1
|
Abstract
Larvae of sea urchins have a population of conspicuous pigmented cells embedded in the outer surface epithelium. Pigment cells are a distinct mesodermal lineage that gives rise to a key component of the larval immune system. During cleavage, signaling from adjacent cells influences a small crescent of cells to initiate a network of genetic interactions that prepare the cells for morphogenesis and specializes them as immunocytes. The cells become active during gastrulation, detach from the epithelium, migrate through the blastocoel, and insert into the ectoderm where they complete their differentiation. Studies of pigment cell development have helped establish how cellular signaling controls networks of genetic interactions that bring about morphogenesis and differentiation. This review summarizes studies of pigment cell development and concludes that pigment cells are an excellent experimental model. Pigment cells provide several opportunities to further test and refine our understanding of the molecular basis of cellular development.
Collapse
Affiliation(s)
- Robert D Burke
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
2
|
Katow H, Abe K, Katow T, Yoshida H, Kiyomoto M. Involvement of Netrin/Unc-5 Interaction in Ciliary Beating and in Pattern Formation of the Ciliary Band-Associated Strand (CBAS) in the Sea Urchin, Hemicentrotus pulcherrimus. Int J Mol Sci 2020; 21:E6587. [PMID: 32916859 PMCID: PMC7555569 DOI: 10.3390/ijms21186587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
The GABAergic neural circuit is involved in the motile activities of both larval and juvenile sea urchins. Therefore, its function is inherited beyond metamorphosis, despite large scale remodeling of larval organs during that period. However, the initial neural circuit formation mechanism is not well understood, including how glutamate decarboxylase-expressing blastocoelar cells (GADCs) construct the neural circuit along the circumoral ciliary band (a ciliary band-associated strand, CBAS) on the larval body surface. In this study, using whole-mount immunohistochemistry and 3D reconstructed imaging, the ontogenic process of CBAS patterning was studied by focusing on Netrin and the interaction with its receptor, Unc-5. During the early 2-arm pluteus stage, a small number of GADCs egress onto the apical surface of the larval ectoderm. Then, they line up on the circumoral side of the ciliary band, and by being inserted by a further number of GADCs, form longer multicellular strands along the Netrin stripe. Application of a synthetic peptide, CRFNMELYKLSGRKSGGVC of Hp-Netrin, that binds to the immunoglobulin domain of Unc-5 during the prism stage, causes stunted CBAS formation due to inhibition of GADC egression. This also results in reduced ciliary beating. Thus, the Netrin/Unc-5 interaction is involved in the construction and function of the CBAS.
Collapse
Affiliation(s)
- Hideki Katow
- Research Center for Marine Biology, Tohoku University, Asamushi, Aomori 039-3501, Japan; (K.A.); (T.K.)
- Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; (H.Y.); (M.K.)
| | - Kouki Abe
- Research Center for Marine Biology, Tohoku University, Asamushi, Aomori 039-3501, Japan; (K.A.); (T.K.)
| | - Tomoko Katow
- Research Center for Marine Biology, Tohoku University, Asamushi, Aomori 039-3501, Japan; (K.A.); (T.K.)
| | - Hiromi Yoshida
- Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; (H.Y.); (M.K.)
| | - Masato Kiyomoto
- Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; (H.Y.); (M.K.)
- Marine and Coastal Research Center, Ochanomizu University, Tateyama, Chiba 294-0301, Japan
| |
Collapse
|
3
|
Katow H, Yoshida H, Kiyomoto M. Initial report of γ-aminobutyric acidergic locomotion regulatory system and its 3-mercaptopropionic acid-sensitivity in metamorphic juvenile of sea urchin, Hemicentrotus pulcherrimus. Sci Rep 2020; 10:778. [PMID: 31964929 PMCID: PMC6972954 DOI: 10.1038/s41598-020-57567-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/02/2020] [Indexed: 12/16/2022] Open
Abstract
The γ-aminobutyric acid (GABA) signal transmission system (GSTS) contributes to larval swimming through the regulation of ciliary beating. However, whether this system also contributes to the primary podia (PP)-generated motility of juveniles remained unclear. The present study aimed to elucidate the involvement of the GSTS in the motility of metamorphic juveniles (juveniles) (1) by immunohistochemically elucidating the location of molecular constituents of the PP, and (2) by inhibiting the activity of GΑΒΑ decarboxylase (GAD) with 3-mercaptopropionic acid (3-MPA). During metamorphosis, the echinus rudiment protrudes its PP out of the body surface in 8-arm plutei. The PP expresses immunopositive signal (-IS) of GAD, GABA, GABAA receptor and tropomyosin, and is constituted with the GABA-IS negative distal tip and the GABA/GAD-IS gaiter region. The latter radiates distal projections to the disc that contains a GAD-IS cellular network. The juvenile body cavity houses a GABA/βIII-tubulin-IS Penta-radial ring (PrR) that extends branches into each PP and several bridges to the GAD/GABA-IS Penta-radial plate (PrP) on the oral side but does not reach to the gaiter region. 3-MPA reversibly inhibits the juvenile motility and GABA-IS expression in the PrR/PrP complex. This indicates that the complex is the major contributor to the GABAergic motility in juveniles.
