlation between the function of non-conventional myosin motors and actin dynamics. Here we investigate the contribution of myosin 1b to actin dynamics using sliding motility assays. We observe that sliding on myosin 1b immobilized or bound to a fluid bilayer enhances actin depolymerization at the barbed end, while sliding on myosin II, although 5 times faster, has no effect. This work reveals a non-conventional myosin motor as another type of depolymerase and points to its singular interactions with the actin barbed end. Former evidence suggests a correlation between the function of non-conventional myosin motors and actin dynamics. Here authors use in vitro assays in which they observe that actin sliding on myosin 1b immobilized or bound to a fluid bilayer enhances actin depolymerization at the barbed end.
Collapse
|
14
|
Zhang Y, Cao F, Zhou Y, Feng Z, Sit B, Krendel M, Yu CH. Tail domains of myosin-1e regulate phosphatidylinositol signaling and F-actin polymerization at the ventral layer of podosomes. Mol Biol Cell 2019; 30:622-635. [PMID: 30601698 PMCID: PMC6589698 DOI: 10.1091/mbc.e18-06-0398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During podosome formation, distinct phosphatidylinositol 3,4,5-trisphosphate lipid (PI(3,4,5)P3) production and F-actin polymerization take place at integrin-mediated adhesions. Membrane-associated actin regulation factors, such as myosin-1, serve as key molecules to link phosphatidylinositol signals to podosome assembly. Here, we report that long-tailed myosin-1e (Myo1e) is enriched at the ventral layer of the podosome core in a PI(3,4,5)P3-dependent manner. The combination of TH1 and TH2 (TH12) of Myo1e tail domains contains the essential motif for PI(3,4,5)P3-dependent membrane association and ventral localization at the podosome. TH12 KR2A (K772A and R782A) becomes dissociated from the plasma membrane. While F-actin polymerizations are initialized from the ventral layer of the podosome, TH12 precedes the recruitment of N-WASP and Arp2/3 in the initial phase of podosome formation. Overexpression of TH12, not TH12 KR2A, impedes PI(3,4,5)P3 signaling, restrains F-actin polymerization, and inhibits podosome formation. TH12 also suppresses gelatin degradation and migration speed of invadopodia-forming A375 melanoma cells. Thus, TH12 domain of Myo1e serves as a regulatory component to connect phosphatidylinositol signaling to F-actin polymerization at the podosome.
Collapse
Affiliation(s)
- Yage Zhang
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Fakun Cao
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Yuhuan Zhou
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Zhen Feng
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Brian Sit
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong.,Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London WC2R 2LS, United Kingdom
| | - Mira Krendel
- SUNY Upstate Medical University, Syracuse, NY 13210
| | - Cheng-Han Yu
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| |
Collapse
|
15
|
Stark BC, Lanier MH, Cooper JA. CARMIL family proteins as multidomain regulators of actin-based motility. Mol Biol Cell 2017; 28:1713-1723. [PMID: 28663287 PMCID: PMC5491179 DOI: 10.1091/mbc.e17-01-0019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 12/23/2022] Open
Abstract
CARMILs are large multidomain proteins that regulate the actin-binding activity of capping protein (CP), a major capper of actin filament barbed ends in cells. CARMILs bind directly to CP and induce a conformational change that allosterically decreases but does not abolish its actin-capping activity. The CP-binding domain of CARMIL consists of the CP-interaction (CPI) and CARMIL-specific interaction (CSI) motifs, which are arranged in tandem. Many cellular functions of CARMILs require the interaction with CP; however, a more surprising result is that the cellular function of CP in cells appears to require binding to a CARMIL or another protein with a CPI motif, suggesting that CPI-motif proteins target CP and modulate its actin-capping activity. Vertebrates have three highly conserved genes and expressed isoforms of CARMIL with distinct and overlapping localizations and functions in cells. Various domains of these CARMIL isoforms interact with plasma membranes, vimentin intermediate filaments, SH3-containing class I myosins, the dual-GEF Trio, and other adaptors and signaling molecules. These biochemical properties suggest that CARMILs play a variety of membrane-associated functions related to actin assembly and signaling. CARMIL mutations and variants have been implicated in several human diseases. We focus on roles for CARMILs in signaling in addition to their function as regulators of CP and actin.
