1
|
Setton EVW, Ballesteros JA, Blaszczyk PO, Klementz BC, Sharma PP. A taxon-restricted duplicate of Iroquois3 is required for patterning the spider waist. PLoS Biol 2024; 22:e3002771. [PMID: 39208370 PMCID: PMC11361693 DOI: 10.1371/journal.pbio.3002771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The chelicerate body plan is distinguished from other arthropod groups by its division of segments into 2 tagmata: the anterior prosoma ("cephalothorax") and the posterior opisthosoma ("abdomen"). Little is understood about the genetic mechanisms that establish the prosomal-opisthosomal (PO) boundary. To discover these mechanisms, we created high-quality genomic resources for the large-bodied spider Aphonopelma hentzi. We sequenced specific territories along the antero-posterior axis of developing embryos and applied differential gene expression analyses to identify putative regulators of regional identity. After bioinformatic screening for candidate genes that were consistently highly expressed in only 1 tagma (either the prosoma or the opisthosoma), we validated the function of highly ranked candidates in the tractable spider model Parasteatoda tepidariorum. Here, we show that an arthropod homolog of the Iroquois complex of homeobox genes is required for proper formation of the boundary between arachnid tagmata. The function of this homolog had not been previously characterized, because it was lost in the common ancestor of Pancrustacea, precluding its investigation in well-studied insect model organisms. Knockdown of the spider copy of this gene, which we designate as waist-less, in P. tepidariorum resulted in embryos with defects in the PO boundary, incurring discontinuous spider germ bands. We show that waist-less is required for proper specification of the segments that span the prosoma-opisthosoma boundary, which in adult spiders corresponds to the narrowed pedicel. Our results demonstrate the requirement of an ancient, taxon-restricted paralog for the establishment of the tagmatic boundary that defines Chelicerata.
Collapse
Affiliation(s)
- Emily V. W. Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jesús A. Ballesteros
- Department of Biology, Kean University, Union, New Jersey, United States of America
| | - Pola O. Blaszczyk
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Benjamin C. Klementz
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Prashant P. Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Leite DJ, Schönauer A, Blakeley G, Harper A, Garcia-Castro H, Baudouin-Gonzalez L, Wang R, Sarkis N, Nikola AG, Koka VSP, Kenny NJ, Turetzek N, Pechmann M, Solana J, McGregor AP. An atlas of spider development at single-cell resolution provides new insights into arthropod embryogenesis. EvoDevo 2024; 15:5. [PMID: 38730509 PMCID: PMC11083766 DOI: 10.1186/s13227-024-00224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
Spiders are a diverse order of chelicerates that diverged from other arthropods over 500 million years ago. Research on spider embryogenesis, particularly studies using the common house spider Parasteatoda tepidariorum, has made important contributions to understanding the evolution of animal development, including axis formation, segmentation, and patterning. However, we lack knowledge about the cells that build spider embryos, their gene expression profiles and fate. Single-cell transcriptomic analyses have been revolutionary in describing these complex landscapes of cellular genetics in a range of animals. Therefore, we carried out single-cell RNA sequencing of P. tepidariorum embryos at stages 7, 8 and 9, which encompass the establishment and patterning of the body plan, and initial differentiation of many tissues and organs. We identified 20 cell clusters, from 18.5 k cells, which were marked by many developmental toolkit genes, as well as a plethora of genes not previously investigated. We found differences in the cell cycle transcriptional signatures, suggestive of different proliferation dynamics, which related to distinctions between endodermal and some mesodermal clusters, compared with ectodermal clusters. We identified many Hox genes as markers of cell clusters, and Hox gene ohnologs were often present in different clusters. This provided additional evidence of sub- and/or neo-functionalisation of these important developmental genes after the whole genome duplication in an arachnopulmonate ancestor (spiders, scorpions, and related orders). We also examined the spatial expression of marker genes for each cluster to generate a comprehensive cell atlas of these embryonic stages. This revealed new insights into the cellular basis and genetic regulation of head patterning, hematopoiesis, limb development, gut development, and posterior segmentation. This atlas will serve as a platform for future analysis of spider cell specification and fate, and studying the evolution of these processes among animals at cellular resolution.
Collapse
Affiliation(s)
- Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.
| | - Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Grace Blakeley
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Amber Harper
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Helena Garcia-Castro
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | | | - Ruixun Wang
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47B, 50674, Cologne, Germany
| | - Naïra Sarkis
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47B, 50674, Cologne, Germany
| | - Alexander Günther Nikola
- Evolutionary Ecology, Faculty of Biology, Biocenter, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Venkata Sai Poojitha Koka
- Evolutionary Ecology, Faculty of Biology, Biocenter, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Nathan J Kenny
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
- Department of Biochemistry Te Tari Matū Koiora, University of Otago, Dunedin, New Zealand
| | - Natascha Turetzek
- Evolutionary Ecology, Faculty of Biology, Biocenter, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Matthias Pechmann
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47B, 50674, Cologne, Germany
| | - Jordi Solana
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.
| |
Collapse
|
3
|
Heikes KL, Goldstein B. Expression patterns of FGF and BMP pathway genes in the tardigrade Hypsibius exemplaris. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577774. [PMID: 38352320 PMCID: PMC10862696 DOI: 10.1101/2024.01.29.577774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
A small number of conserved signaling pathways regulate development of most animals, yet we do not know where these pathways are deployed in most embryos. This includes tardigrades, a phylum with a unique body shape. We examined expression patterns of components of the BMP and FGF signaling pathways during embryonic segmentation and mesoderm development of the tardigrade Hypsibius exemplaris. Among the patterns examined, we found that an FGF ligand gene is expressed in ectodermal segment posteriors and an FGF receptor gene is expressed in underlying endomesodermal pouches, suggesting possible FGF signaling between these developing germ layers. We found that a BMP ligand gene is expressed in lateral ectoderm and dorsolateral bands along segment posteriors, while the BMP antagonist Sog gene is expressed in lateral ectoderm and also in a subset of endomesodermal cells, suggesting a possible role of BMP signaling in dorsal-ventral patterning of lateral ectoderm. In combination with known roles of these pathways during development of common model systems, we developed hypotheses for how the BMP and FGF pathways might regulate embryo segmentation and mesoderm formation of the tardigrade H. exemplaris. These results identify the expression patterns of genes from two conserved signaling pathways for the first time in the tardigrade phylum.