Collapse
Affiliation(s)
- Hideki Katow
- Research Center for Marine Biology, Tohoku University, Asamushi, Aomori, 039-3501, Japan. .,Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan.
| | - Hiromi Yoshida
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Masato Kiyomoto
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan.,Marine and Coastal Research Center, Ochanomizu University, Tateyama, Chiba, 294-0301, Japan
| |
Collapse
|
4
|
The ontogeny of synaptophysin expression patterns on the GABAergic ciliary band-associated strand during larval development of the sea urchin, Hemicentrotus pulcherrimus A. Agassiz, 1864. ZOOMORPHOLOGY 2018. [DOI: 10.1007/s00435-018-0424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Minokawa T. Comparative studies on the skeletogenic mesenchyme of echinoids. Dev Biol 2017; 427:212-218. [PMID: 27856261 DOI: 10.1016/j.ydbio.2016.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/25/2016] [Accepted: 11/14/2016] [Indexed: 11/16/2022]
Abstract
Skeletogenic mesenchyme cells in echinoids are suitable for studying developmental mechanisms, and have been used extensively. Most of these studies have been performed on species in the order Camarodonta, which are modern echinoids (subclass Euechinoidea) and are considered "model" echinoid species. In contrast, species belonging to other orders are studied less frequently, especially investigations of their molecular developmental biology such as gene regulatory networks. Recent studies on mesenchyme development in non-camarodont species suggest that these species are potential sources of comparative information to elucidate the mechanisms underlying skeletogenic mesenchyme development. In this review, the importance of using comparative data to understand development and evolution is discussed.
Collapse
Affiliation(s)
- Takuya Minokawa
- Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori, Aomori 039-3501, Japan.
| |
Collapse
|
6
|
Katow H, Katow T, Yoshida H, Kiyomoto M, Uemura I. Immunohistochemical and ultrastructural properties of the larval ciliary band-associated strand in the sea urchin Hemicentrotus pulcherrimus. Front Zool 2016; 13:27. [PMID: 27313654 PMCID: PMC4910247 DOI: 10.1186/s12983-016-0159-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/02/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The swimming activity of sea urchin larvae is dependent on the ciliary band (CB) on the larval surface and is regulated by several neurotransmitters, including serotonin (5HT), dopamine, and γ-aminobutyric acid (GABA). However, the CB signal transmission mechanism remains unknown. The present study investigated the structural relationship between the CB and external signal receptors by immunohistochemical and transmission electron microscopic analyses of sea urchin, Hemicentrotus pulcherrimus, larvae. RESULTS Glutamate decarboxylase (GAD; GABA synthetase) was detected in a strand of multiple cells along the circumoral CB in 6-arm plutei. The GAD-expressing strand was closely associated with the CB on the oral ectoderm side. The ciliary band-associated strand (CBAS) also expressed the 5HT receptor (5HThpr) and encephalopsin (ECPN) throughout the cytoplasm and comprised 1- to 2-μm diameter axon-like long stretched regions and sporadic 6- to 7-μm diameter bulbous nucleated regions (perikarya) that protruded into the oral ectoderm side. Besides the laterally polarized morphology of the CBAS cells, Epith-2, which is the epithelial lateral cell surface-specific protein of the sea urchin embryo and larva, was expressed exclusively by perikarya but not by the axon-like regions. The CBAS exposed its narrow apical surface on the larval epithelium between the CB and squamous cells and formed adherens junctions (AJs) on the apical side between them. Despite the presence of the CBAS axon-like regions, tubulins, such as α-, β-, and acetylated α-tubulins, were not detected. However, the neuroendocrine cell marker protein synaptophysin was detected in the axon-like regions and in bouton-like protrusions that contained numerous small ultrastructural vesicles. CONCLUSIONS The unique morphology of the CBAS in the sea urchin larva epithelium had not been reported. The CBAS expresses a remarkable number of receptors to environmental stimuli and proteins that are probably involved in signal transmission to the CB. The properties of the CBAS explain previous reports that larval swimming is triggered by environmental stimuli and suggest crosstalk among receptors and potential plural sensory functions of the CBAS.