Collapse
Affiliation(s)
- Benjamin C Stark
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - M Hunter Lanier
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
16
|
Sun Y, Leong NT, Jiang T, Tangara A, Darzacq X, Drubin DG. Switch-like Arp2/3 activation upon WASP and WIP recruitment to an apparent threshold level by multivalent linker proteins in vivo. eLife 2017; 6. [PMID: 28813247 PMCID: PMC5559269 DOI: 10.7554/elife.29140] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/14/2017] [Indexed: 01/09/2023] Open
Abstract
Actin-related protein 2/3 (Arp2/3) complex activation by nucleation promoting factors (NPFs) such as WASP, plays an important role in many actin-mediated cellular processes. In yeast, Arp2/3-mediated actin filament assembly drives endocytic membrane invagination and vesicle scission. Here we used genetics and quantitative live-cell imaging to probe the mechanisms that concentrate NPFs at endocytic sites, and to investigate how NPFs regulate actin assembly onset. Our results demonstrate that SH3 (Src homology 3) domain-PRM (proline-rich motif) interactions involving multivalent linker proteins play central roles in concentrating NPFs at endocytic sites. Quantitative imaging suggested that productive actin assembly initiation is tightly coupled to accumulation of threshold levels of WASP and WIP, but not to recruitment kinetics or release of autoinhibition. These studies provide evidence that WASP and WIP play central roles in establishment of a robust multivalent SH3 domain-PRM network in vivo, giving actin assembly onset at endocytic sites a switch-like behavior. DOI:http://dx.doi.org/10.7554/eLife.29140.001 Actin is one of the most abundant proteins in yeast, mammalian and other eukaryotic cells. It assembles into long chains known as filaments that the cell uses to generate forces for various purposes. For example, actin filaments are needed to pull part of the membrane surrounding the cell inwards to bring molecules from the external environment into the cell by a process called endocytosis. In yeast, a member of the WASP family of proteins promotes the assembly of actin filaments around the site where endocytosis will occur. To achieve this, WASP interacts with several other proteins including WIP and myosin, a motor protein that moves along actin filaments to generate mechanical forces. However, it was not clear how these proteins work together to trigger actin filaments to assemble at the right place and time. Sun et al. addressed this question by studying yeast cells with genetic mutations affecting one or more of these proteins. The experiments show that WASP, myosin and WIP are recruited to sites where endocytosis is about to occur through specific interactions with other proteins. For example, a region of WASP known as the proline-rich domain can bind to proteins that contain an “SH3” domain. WASP and WIP arrive first, stimulating actin to assemble in an “all and nothing” manner and attracting myosin to the actin. Further experiments indicate that WASP and WIP need to reach a threshold level before actin starts to assemble. The findings of Sun et al. suggest that WASP and WIP play key roles in establishing the network of proteins needed for actin filaments to assemble during endocytosis. These proteins are needed for many other processes in yeast and other cells, including mammalian cells. Therefore, the next steps will be to investigate whether WASP and WIP use the same mechanism to operate in other situations. DOI:http://dx.doi.org/10.7554/eLife.29140.002
Collapse
Affiliation(s)
- Yidi Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Nicole T Leong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Tommy Jiang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Astou Tangara
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
17
|
Gupta P, Martin R, Knölker HJ, Nihalani D, Kumar Sinha D. Myosin-1 inhibition by PClP affects membrane shape, cortical actin distribution and lipid droplet dynamics in early Zebrafish embryos. PLoS One 2017; 12:e0180301. [PMID: 28678859 PMCID: PMC5498032 DOI: 10.1371/journal.pone.0180301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/13/2017] [Indexed: 12/22/2022] Open
Abstract
Myosin-1 (Myo1) represents a mechanical link between the membrane and actin-cytoskeleton in animal cells. We have studied the effect of Myo1 inhibitor PClP in 1-8 cell Zebrafish embryos. Our results indicate a unique involvement of Myo1 in early development of Zebrafish embryos. Inhibition of Myo1 (by PClP) and Myo2 (by Blebbistatin) lead to arrest in cell division. While Myo1 isoforms appears to be important for both the formation and the maintenance of cleavage furrows, Myo2 is required only for the formation of furrows. We found that the blastodisc of the embryo, which contains a thick actin cortex (~13 μm), is loaded with cortical Myo1. Myo1 appears to be crucial for maintaining the blastodisc morphology and the actin cortex thickness. In addition to cell division and furrow formation, inhibition of Myo1 has a drastic effect on the dynamics and distribution of lipid droplets (LDs) in the blastodisc near the cleavage furrow. All these results above are effects of Myo1 inhibition exclusively; Myo2 inhibition by blebbistatin does not show such phenotypes. Therefore, our results demonstrate a potential role for Myo1 in the maintenance and formation of furrow, blastodisc morphology, cell-division and LD organization within the blastodisc during early embryogenesis.