Collapse
Affiliation(s)
- Kira L. Heikes
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Szabó-Meleg E. Intercellular Highways in Transport Processes. Results Probl Cell Differ 2024; 73:173-201. [PMID: 39242380 DOI: 10.1007/978-3-031-62036-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Communication among cells is vital in multicellular organisms. Various structures and mechanisms have evolved over time to achieve the intricate flow of material and information during this process. One such way of communication is through tunnelling membrane nanotubes (TNTs), which were initially described in 2004. These TNTs are membrane-bounded actin-rich cellular extensions, facilitating direct communication between distant cells. They exhibit remarkable diversity in terms of structure, morphology, and function, in which cytoskeletal proteins play an essential role. Biologically, TNTs play a crucial role in transporting membrane components, cell organelles, and nucleic acids, and they also present opportunities for the efficient transmission of bacteria and viruses, furthermore, may contribute to the dissemination of misfolded proteins in certain neurodegenerative diseases. Convincing results of studies conducted both in vitro and in vivo indicate that TNTs play roles in various biomedical processes, including cell differentiation, tissue regeneration, neurodegenerative diseases, immune response and function, as well as tumorigenesis.
Collapse
Affiliation(s)
- Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
5
|
Sharma PP. The Impact of Whole Genome Duplication on the Evolution of the Arachnids. Integr Comp Biol 2023; 63:825-842. [PMID: 37263789 DOI: 10.1093/icb/icad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
The proliferation of genomic resources for Chelicerata in the past 10 years has revealed that the evolution of chelicerate genomes is more dynamic than previously thought, with multiple waves of ancient whole genome duplications affecting separate lineages. Such duplication events are fascinating from the perspective of evolutionary history because the burst of new gene copies associated with genome duplications facilitates the acquisition of new gene functions (neofunctionalization), which may in turn lead to morphological novelties and spur net diversification. While neofunctionalization has been invoked in several contexts with respect to the success and diversity of spiders, the overall impact of whole genome duplications on chelicerate evolution and development remains imperfectly understood. The purpose of this review is to examine critically the role of whole genome duplication on the diversification of the extant arachnid orders, as well as assess functional datasets for evidence of subfunctionalization or neofunctionalization in chelicerates. This examination focuses on functional data from two focal model taxa: the spider Parasteatoda tepidariorum, which exhibits evidence for an ancient duplication, and the harvestman Phalangium opilio, which exhibits an unduplicated genome. I show that there is no evidence that taxa with genome duplications are more successful than taxa with unduplicated genomes. I contend that evidence for sub- or neofunctionalization of duplicated developmental patterning genes in spiders is indirect or fragmentary at present, despite the appeal of this postulate for explaining the success of groups like spiders. Available expression data suggest that the condition of duplicated Hox modules may have played a role in promoting body plan disparity in the posterior tagma of some orders, such as spiders and scorpions, but functional data substantiating this postulate are critically missing. Spatiotemporal dynamics of duplicated transcription factors in spiders may represent cases of developmental system drift, rather than neofunctionalization. Developmental system drift may represent an important, but overlooked, null hypothesis for studies of paralogs in chelicerate developmental biology. To distinguish between subfunctionalization, neofunctionalization, and developmental system drift, concomitant establishment of comparative functional datasets from taxa exhibiting the genome duplication, as well as those that lack the paralogy, is sorely needed.
Collapse
Affiliation(s)
- Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
6
|
Napiórkowska T, Templin J, Napiórkowski P, Townley MA. Appendage abnormalities in spiders induced by an alternating temperature protocol in the context of recent advances in molecular spider embryology. PeerJ 2023; 11:e16011. [PMID: 37701827 PMCID: PMC10493090 DOI: 10.7717/peerj.16011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
In the literature there are numerous reports of developmental deformities in arthropods collected in their natural habitat. Since such teratogenically affected individuals are found purely by chance, the causes of their defects are unknown. Numerous potential physical, mechanical, chemical, and biological teratogens have been considered and tested in the laboratory. Thermal shocks, frequently used in teratological research on the spider Eratigena atrica, have led to deformities on both the prosoma and the opisthosoma. In the 2020/2021 breeding season, by applying alternating temperatures (14 °C and 32 °C, changed every 12 h) for the first 10 days of embryonic development, we obtained 212 postembryos (out of 3,007) with the following anomalies: oligomely, heterosymely, bicephaly, schistomely, symely, polymely, complex anomalies, and others. From these we selected six spiders with defects on the prosoma and two with short appendages on the pedicel for further consideration. The latter cases seem particularly interesting because appendages do not normally develop on this body part, viewed as the first segment of the opisthosoma, and appear to represent examples of atavism. In view of the ongoing development of molecular techniques and recent research on developmental mechanisms in spiders, we believe the observed phenotypes may result, at least in part, from the erroneous suppression or expression of segmentation or appendage patterning genes. We consider "knockdown" experiments described in the literature as a means for generating hypotheses about the sources of temperature-induced body abnormalities in E. atrica.
Collapse
Affiliation(s)
- Teresa Napiórkowska
- Department of Invertebrate Zoology and Parasitology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Julita Templin
- Faculty of Biological and Veterinary Sciences, Department of Invertebrate Zoology and Parasitology, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Paweł Napiórkowski
- Department of Hydrobiology, Faculty of Biological Sciences, Kazimierz Wielki University in Bydgoszcz, Bydgoszcz, Poland
| | - Mark A. Townley
- University Instrumentation Center, University of New Hampshire, Durham, New Hampshire, United States
| |
Collapse
|
7
|
Wang R, Leite DJ, Karadas L, Schiffer PH, Pechmann M. FGF signalling is involved in cumulus migration in the common house spider Parasteatoda tepidariorum. Dev Biol 2023; 494:35-45. [PMID: 36470448 DOI: 10.1016/j.ydbio.2022.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Cell migration is a fundamental component during the development of most multicellular organisms. In the early spider embryo, the collective migration of signalling cells, known as the cumulus, is required to set the dorsoventral body axis. Here, we show that FGF signalling plays an important role during cumulus migration in the spider Parasteatoda tepidariorum. Spider embryos with reduced FGF signalling show reduced or absent cumulus migration and display dorsoventral patterning defects. Our study reveals that the transcription factor Ets4 regulates the expression of several FGF signalling components in the cumulus. In conjunction with a previous study, we show that the expression of fgf8 in the germ-disc is regulated via the Hedgehog signalling pathway. We also demonstrate that FGF signalling influences the BMP signalling pathway activity in the region around cumulus cells. Finally, we show that FGFR signalling might also influence cumulus migration in basally branching spiders and we propose that fgf8 might act as a chemo-attractant to guide cumulus cells towards the future dorsal pole of the spider embryo.