Collapse
Affiliation(s)
- Hideki Katow
- />Research Center for Marine Biology, Tohoku University, Asamushi, Aomori, Aomori 039-3501 Japan
- />Center of Research Instruments, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575 Japan
| | - Tomoko Katow
- />Research Center for Marine Biology, Tohoku University, Asamushi, Aomori, Aomori 039-3501 Japan
| | - Hiromi Yoshida
- />Center of Research Instruments, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575 Japan
| | - Masato Kiyomoto
- />Center of Research Instruments, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575 Japan
- />Marine and Coastal Research Center, Ochanomizu University, Tateyama, Chiba 294-0301 Japan
| | - Isao Uemura
- />Division of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 Japan
| |
Collapse
|
7
|
Katow H. Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos. Tissue Barriers 2015; 3:e1059004. [PMID: 26716069 PMCID: PMC4681286 DOI: 10.1080/21688370.2015.1059004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/25/2015] [Accepted: 05/29/2015] [Indexed: 12/30/2022] Open
Abstract
Sea urchin mesenchyme is composed of the large micromere-derived spiculogenetic primary mesenchyme cells (PMC), veg2-tier macromere-derived non-spiculogenetic mesenchyme cells, the small micromere-derived germ cells, and the macro- and mesomere-derived neuronal mesenchyme cells. They are formed through the epithelial-to-mesenchymal transition (EMT) and possess multipotency, except PMCs that solely differentiate larval spicules. The process of EMT is associated with modification of epithelial cell surface property that includes loss of affinity to the apical and basal extracellular matrices, inter-epithelial cell adherens junctions and epithelial cell surface-specific proteins. These cell surface structures and molecules are endocytosed during EMT and utilized as initiators of cytoplasmic signaling pathways that often initiate protein phosphorylation to activate the gene regulatory networks. Acquisition of cell motility after EMT in these mesenchyme cells is associated with the expression of proteins such as Lefty, Snail and Seawi. Structural simplicity and genomic database of this model will further promote detailed EMT research.
Collapse
Affiliation(s)
- Hideki Katow
- Research Center for Marine Biology; Tohoku University; Asamushi, Aomori, Japan
| |
Collapse
|
8
|
Hojo M, Omi A, Hamanaka G, Shindo K, Shimada A, Kondo M, Narita T, Kiyomoto M, Katsuyama Y, Ohnishi Y, Irie N, Takeda H. Unexpected link between polyketide synthase and calcium carbonate biomineralization. ZOOLOGICAL LETTERS 2015; 1:3. [PMID: 26605048 PMCID: PMC4604110 DOI: 10.1186/s40851-014-0001-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/15/2014] [Indexed: 06/05/2023]
Abstract
INTRODUCTION Calcium carbonate biominerals participate in diverse physiological functions. Despite intensive studies, little is known about how mineralization is initiated in organisms. RESULTS We analyzed the medaka spontaneous mutant, ha, defective in otolith (calcareous ear stone) formation. ha lacks a trigger for otolith mineralization, and the causative gene was found to encode polyketide synthase (pks), a multifunctional enzyme mainly found in bacteria, fungi, and plant. Subsequent experiments demonstrate that the products of medaka PKS, most likely polyketides or their derivatives, act as nucleation facilitators in otolith mineralization. The generality of this novel PKS function is supported by the essential role of echinoderm PKS in calcareous skeleton formation together with the presence of PKSs in a much wider range of animals from coral to vertebrates. CONCLUSION The present study first links PKS to biomineralization and provides a genetic cue for biogeochemistry of carbon and calcium cycles.
Collapse
Affiliation(s)
- Motoki Hojo
- />Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
- />Present address: Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24–1, Hyakunincho, Shinju-ku, Tokyo 169-0073 Japan
| | - Ai Omi
- />Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
- />Present address: Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022 Japan
| | - Gen Hamanaka
- />Tateyama Marine Laboratory, Marine and Coastal Research Center, Ochanomizu University, Kou-yatsu 11, Tateyama, Chiba 294-0301 Japan
| | - Kazutoshi Shindo
- />Department of Food and Nutrition, Japan Women’s University, 2-8-1, Mejirodai, Bunkyo-ku, Tokyo 112-8681 Japan
| | - Atsuko Shimada
- />Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Mariko Kondo
- />Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa 238-0225 Japan
| | - Takanori Narita
- />Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
- />Present address: Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, 1866 Kameino, Fujisawa, Kanagawa 252-0880 Japan
| | - Masato Kiyomoto
- />Tateyama Marine Laboratory, Marine and Coastal Research Center, Ochanomizu University, Kou-yatsu 11, Tateyama, Chiba 294-0301 Japan
| | - Yohei Katsuyama
- />Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657 Japan
| | - Yasuo Ohnishi
- />Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657 Japan
| | - Naoki Irie
- />Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Hiroyuki Takeda
- />Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| |
Collapse
|