Collapse
MESH Headings
- Actin Cytoskeleton/drug effects
- Actin Cytoskeleton/metabolism
- Actins/genetics
- Actins/metabolism
- Animals
- Blastomeres/cytology
- Blastomeres/metabolism
- Blastomeres/ultrastructure
- Blotting, Western
- Cell Division/drug effects
- Cell Division/genetics
- Cell Membrane/metabolism
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/ultrastructure
- Gene Expression Regulation, Developmental
- Heterocyclic Compounds, 4 or More Rings/pharmacology
- Hydrocarbons, Chlorinated/pharmacology
- Lipid Droplets/metabolism
- Microscopy, Electron, Scanning
- Microscopy, Fluorescence
- Myosin Heavy Chains/antagonists & inhibitors
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Pyrroles/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/antagonists & inhibitors
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
| | - René Martin
- Department Chemie, TU Dresden, Dresden, Germany
| | | | - Deepak Nihalani
- Dept. Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | | |
Collapse
|
18
|
Short B. Cells set sail after lifting anchor from Myo1E. J Biophys Biochem Cytol 2016. [DOI: 10.1083/jcb.2144if] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Study reveals that ERK signaling promotes cell migration by regulating motor protein’s localization.
Collapse
|
19
|
Tanimura S, Hashizume J, Arichika N, Watanabe K, Ohyama K, Takeda K, Kohno M. ERK signaling promotes cell motility by inducing the localization of myosin 1E to lamellipodial tips. J Cell Biol 2016; 214:475-89. [PMID: 27502487 PMCID: PMC4987290 DOI: 10.1083/jcb.201503123] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/14/2016] [Indexed: 12/31/2022] Open
Abstract
Tanimura et al. demonstrate that SH3P2 binds to and functions as a cytosolic anchor for myosin 1E (Myo1E). ERK signaling–dependent phosphorylation of SH3P2 induces the dissociation of bound Myo1E and its consequent localization to the tips of lamellipodia, where it promotes cell motility. Signaling by extracellular signal–regulated kinase (ERK) plays an essential role in the induction of cell motility, but the precise mechanism underlying such regulation has remained elusive. We recently identified SH3P2 as a negative regulator of cell motility whose function is inhibited by p90 ribosomal S6 kinase (RSK)–mediated phosphorylation downstream of ERK. We here show that myosin 1E (Myo1E) is a binding partner of SH3P2 and that the interaction of the two proteins in the cytosol prevents the localization of Myo1E to the plasma membrane. Serum-induced phosphorylation of SH3P2 at Ser202 by RSK results in dissociation of Myo1E from SH3P2 in the cytosol and the subsequent localization of Myo1E to the tips of lamellipodia mediated by binding of its TH2 domain to F-actin. This translocation of Myo1E is essential for lamellipodium extension and consequent cell migration. The ERK signaling pathway thus promotes cell motility through regulation of the subcellular localization of Myo1E.