Collapse
Affiliation(s)
- Ruixun Wang
- Institute for Zoology/Developmental Biology, Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674, Cologne, Germany
| | - Daniel J Leite
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Linda Karadas
- Institute for Zoology/Developmental Biology, Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674, Cologne, Germany
| | - Philipp H Schiffer
- Institute for Zoology/Developmental Biology, Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674, Cologne, Germany
| | - Matthias Pechmann
- Institute for Zoology/Developmental Biology, Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674, Cologne, Germany.
| |
Collapse
|
8
|
Prpic NM, Pechmann M. Extraembryonic tissue in chelicerates: a review and outlook. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210269. [PMID: 36252223 PMCID: PMC9574639 DOI: 10.1098/rstb.2021.0269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/16/2022] [Indexed: 01/03/2023] Open
Abstract
The formation of extraembryonic membranes (EEMs) contributes to the proper development of many animals. In arthropods, the formation and function of EEMs have been studied best in insects. Regarding the development of extraembryonic tissue in chelicerates (spiders and relatives), most information is available for spiders (Araneae). Especially two populations of cells have been considered to represent EEMs in spiders. The first of these potential EEMs develops shortly after egg deposition, opposite to a radially symmetrical germ disc that forms in one hemisphere of the egg and encloses the yolk. The second tissue, which has been described as being extraembryonic is the so-called dorsal field, which is required to cover the dorsal part of the developing spider germ rudiment before proper dorsal closure. In this review, we summarize the current knowledge regarding the formation of potential extraembryonic structures in the Chelicerata. We describe the early embryogenesis of spiders and other chelicerates, with a special focus on the formation of the potential extraembryonic tissues. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Nikola-Michael Prpic
- Justus-Liebig-Universitaet Giessen, Institut für Allgemeine Zoologie und Entwicklungsbiologie, AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Heinrich-Buff-Ring 38, 35392 Giessen, Germany
| | - Matthias Pechmann
- Institute for Zoology, University of Cologne, Biocenter, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
9
|
Iwasaki-Yokozawa S, Nanjo R, Akiyama-Oda Y, Oda H. Lineage-specific, fast-evolving GATA-like gene regulates zygotic gene activation to promote endoderm specification and pattern formation in the Theridiidae spider. BMC Biol 2022; 20:223. [PMID: 36203191 PMCID: PMC9535882 DOI: 10.1186/s12915-022-01421-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background
The process of early development varies across the species-rich phylum Arthropoda. Owing to the limited research strategies for dissecting lineage-specific processes of development in arthropods, little is known about the variations in early arthropod development at molecular resolution. The Theridiidae spider, Parasteatoda tepidariorum, has its genome sequenced and could potentially contribute to dissecting early embryonic processes. Results We present genome-wide identification of candidate genes that exhibit locally restricted expression in germ disc forming stage embryos of P. tepidariorum, based on comparative transcriptomes of isolated cells from different regions of the embryo. A subsequent pilot screen by parental RNA interference identifies three genes required for body axis formation. One of them is a GATA-like gene that has been fast evolving after duplication and divergence from a canonical GATA family gene. This gene is designated fuchi nashi (fuchi) after its knockdown phenotypes, where the cell movement toward the formation of a germ disc was reversed. fuchi expression occurs in cells outside a forming germ disc and persists in the endoderm. Transcriptome and chromatin accessibility analyses of fuchi pRNAi embryos suggest that early fuchi activity regulates chromatin state and zygotic gene activation to promote endoderm specification and pattern formation. We also show that there are many uncharacterized genes regulated by fuchi. Conclusions Our genome-based research using an arthropod phylogenetically distant from Drosophila identifies a lineage-specific, fast-evolving gene with key developmental roles in one of the earliest, genome-wide regulatory events, and allows for molecular exploration of the developmental variations in early arthropod embryos. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01421-0.
Collapse
Affiliation(s)
- Sawa Iwasaki-Yokozawa
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan
| | - Ryota Nanjo
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan.,Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan. .,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan.
| |
Collapse
|
10
|
Fujiwara M, Akiyama-Oda Y, Oda H. Virtual spherical-shaped multicellular platform for simulating the morphogenetic processes of spider-like body axis formation. Front Cell Dev Biol 2022; 10:932814. [PMID: 36036016 PMCID: PMC9411422 DOI: 10.3389/fcell.2022.932814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Remodeling of multicellular architecture is a critical developmental process for shaping the axis of a bilaterally symmetric animal body and involves coordinated cell–cell interactions and cell rearrangement. In arthropods, the early embryonic process that leads to the segmented body axis varies at the cellular and molecular levels depending on the species. Developmental studies using insect and spider model species have provided specific examples of these diversified mechanisms that regulate axis formation and segmentation in arthropod embryos. However, there are few theoretical models for how diversity in the early embryonic process occurred during evolution, in part because of a limited computational infrastructure. We developed a virtual spherical-shaped multicellular platform to reproduce body axis-forming processes. Each virtual cell behaves according to the cell vertex model, with the computational program organized in a hierarchical order from cells and tissues to whole embryos. Using an initial set of two different mechanical states for cell differentiation and global directional signals that are linked to the planar polarity of each cell, the virtual cell assembly exhibited morphogenetic processes similar to those observed in spider embryos. We found that the development of an elongating body axis is achieved through implementation of an interactive cell polarity parameter associated with edge tension at the cell–cell adhesion interface, with no local control of the cell division rate and direction. We also showed that modifying the settings can cause variation in morphogenetic processes. This platform also can embed a gene network that generates waves of gene expression in a virtual dynamic multicellular field. This study provides a computational platform for testing the development and evolution of animal body patterns.
Collapse
Affiliation(s)
- Motohiro Fujiwara
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Japan
- *Correspondence: Motohiro Fujiwara, ; Hiroki Oda,
| | - Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Japan
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Japan
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka, Japan
- *Correspondence: Motohiro Fujiwara, ; Hiroki Oda,
| |
Collapse
|
11
|
Akiyama-Oda Y, Akaiwa T, Oda H. Reconstruction of the Global Polarity of an Early Spider Embryo by Single-Cell and Single-Nucleus Transcriptome Analysis. Front Cell Dev Biol 2022; 10:933220. [PMID: 35938158 PMCID: PMC9353575 DOI: 10.3389/fcell.2022.933220] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/22/2022] [Indexed: 01/07/2023] Open
Abstract
Patterning along an axis of polarity is a fundamental step in the development of a multicellular animal embryo. In the cellular field of an early spider embryo, Hedgehog signaling operates to specify a "fuzzy" French-flag-like pattern along the primary axis, which is related to the future anterior-posterior (A-P) axis. However, details regarding the generation and development of a diversity of cell states based on the embryo polarity are not known. To address this issue, we applied single-cell RNA sequencing to the early spider embryo consisting of approximately 2,000 cells. Our results confirmed that this technique successfully detected 3 cell populations corresponding to the germ layers and some transient cell states. We showed that the data from dissociated cells had sufficient information for reconstruction of a correct global A-P polarity of the presumptive ectoderm, without clear segregation of specific cell states. This outcome is explained by the varied but differentially overlapping expression of Hedgehog-signal target genes and newly identified marker genes. We also showed that the data resources generated by the transcriptome analysis are applicable to a genome-wide search for genes whose expression is spatially regulated, based on the detection of pattern similarity. Furthermore, we performed single-nucleus RNA sequencing, which was more powerful in detecting emerging cell states. The single-cell and single-nucleus transcriptome techniques will help investigate the pattern-forming processes in the spider model system in an unbiased, comprehensive manner. We provided web-based resources of these transcriptome datasets for future studies of pattern formation and cell differentiation.
Collapse
Affiliation(s)
- Yasuko Akiyama-Oda
- JT Biohistory Research Hall, Takatsuki, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Takanori Akaiwa
- JT Biohistory Research Hall, Takatsuki, Japan
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Hiroki Oda
- JT Biohistory Research Hall, Takatsuki, Japan
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
12
|
Janssen R, Schomburg C, Prpic NM, Budd GE. A comprehensive study of arthropod and onychophoran Fox gene expression patterns. PLoS One 2022; 17:e0270790. [PMID: 35802758 PMCID: PMC9269926 DOI: 10.1371/journal.pone.0270790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Fox genes represent an evolutionary old class of transcription factor encoding genes that evolved in the last common ancestor of fungi and animals. They represent key-components of multiple gene regulatory networks (GRNs) that are essential for embryonic development. Most of our knowledge about the function of Fox genes comes from vertebrate research, and for arthropods the only comprehensive gene expression analysis is that of the fly Drosophila melanogaster. For other arthropods, only selected Fox genes have been investigated. In this study, we provide the first comprehensive gene expression analysis of arthropod Fox genes including representative species of all main groups of arthropods, Pancrustacea, Myriapoda and Chelicerata. We also provide the first comprehensive analysis of Fox gene expression in an onychophoran species. Our data show that many of the Fox genes likely retained their function during panarthropod evolution highlighting their importance in development. Comparison with published data from other groups of animals shows that this high degree of evolutionary conservation often dates back beyond the last common ancestor of Panarthropoda.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Christoph Schomburg
- AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
- Fachgebiet Botanik, Institut für Biologie, Universität Kassel, Kassel, Germany
| | - Nikola-Michael Prpic
- AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Graham E. Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Kato Y, Watanabe H. Regulation of Doublesex1 Expression for Environmental Sex Determination in the Cladoceran Crustacean Daphnia. Front Cell Dev Biol 2022; 10:881255. [PMID: 35493103 PMCID: PMC9043111 DOI: 10.3389/fcell.2022.881255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
The cladoceran crustacean Daphnia produces only females by parthenogenesis in a healthy population. However, in response to environmental declines such as crowding and lack of foods, it produces eggs destined to become males that are genetically identical to females. During the development of the sexually committed eggs, DM domain-containing transcription factor Doublesex1 (Dsx1) orchestrates male trait formation globally both in somatic and gonadal tissues. Recent studies have revealed that Dsx1 expression is tightly controlled at transcriptional, post-transcriptional, and epigenetic levels to avoid sexual ambiguity. In this review, together with basic information on Dsx1 structure and expression, we introduce the multi-layered Dsx1 regulation and discuss how each regulation is interconnected for controlling male development in environmental sex-determining Daphnia.
Collapse
|
14
|
Gainett G, Crawford AR, Klementz BC, So C, Baker CM, Setton EVW, Sharma PP. Eggs to long-legs: embryonic staging of the harvestman Phalangium opilio (Opiliones), an emerging model arachnid. Front Zool 2022; 19:11. [PMID: 35246168 PMCID: PMC8896363 DOI: 10.1186/s12983-022-00454-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The comparative embryology of Chelicerata has greatly advanced in recent years with the integration of classical studies and genetics, prominently spearheaded by developmental genetic works in spiders. Nonetheless, the understanding of the evolution of development and polarization of embryological characters in Chelicerata is presently limited, as few non-spider species have been well studied. A promising focal species for chelicerate evo-devo is the daddy-long-legs (harvestman) Phalangium opilio, a member of the order Opiliones. Phalangium opilio, breeds prolifically and is easily accessible in many parts of the world, as well as tractable in a laboratory setting. Resources for this species include developmental transcriptomes, a draft genome, and protocols for RNA interference, but a modern staging system is critically missing for this emerging model system. RESULTS We present a staging system of P. opilio embryogenesis that spans the most important morphogenetic events with respect to segment formation, appendage elongation and head development. Using time-lapse imaging, confocal microscopy, colorimetric in situ hybridization, and immunohistochemistry, we tracked the development of synchronous clutches from egg laying to adulthood. We describe key events in segmentation, myogenesis, neurogenesis, and germ cell formation. CONCLUSION Considering the phylogenetic position of Opiliones and the unduplicated condition of its genome (in contrast to groups like spiders and scorpions), this species is poised to serve as a linchpin for comparative studies in arthropod development and genome evolution. The staging system presented herein provides a valuable reference for P. opilio that we anticipate being useful to the arthropod evo-devo community, with the goal of revitalizing research in the comparative development of non-spider arachnids.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA.
| | - Audrey R Crawford
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Benjamin C Klementz
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Calvin So
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Caitlin M Baker
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| |
Collapse
|
15
|
Regulation of Eye Determination and Regionalization in the Spider Parasteatoda tepidariorum. Cells 2022; 11:cells11040631. [PMID: 35203282 PMCID: PMC8870698 DOI: 10.3390/cells11040631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Animal visual systems are enormously diverse, but their development appears to be controlled by a set of conserved retinal determination genes (RDGs). Spiders are particular masters of visual system innovation, and offer an excellent opportunity to study the evolution of animal eyes. Several RDGs have been identified in spider eye primordia, but their interactions and regulation remain unclear. From our knowledge of RDG network regulation in Drosophila melanogaster, we hypothesize that orthologs of Pax6, eyegone, Wnt genes, hh, dpp, and atonal could play important roles in controlling eye development in spiders. We analyzed the expression of these genes in developing embryos of the spider Parasteatodatepidariorum, both independently and in relation to the eye primordia, marked using probes for the RDG sine oculis. Our results support conserved roles for Wnt genes in restricting the size and position of the eye field, as well as for atonal initiating photoreceptor differentiation. However, we found no strong evidence for an upstream role of Pax6 in eye development, despite its label as a master regulator of animal eye development; nor do eyg, hh or dpp compensate for the absence of Pax6. Conversely, our results indicate that hh may work with Wnt signaling to restrict eye growth, a role similar to that of Sonichedgehog (Shh) in vertebrates.
Collapse
|
16
|
Cotoras DD, Castanheira PDS, Sharma PP. Implications of a cheliceral axial duplication in Tetragnatha versicolor (Araneae: Tetragnathidae) for arachnid deuterocerebral appendage development. Dev Genes Evol 2021; 231:131-139. [PMID: 34125284 DOI: 10.1007/s00427-021-00678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/04/2021] [Indexed: 11/29/2022]
Abstract
The homology of the arachnid chelicera with respect to other head appendages in Panarthropoda has long been debated. Gene expression data and the re-interpretation of early transitional fossils have supported the homology of the deutocerebrum and its associated appendages, implying a homology between primary antennae (mandibulates), chelicerae (euchelicerates), and chelifores (sea spiders). Nevertheless, comparatively little is known about the mechanistic basis of proximo-distal (PD) axis induction in chelicerates, much less the basis for cheliceral fate specification. Here, we describe a new cheliceral teratology in the spider Tetragnatha versicolor Walckenaer, 1841, which consists on a duplication of the PD axis of the left chelicera associated with a terminal secondary schistomely on the fang of the lower axis. This duplication offers clues as to potential shared mechanisms of PD axis formation in the chelicera. We review the state of knowledge on PD axis induction mechanisms in arthropods and identify elements of gene regulatory networks that are key for future functional experiments of appendage development in non-insect model systems. Such investigations would allow a better understanding of PD axis induction of modified and poorly studied arthropod limbs (e.g., chelicerae, chelifores, and ovigers).