Collapse
Affiliation(s)
- Susumu Tanimura
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan Nagasaki University Research Centre for Genomic Instability and Carcinogenesis, Nagasaki 852-8523, Japan
| | - Junya Hashizume
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Naoya Arichika
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Kazushi Watanabe
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Kaname Ohyama
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan Nagasaki University Research Centre for Genomic Instability and Carcinogenesis, Nagasaki 852-8523, Japan
| | - Kohsuke Takeda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Michiaki Kohno
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| |
Collapse
|
20
|
The SHIP2 interactor Myo1c is required for cell migration in 1321 N1 glioblastoma cells. Biochem Biophys Res Commun 2016; 476:508-514. [DOI: 10.1016/j.bbrc.2016.05.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 05/28/2016] [Indexed: 12/29/2022]
|
21
|
Abstract
Myosin-I molecular motors are proposed to play various cellular roles related to membrane dynamics and trafficking. In this Cell Science at a Glance article and the accompanying poster, we review and illustrate the proposed cellular functions of metazoan myosin-I molecular motors by examining the structural, biochemical, mechanical and cell biological evidence for their proposed molecular roles. We highlight evidence for the roles of myosin-I isoforms in regulating membrane tension and actin architecture, powering plasma membrane and organelle deformation, participating in membrane trafficking, and functioning as a tension-sensitive dock or tether. Collectively, myosin-I motors have been implicated in increasingly complex cellular phenomena, yet how a single isoform accomplishes multiple types of molecular functions is still an active area of investigation. To fully understand the underlying physiology, it is now essential to piece together different approaches of biological investigation. This article will appeal to investigators who study immunology, metabolic diseases, endosomal trafficking, cell motility, cancer and kidney disease, and to those who are interested in how cellular membranes are coupled to the underlying actin cytoskeleton in a variety of different applications.
Collapse
Affiliation(s)
- Betsy B McIntosh
- Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | - E Michael Ostap
- Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| |
Collapse
|
22
|
Bi J, Carroll RT, James ML, Ouderkirk JL, Krendel M, Sirotkin V. Effects of FSGS-associated mutations on the stability and function of myosin-1 in fission yeast. Dis Model Mech 2015; 8:891-902. [PMID: 26092123 PMCID: PMC4527290 DOI: 10.1242/dmm.020214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/09/2015] [Indexed: 12/26/2022] Open
Abstract
Point mutations in the human MYO1E gene, encoding class I myosin Myo1e, are associated with focal segmental glomerulosclerosis (FSGS), a primary kidney disorder that leads to end-stage kidney disease. In this study, we used a simple model organism, fission yeast Schizosaccharomyces pombe, to test the effects of FSGS-associated mutations on myosin activity. Fission yeast has only one class I myosin, Myo1, which is involved in actin patch assembly at the sites of endocytosis. The amino acid residues mutated in individuals with FSGS are conserved between human Myo1e and yeast Myo1, which allowed us to introduce equivalent mutations into yeast myosin and use the resulting mutant strains for functional analysis. Yeast strains expressing mutant Myo1 exhibited defects in growth and endocytosis similar to those observed in the myo1 deletion strain. These mutations also disrupted Myo1 localization to endocytic actin patches and resulted in mis-localization of Myo1 to eisosomes, linear membrane microdomains found in yeast cells. Although both mutants examined in this study exhibited loss of function, one of these mutants was also characterized by the decreased protein stability. Thus, using the yeast model system, we were able to determine that the kidney-disease-associated mutations impair myosin functional activity and have differential effects on protein stability. Summary: In the fission yeast S. pombe, kidney disease-associated mutations in Myo1, a homolog of human Myo1e, disrupt myosin localization and function.