Collapse
Affiliation(s)
- Darko D Cotoras
- Entomology Department, California Academy of Sciences, 55 Music Concourse Dr., Golden Gate Park, San Francisco, CA, 94118, USA.
| | - Pedro de S Castanheira
- Laboratório de Diversidade de Aracnídeos, Universidade do Brasil/Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Ilha do Fundão, Rio de Janeiro, Brazil.,Harry Butler Institute, Murdoch University, 90 South St, Murdoch, Western Australia, 6150, Australia
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, 441 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| |
Collapse
|
17
|
Baudouin-Gonzalez L, Schoenauer A, Harper A, Blakeley G, Seiter M, Arif S, Sumner-Rooney L, Russell S, Sharma PP, McGregor AP. The Evolution of Sox Gene Repertoires and Regulation of Segmentation in Arachnids. Mol Biol Evol 2021; 38:3153-3169. [PMID: 33755150 PMCID: PMC8661403 DOI: 10.1093/molbev/msab088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Sox family of transcription factors regulates many processes during metazoan development, including stem cell maintenance and nervous system specification. Characterizing the repertoires and roles of these genes can therefore provide important insights into animal evolution and development. We further characterized the Sox repertoires of several arachnid species with and without an ancestral whole-genome duplication and compared their expression between the spider Parasteatoda tepidariorum and the harvestman Phalangium opilio. We found that most Sox families have been retained as ohnologs after whole-genome duplication and evidence for potential subfunctionalization and/or neofunctionalization events. Our results also suggest that Sox21b-1 likely regulated segmentation ancestrally in arachnids, playing a similar role to the closely related SoxB gene, Dichaete, in insects. We previously showed that Sox21b-1 is required for the simultaneous formation of prosomal segments and sequential addition of opisthosomal segments in P. tepidariorum. We studied the expression and function of Sox21b-1 further in this spider and found that although this gene regulates the generation of both prosomal and opisthosomal segments, it plays different roles in the formation of these tagmata reflecting their contrasting modes of segmentation and deployment of gene regulatory networks with different architectures.
Collapse
Affiliation(s)
- Luis Baudouin-Gonzalez
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Anna Schoenauer
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Amber Harper
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Grace Blakeley
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Michael Seiter
- Unit Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Saad Arif
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom.,Centre for Functional Genomics, Oxford Brookes University, Oxford, United Kingdom
| | | | - Steven Russell
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom.,Centre for Functional Genomics, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
18
|
Akiyama-Oda Y, Oda H. Hedgehog signaling controls segmentation dynamics and diversity via msx1 in a spider embryo. SCIENCE ADVANCES 2020; 6:eaba7261. [PMID: 32917677 PMCID: PMC11206446 DOI: 10.1126/sciadv.aba7261] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Hedgehog (Hh) signaling plays fundamental roles in animal body patterning. Understanding its mechanistic complexity requires simple tractable systems that can be used for these studies. In the early spider embryo, Hh signaling mediates the formation of overall anterior-posterior polarity, yet it remains unclear what mechanisms link the initial Hh signaling activity with body axis segmentation, in which distinct periodic stripe-forming dynamics occur depending on the body region. We performed genome-wide searches for genes that transcriptionally respond to altered states of Hh signaling. Characterization of genes negatively regulated by Hh signaling suggested that msx1, encoding a conserved transcription factor, functions as a key segmentation gene. Knockdown of msx1 prevented all dynamic processes causing spatial repetition of stripes, including temporally repetitive oscillations and bi-splitting, and temporally nonrepetitive tri-splitting. Thus, Hh signaling controls segmentation dynamics and diversity via msx1 These genome-wide data from an invertebrate illuminate novel mechanistic features of Hh-based patterning.
Collapse
Affiliation(s)
- Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, Japan.
- Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
19
|
Gainett G, Sharma PP. Genomic resources and toolkits for developmental study of whip spiders (Amblypygi) provide insights into arachnid genome evolution and antenniform leg patterning. EvoDevo 2020; 11:18. [PMID: 32874529 PMCID: PMC7455915 DOI: 10.1186/s13227-020-00163-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The resurgence of interest in the comparative developmental study of chelicerates has led to important insights, such as the discovery of a genome duplication shared by spiders and scorpions, inferred to have occurred in the most recent common ancestor of Arachnopulmonata (a clade comprising the five arachnid orders that bear book lungs). Nonetheless, several arachnid groups remain understudied in the context of development and genomics, such as the order Amblypygi (whip spiders). The phylogenetic position of Amblypygi in Arachnopulmonata posits them as an interesting group to test the incidence of the proposed genome duplication in the common ancestor of Arachnopulmonata, as well as the degree of retention of duplicates over 450 Myr. Moreover, whip spiders have their first pair of walking legs elongated and modified into sensory appendages (a convergence with the antennae of mandibulates), but the genetic patterning of these antenniform legs has never been investigated. RESULTS We established genomic resources and protocols for cultivation of embryos and gene expression assays by in situ hybridization to study the development of the whip spider Phrynus marginemaculatus. Using embryonic transcriptomes from three species of Amblypygi, we show that the ancestral whip spider exhibited duplications of all ten Hox genes. We deploy these resources to show that paralogs of the leg gap genes dachshund and homothorax retain arachnopulmonate-specific expression patterns in P. marginemaculatus. We characterize the expression of leg gap genes Distal-less, dachshund-1/2 and homothorax-1/2 in the embryonic antenniform leg and other appendages, and provide evidence that allometry, and by extension the antenniform leg fate, is specified early in embryogenesis. CONCLUSION This study is the first step in establishing P. marginemaculatus as a chelicerate model for modern evolutionary developmental study, and provides the first resources sampling whip spiders for comparative genomics. Our results suggest that Amblypygi share a genome duplication with spiders and scorpions, and set up a framework to study the genetic specification of antenniform legs. Future efforts to study whip spider development must emphasize the development of tools for functional experiments in P. marginemaculatus.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Prashant P. Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
20
|
Townley MA, Harms D. Temperature fluctuations during embryonic development implicated in a naturally occurring instance of abnormal spinnerets in the spider Australomimetus maculosus (Araneae, Mimetidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 57:100945. [PMID: 32361425 DOI: 10.1016/j.asd.2020.100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
We record developmental abnormalities of the spinnerets in a field-collected adult male specimen of Australomimetus maculosus. These include (1) a supernumerary right posterior lateral spinneret (PLS), (2) ectopic piriform silk gland spigots and tartipores on the left PLS that are normally restricted to anterior lateral spinnerets (ALSs), and (3) what appear to be ectopic ALS sensilla on the left posterior median spinneret (PMS). Published results of teratological experiments and climate data for the collection site indicate that fluctuating sub- and supra-optimal temperatures during embryogenesis may have been responsible for these anomalies. This specimen thus supports the view that spinneret abnormalities, among other aberrations, may be induced when embryos of entelegyne spiders are exposed to fluctuations between high and low temperatures, whether in the laboratory or, as here, in nature. To our knowledge, the ectopic structures seen on the left PLS and left PMS have not been observed previously. Their locations are consistent with a hypothesis by which only the lateral portion of the araneomorph ALS is serially homologous to the PLS, while the remainder of the ALS, along with the colulus/cribellum, is homologous to the PMS.
Collapse
Affiliation(s)
- Mark A Townley
- University Instrumentation Center, University of New Hampshire, 23 Academic Way, Durham, NH, 03824, USA.
| | - Danilo Harms
- Zoological Museum, Center of Natural History, Universität Hamburg, Martin-Luther-King-Platz 3, D-20146, Hamburg, Germany.
| |
Collapse
|
21
|
Oda H, Akiyama-Oda Y. The common house spider Parasteatoda tepidariorum. EvoDevo 2020; 11:6. [PMID: 32206294 PMCID: PMC7082966 DOI: 10.1186/s13227-020-00152-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/12/2020] [Indexed: 11/20/2022] Open
Abstract
The common house spider Parasteatoda tepidariorum, belonging to the Chelicerata in the phylum Arthropoda, has emerged as an experimental system for studying mechanisms of development from an evolutionary standpoint. In this article, we review the distinct characteristics of P. tepidariorum, the major research questions relevant to this organism, and the available key methods and resources. P. tepidariorum has a relatively short lifecycle and, once mated, periodically lays eggs. The morphogenetic field of the P. tepidariorum embryo is cellular from an early stage and exhibits stepwise symmetry-breaking events and stripe-forming processes that are associated with body axes formation and segmentation, respectively, before reaching the arthropod phylotypic stage. Self-regulatory capabilities of the embryonic field are a prominent feature in P. tepidariorum. The mechanisms and logic underlying the evolvability of heritable patterning systems at the phylum level could be one of the major avenues of research investigated using this animal. The sequenced genome reveals whole genome duplication (WGD) within chelicerates, which offers an invertebrate platform for investigating the potential roles of WGD in animal diversification and evolution. The development and evolution of lineage-specific organs, including the book lungs and the union of spinnerets and silk glands, are attractive subjects of study. Studies using P. tepidariorum can benefit from the use of parental RNA interference, microinjection applications (including cell labeling and embryonic RNA interference), multicolor fluorescence in situ hybridization, and laser ablation as well as rich genomic and transcriptomic resources. These techniques enable functional gene discoveries and the uncovering of cellular and molecular insights.![]()
Collapse
Affiliation(s)
- Hiroki Oda
- 1Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125 Japan.,2Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka Japan
| | - Yasuko Akiyama-Oda
- 1Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125 Japan.,3Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka Japan
| |
Collapse
|
22
|
Oda H, Iwasaki-Yokozawa S, Usui T, Akiyama-Oda Y. Experimental duplication of bilaterian body axes in spider embryos: Holm's organizer and self-regulation of embryonic fields. Dev Genes Evol 2020; 230:49-63. [PMID: 30972574 PMCID: PMC7128006 DOI: 10.1007/s00427-019-00631-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022]
Abstract
Bilaterally symmetric body plans of vertebrates and arthropods are defined by a single set of two orthogonal axes, the anterior-posterior (or head-tail) and dorsal-ventral axes. In vertebrates, and especially amphibians, complete or partial doubling of the bilaterian body axes can be induced by two different types of embryological manipulations: transplantation of an organizer region or bi-sectioning of an embryo. Such axis doubling relies on the ability of embryonic fields to flexibly respond to the situation and self-regulate toward forming a whole body. This phenomenon has facilitated experimental efforts to investigate the mechanisms of vertebrate body axes formation. However, few studies have addressed the self-regulatory capabilities of embryonic fields associated with body axes formation in non-vertebrate bilaterians. The pioneer spider embryologist Åke Holm reported twinning of spider embryos induced by both types of embryological manipulations in 1952; yet, his experiments have not been replicated by other investigators, and access to spider or non-vertebrate twins has been limited. In this review, we provide a historical background on twinning experiments in spiders, and an overview of current twinning approaches in familiar spider species and related molecular studies. Moreover, we discuss the benefits of the spider model system for a deeper understanding of the ancestral mechanisms of body axes formation in arthropods, as well as in bilaterians.
Collapse
Affiliation(s)
- Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan.
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | - Sawa Iwasaki-Yokozawa
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | | | - Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
- Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan
| |
Collapse
|
23
|
Leite DJ, Baudouin-Gonzalez L, Iwasaki-Yokozawa S, Lozano-Fernandez J, Turetzek N, Akiyama-Oda Y, Prpic NM, Pisani D, Oda H, Sharma PP, McGregor AP. Homeobox Gene Duplication and Divergence in Arachnids. Mol Biol Evol 2020; 35:2240-2253. [PMID: 29924328 PMCID: PMC6107062 DOI: 10.1093/molbev/msy125] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Homeobox genes are key toolkit genes that regulate the development of metazoans and changes in their regulation and copy number have contributed to the evolution of phenotypic diversity. We recently identified a whole genome duplication (WGD) event that occurred in an ancestor of spiders and scorpions (Arachnopulmonata), and that many homeobox genes, including two Hox clusters, appear to have been retained in arachnopulmonates. To better understand the consequences of this ancient WGD and the evolution of arachnid homeobox genes, we have characterized and compared the homeobox repertoires in a range of arachnids. We found that many families and clusters of these genes are duplicated in all studied arachnopulmonates (Parasteatoda tepidariorum, Pholcus phalangioides, Centruroides sculpturatus, and Mesobuthus martensii) compared with nonarachnopulmonate arachnids (Phalangium opilio, Neobisium carcinoides, Hesperochernes sp., and Ixodes scapularis). To assess divergence in the roles of homeobox ohnologs, we analyzed the expression of P. tepidariorum homeobox genes during embryogenesis and found pervasive changes in the level and timing of their expression. Furthermore, we compared the spatial expression of a subset of P. tepidariorum ohnologs with their single copy orthologs in P. opilio embryos. We found evidence for likely subfunctionlization and neofunctionalization of these genes in the spider. Overall our results show a high level of retention of homeobox genes in spiders and scorpions post-WGD, which is likely to have made a major contribution to their developmental evolution and diversification through pervasive subfunctionlization and neofunctionalization, and paralleling the outcomes of WGD in vertebrates.