Collapse
Affiliation(s)
- Jing Bi
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - Robert T Carroll
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - Michael L James
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - Jessica L Ouderkirk
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - Mira Krendel
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - Vladimir Sirotkin
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| |
Collapse
|
23
|
Maxeiner S, Shi N, Schalla C, Aydin G, Hoss M, Vogel S, Zenke M, Sechi AS. Crucial role for the LSP1-myosin1e bimolecular complex in the regulation of Fcγ receptor-driven phagocytosis. Mol Biol Cell 2015; 26:1652-64. [PMID: 25717183 PMCID: PMC4436777 DOI: 10.1091/mbc.e14-05-1005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 02/19/2015] [Indexed: 01/24/2023] Open
Abstract
The actin cytoskeleton is fundamental for the innate immune process of phagocytosis. This study shows that LSP1 plays a pivotal role in the regulation of actin cytoskeleton remodeling during Fcγ receptor–mediated phagocytosis and that its interactions with myosin1e and actin are crucial for the efficiency of this actin-driven process. Actin cytoskeleton remodeling is fundamental for Fcγ receptor–driven phagocytosis. In this study, we find that the leukocyte-specific protein 1 (LSP1) localizes to nascent phagocytic cups during Fcγ receptor–mediated phagocytosis, where it displays the same spatial and temporal distribution as the actin cytoskeleton. Down-regulation of LSP1 severely reduces the phagocytic activity of macrophages, clearly demonstrating a crucial role for this protein in Fcγ receptor–mediated phagocytosis. We also find that LSP1 binds to the class I molecular motor myosin1e. LSP1 interacts with the SH3 domain of myosin1e, and the localization and dynamics of both proteins in nascent phagocytic cups mirror those of actin. Furthermore, inhibition of LSP1–myosin1e and LSP1–actin interactions profoundly impairs pseudopodial formation around opsonized targets and their subsequent internalization. Thus the LSP1–myosin1e bimolecular complex plays a pivotal role in the regulation of actin cytoskeleton remodeling during Fcγ receptor–driven phagocytosis.
Collapse
Affiliation(s)
- Sebastian Maxeiner
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| | - Nian Shi
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| | - Carmen Schalla
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| | - Guelcan Aydin
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| | - Mareike Hoss
- Electron Microscopy Facility, Uniklinik RWTH Aachen, Applied Ecology, D-52074 Aachen, Germany
| | - Simon Vogel
- Fraunhofer Institute for Molecular Biology and Applied Ecology, D-52074 Aachen, Germany
| | - Martin Zenke
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| | - Antonio S Sechi
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| |
Collapse
|
24
|
McIntosh BB, Holzbaur ELF, Ostap EM. Control of the initiation and termination of kinesin-1-driven transport by myosin-Ic and nonmuscle tropomyosin. Curr Biol 2015; 25:523-9. [PMID: 25660542 DOI: 10.1016/j.cub.2014.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/14/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
Intracellular transport is largely driven by processive microtubule- and actin-based molecular motors. Nonprocessive motors have also been localized to trafficking cargos, but their roles are not well understood. Myosin-Ic (Myo1c), a nonprocessive actin motor, functions in a variety of exocytic events, although the underlying mechanisms are not yet clear. To investigate the interplay between myosin-I and the canonical long-distance transport motor kinesin-1, we attached both motor types to lipid membrane-coated bead cargo, using an attachment strategy that allows motors to actively reorganize within the membrane in response to the local cytoskeletal environment. We compared the motility of kinesin-1-driven cargos in the absence and presence of Myo1c at engineered actin/microtubule intersections. We found that Myo1c significantly increases the frequency of kinesin-1-driven microtubule-based runs that begin at actin/microtubule intersections. Myo1c also regulates the termination of processive runs. Beads with both motors bound have a significantly higher probability of pausing at actin/microtubule intersections, remaining tethered for an average of 20 s, with some pauses lasting longer than 200 s. The actin-binding protein nonmuscle tropomyosin (Tm) provides spatially specific regulation of interactions between myosin motors and actin filaments in vivo; in the crossed-filament in vitro assay, we found that Tm2-actin abolishes Myo1c-specific effects on both run initiation and run termination. Together, these observations suggest Myo1c is important for the selective initiation and termination of kinesin-1-driven runs along microtubules at specific actin filament populations within the cell.