Collapse
Affiliation(s)
- Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Luís Baudouin-Gonzalez
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | | | - Jesus Lozano-Fernandez
- School of Earth Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom.,School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom
| | - Natascha Turetzek
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University, Göttingen, Germany
| | - Yasuko Akiyama-Oda
- JT Biohistory Research Hall, Takatsuki, Osaka, Japan.,Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Nikola-Michael Prpic
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University, Göttingen, Germany
| | - Davide Pisani
- School of Earth Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom.,School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom
| | - Hiroki Oda
- JT Biohistory Research Hall, Takatsuki, Osaka, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
24
|
Pechmann M. Embryonic development and secondary axis induction in the Brazilian white knee tarantula Acanthoscurria geniculata, C. L. Koch, 1841 (Araneae; Mygalomorphae; Theraphosidae). Dev Genes Evol 2020; 230:75-94. [PMID: 32076811 PMCID: PMC7128004 DOI: 10.1007/s00427-020-00653-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Tarantulas represent some of the heaviest and most famous spiders. However, there is little information about the embryonic development of these spiders or their relatives (infraorder Mygalomorphae) and time-lapse recording of the embryonic development is entirely missing. I here describe the complete development of the Brazilian white knee tarantula, Acanthoscurria geniculata, in fixed and live embryos. The establishment of the blastoderm, the formation, migration and signalling of the cumulus and the shape changes that occur in the segment addition zone are analysed in detail. In addition, I show that there might be differences in the contraction process of early embryos of different theraphosid spider species. A new embryonic reference transcriptome was generated for this study and was used to clone and analyse the expression of several important developmental genes. Finally, I show that embryos of A. geniculata are amenable to tissue transplantation and bead insertion experiments. Using these functional approaches, I induced axis duplication in embryos via cumulus transplantation and ectopic activation of BMP signalling. Overall, the mygalomorph spider A. geniculata is a useful laboratory system to analyse evolutionary developmental questions, and the availability of such a system will help understanding conserved and divergent aspects of spider/chelicerate development.
Collapse
Affiliation(s)
- Matthias Pechmann
- Institute for Zoology, Department for Developmental Biology, Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674, Cologne, Germany.
| |
Collapse
|
25
|
The forkhead box containing transcription factor FoxB is a potential component of dorsal-ventral body axis formation in the spider Parasteatoda tepidariorum. Dev Genes Evol 2020; 230:65-73. [PMID: 32034484 PMCID: PMC7128009 DOI: 10.1007/s00427-020-00650-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/21/2020] [Indexed: 11/29/2022]
Abstract
In the spider, determination of the dorsal-ventral body (DV) axis depends on the interplay of the dorsal morphogen encoding gene decapentaplegic (Dpp) and its antagonist, short gastrulation (sog), a gene that is involved in the correct establishment of ventral tissues. Recent work demonstrated that the forkhead domain encoding gene FoxB is involved in dorsal-ventral axis formation in spider limbs. Here, Dpp likely acts as a dorsal morphogen, and FoxB is likely in control of ventral tissues as RNAi-mediated knockdown of FoxB causes dorsalization of the limbs. In this study, we present phenotypes of FoxB knockdown that demonstrate a function in the establishment of the DV body axis. Knockdown of FoxB function leads to embryos with partially duplicated median germ bands (Duplicitas media) that are possibly the result of ectopic activation of Dpp signalling. Another class of phenotypes is characterized by unnaturally slim (dorsal-ventrally compressed) germ bands in which ventral tissue is either not formed, or is specified incorrectly, likely a result of Dpp over-activity. These results suggest that FoxB functions as an antagonist of Dpp signalling during body axis patterning, similarly as it is the case in limb development. FoxB thus represents a general player in the establishment of dorsal-ventral structures during spider ontogeny.
Collapse
|
26
|
Schomburg C, Turetzek N, Prpic NM. Candidate gene screen for potential interaction partners and regulatory targets of the Hox gene labial in the spider Parasteatoda tepidariorum. Dev Genes Evol 2020; 230:105-120. [PMID: 32036446 PMCID: PMC7128011 DOI: 10.1007/s00427-020-00656-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/31/2020] [Indexed: 12/21/2022]
Abstract
The Hox gene labial (lab) governs the formation of the tritocerebral head segment in insects and spiders. However, the morphology that results from lab action is very different in the two groups. In insects, the tritocerebral segment (intercalary segment) is reduced and lacks appendages, whereas in spiders the corresponding segment (pedipalpal segment) is a proper segment including a pair of appendages (pedipalps). It is likely that this difference between lab action in insects and spiders is mediated by regulatory targets or interacting partners of lab. However, only a few such genes are known in insects and none in spiders. We have conducted a candidate gene screen in the spider Parasteatoda tepidariorum using as candidates Drosophila melanogaster genes known to (potentially) interact with lab or to be expressed in the intercalary segment. We have studied 75 P. tepidariorum genes (including previously published and duplicated genes). Only 3 of these (proboscipedia-A (pb-A) and two paralogs of extradenticle (exd)) showed differential expression between leg and pedipalp. The low success rate points to a weakness of the candidate gene approach when it is applied to lineage specific organs. The spider pedipalp has no counterpart in insects, and therefore relying on insect data apparently cannot identify larger numbers of factors implicated in its specification and formation. We argue that in these cases a de novo approach to gene discovery might be superior to the candidate gene approach.
Collapse
Affiliation(s)
- Christoph Schomburg
- Institut für Allgemeine Zoologie und Entwicklungsbiologie, AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 38, 35392, Gießen, Germany
| | - Natascha Turetzek
- Ludwig-Maximilians-Universität München, Lehrstuhl für Evolutionäre Ökologie, Biozentrum II, Großhadernerstraße 2, 82152, Planegg-Martinsried, Germany
| | - Nikola-Michael Prpic
- Institut für Allgemeine Zoologie und Entwicklungsbiologie, AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 38, 35392, Gießen, Germany.
| |
Collapse
|
27
|
Casas-Tintó S, Portela M. Cytonemes, Their Formation, Regulation, and Roles in Signaling and Communication in Tumorigenesis. Int J Mol Sci 2019; 20:ijms20225641. [PMID: 31718063 PMCID: PMC6888727 DOI: 10.3390/ijms20225641] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence during the past two decades shows that cells interconnect and communicate through cytonemes. These cytoskeleton-driven extensions of specialized membrane territories are involved in cell–cell signaling in development, patterning, and differentiation, but also in the maintenance of adult tissue homeostasis, tissue regeneration, and cancer. Brain tumor cells in glioblastoma extend ultralong membrane protrusions (named tumor microtubes, TMs), which contribute to invasion, proliferation, radioresistance, and tumor progression. Here we review the mechanisms underlying cytoneme formation, regulation, and their roles in cell signaling and communication in epithelial cells and other cell types. Furthermore, we discuss the recent discovery of glial cytonemes in the Drosophila glial cells that alter Wingless (Wg)/Frizzled (Fz) signaling between glia and neurons. Research on cytoneme formation, maintenance, and cell signaling mechanisms will help to better understand not only physiological developmental processes and tissue homeostasis but also cancer progression.