Collapse
Affiliation(s)
- Betsy B McIntosh
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | - Erika L F Holzbaur
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| | - E Michael Ostap
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|
25
|
Wenzel J, Ouderkirk JL, Krendel M, Lang R. Class I myosin Myo1e regulates TLR4-triggered macrophage spreading, chemokine release, and antigen presentation via MHC class II. Eur J Immunol 2014; 45:225-37. [PMID: 25263281 DOI: 10.1002/eji.201444698] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/26/2014] [Accepted: 09/24/2014] [Indexed: 12/25/2022]
Abstract
TLR-mediated recognition of microbial danger induces substantial changes in macrophage migration, adherence, and phagocytosis. Recently, we described the LPS-regulated phosphorylation of many cytoskeleton-associated proteins by phosphoproteomics. The functional role of these cytoskeletal and motor proteins in innate immune cell responses is largely unexplored. Here, we first identified both long-tailed class I myosins Myo1e and Myo1f as important contributors to LPS-triggered macrophage spreading. Mouse bone marrow-derived macrophages and DCs deficient in Myo1e selectively secreted increased amounts of the chemokine CCL2. In addition, the cell surface expression of MHC class II (MHC-II) on both cell types was reduced in the absence of Myo1e. However, transcriptional changes in CCL2 and MHC-II were not observed in the absence of Myo1e, indicating that Myo1e regulates specific intracellular transport processes. The capacity of macrophages and DCs lacking Myo1e to stimulate antigen-specific CD4(+) T-cell proliferation was impaired, consistent with the reduced MHC-II surface protein levels. Surprisingly, in Myo1e-deficient DCs, the proteolytic cleavage of endocytosed antigen was also increased. Together, our results provide evidence for a non-redundant function of the motor protein Myo1e in the regulation of TLR4-controlled, cytoskeleton-associated functional properties of macrophages and DCs, and in induction of a full MHC-II-restricted adaptive immune response.
Collapse
Affiliation(s)
- Jens Wenzel
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | |
Collapse
|
26
|
Motor and tail homology 1 (Th1) domains antagonistically control myosin-1 dynamics. Biophys J 2014; 106:649-58. [PMID: 24507605 DOI: 10.1016/j.bpj.2013.12.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/23/2013] [Accepted: 12/26/2013] [Indexed: 11/22/2022] Open
Abstract
Class 1 myosins are monomeric motor proteins that fulfill diverse functions at the membrane/cytoskeletal interface. All myosins-1 contain a motor domain, which binds actin, hydrolyzes ATP, and generates forces, and a TH1 domain, which interacts directly with membrane lipids. In most cases, TH1 is needed for proper subcellular localization and presumably function, although little is known about how this domain regulates the behavior of class 1 myosins in live cells. To address this, we used single molecule total internal reflection fluorescence microscopy to examine the dynamics of the well-characterized myosin-1a isoform during interactions with the cortex of living cells. Our studies revealed that full-length myosin-1a exhibits restricted mobility relative to TH1 alone. Motor domain mutations that disrupt actin binding increased the mobility of full-length myosin-1a, whereas mutations to the TH1 domain that are known to reduce steady-state targeting to the plasma membrane unexpectedly reduced mobility. Deletion of the calmodulin-binding lever arm in Myo1a mimicked the impact of actin-binding mutations. Finally, myosin-1b, which demonstrates exquisite sensitivity to mechanical load, exhibited dynamic behavior nearly identical to myosin-1a. These studies are the first, to our knowledge, to explore class 1 myosin dynamics at the single-molecule level in living cells; our results suggest a model where the motor domain restricts dynamics via a mechanism that requires the lever arm, whereas the TH1 domain allows persistent diffusion in close proximity to the plasma membrane.
Collapse
|
27
|
Martin R, Risacher C, Barthel A, Jäger A, Schmidt AW, Richter S, Böhl M, Preller M, Chinthalapudi K, Manstein DJ, Gutzeit HO, Knölker HJ. Silver(I)-Catalyzed Route to Pyrroles: Synthesis of Halogenated Pseudilins as Allosteric Inhibitors for Myosin ATPase and X-ray Crystal Structures of the Protein-Inhibitor Complexes. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402177] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Regulation of focal adhesion formation by a vinculin-Arp2/3 hybrid complex. Nat Commun 2014; 5:3758. [DOI: 10.1038/ncomms4758] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/28/2014] [Indexed: 12/26/2022] Open
|