Collapse
Affiliation(s)
- Sergio Casas-Tintó
- Instituto Cajal-CSIC. Av. del Doctor Arce, 37. 28002 Madrid, Spain
- Correspondence: (S.C.-T.); (M.P.); Tel.: +34915854738 (S.C.-T.); +61394792522 (M.P.)
| | - Marta Portela
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Correspondence: (S.C.-T.); (M.P.); Tel.: +34915854738 (S.C.-T.); +61394792522 (M.P.)
| |
Collapse
|
28
|
Oda H, Akiyama-Oda Y. Microarray data on the comparison of transcript expression between normal and Pt-Delta RNAi embryos in the common house spider Parasteatoda tepidariorum. Data Brief 2019; 25:104350. [PMID: 31453303 PMCID: PMC6702388 DOI: 10.1016/j.dib.2019.104350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 12/29/2022] Open
Abstract
We conducted a custom microarray experiment to detect the differences in the transcript expression levels between untreated (normal) and Pt-Delta-RNAi embryos at late stage 6 in the common house spider Parasteatoda tepidariorum. The array probes were designed based on accumulated EST and cDNA sequences. The microarray dataset has been deposited in the Gene Expression Omnibus (GEO) Database at the National Center for Biotechnology Information (NCBI) under the accession GSE113064. The expression of the transcripts selected based on the detected differences was examined in embryos by whole-mount in situ hybridization.
Collapse
Affiliation(s)
- Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.,Laboratory of Biohistory, Department of Biological Sciences, Graduate School of Science, Osaka University, Japan
| | - Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.,Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan
| |
Collapse
|
29
|
Bonatto Paese CL, Leite DJ, Schönauer A, McGregor AP, Russell S. Duplication and expression of Sox genes in spiders. BMC Evol Biol 2018; 18:205. [PMID: 30587109 PMCID: PMC6307133 DOI: 10.1186/s12862-018-1337-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/17/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The Sox family of transcription factors is an important part of the genetic 'toolbox' of all metazoans examined to date and is known to play important developmental roles in vertebrates and insects. However, outside the commonly studied Drosophila model little is known about the repertoire of Sox family transcription factors in other arthropod species. Here we characterise the Sox family in two chelicerate species, the spiders Parasteatoda tepidariorum and Stegodyphus mimosarum, which have experienced a whole genome duplication (WGD) in their evolutionary history. RESULTS We find that virtually all of the duplicate Sox genes have been retained in these spiders after the WGD. Analysis of the expression of Sox genes in P. tepidariorum embryos suggests that it is likely that some of these genes have neofunctionalised after duplication. Our expression analysis also strengthens the view that an orthologue of vertebrate Group B1 genes, SoxNeuro, is implicated in the earliest events of CNS specification in both vertebrates and invertebrates. In addition, a gene in the Dichaete/Sox21b class is dynamically expressed in the spider segment addition zone, suggestive of an ancient regulatory mechanism controlling arthropod segmentation as recently suggested for flies and beetles. Together with the recent analysis of Sox gene expression in the embryos of other arthropods, our findings support the idea of conserved functions for some of these genes, including a potential role for SoxC and SoxD genes in CNS development and SoxF in limb development. CONCLUSIONS Our study provides a new chelicerate perspective to understanding the evolution and function of Sox genes and how the retention of duplicates of such important tool-box genes after WGD has contributed to different aspects of spider embryogenesis. Future characterisation of the function of these genes in spiders will help us to better understand the evolution of the regulation of important developmental processes in arthropods and other metazoans including neurogenesis and segmentation.
Collapse
Affiliation(s)
- Christian L Bonatto Paese
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| | - Steven Russell
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
30
|
Hogvall M, Budd GE, Janssen R. Gene expression analysis of potential morphogen signalling modifying factors in Panarthropoda. EvoDevo 2018; 9:20. [PMID: 30288252 PMCID: PMC6162966 DOI: 10.1186/s13227-018-0109-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/04/2018] [Indexed: 11/28/2022] Open
Abstract
Background Morphogen signalling represents a key mechanism of developmental processes during animal development. Previously, several evolutionary conserved morphogen signalling pathways have been identified, and their players such as the morphogen receptors, morphogen modulating factors (MMFs) and the morphogens themselves have been studied. MMFs are factors that regulate morphogen distribution and activity. The interactions of MMFs with different morphogen signalling pathways such as Wnt signalling, Hedgehog (Hh) signalling and Decapentaplegic (Dpp) signalling are complex because some of the MMFs have been shown to interact with more than one signalling pathway, and depending on genetic context, to have different, biphasic or even opposing function. This complicates the interpretation of expression data and functional data of MMFs and may be one reason why data on MMFs in other arthropods than Drosophila are scarce or totally lacking. Results As a first step to a better understanding of the potential roles of MMFs in arthropod development, we investigate here the embryonic expression patterns of division abnormally delayed (dally), dally-like protein (dlp), shifted (shf) and secreted frizzled-related protein 125 (sFRP125) and sFRP34 in the beetle Tribolium castaneum, the spider Parasteatoda tepidariorum, the millipede Glomeris marginata and the onychophoran Euperipatoides kanangrensis. This pioneer study represents the first comprehensive comparative data set of these genes in panarthropods. Conclusions Expression profiles reveal a high degree of diversity, suggesting that MMFs may represent highly evolvable nodes in otherwise conserved gene regulatory networks. Conserved aspects of MMF expression, however, appear to concern function in segmentation and limb development, two of the key topics of evolutionary developmental research. Electronic supplementary material The online version of this article (10.1186/s13227-018-0109-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mattias Hogvall
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| |
Collapse
|
31
|
March LE, Smaby RM, Setton EVW, Sharma PP. The evolution of selector gene function: Expression dynamics and regulatory interactions of tiptop/teashirt across Arthropoda. Evol Dev 2018; 20:219-232. [PMID: 30221814 DOI: 10.1111/ede.12270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The transcription factors spineless (ss) and tiptop/teashirt (tio/tsh) have been shown to be selectors of distal appendage identity in an insect, but it is unknown how they regulate one another. Here, we examined the regulatory relationships between these two determinants in the milkweed bug Oncopeltus faciatus, using maternal RNA interference (RNAi). We show that Ofas-ss RNAi embryos bear distally transformed antennal buds with heterogeneous Ofas-tio/tsh expression domains comparable to wild type legs. In the reciprocal experiment, Ofas-tio/tsh RNAi embryos bear distally transformed walking limb buds with ectopic expression of Ofas-ss in the distal leg primordia. These data suggest that Ofas-ss is required for the maintenance of Ofas-tio/tsh expression in the distal antenna, whereas Ofas-tio/tsh represses Ofas-ss in the leg primordia. To assess whether expression boundaries of tio/tsh are associated with the trunk region more generally, we surveyed the expression of one myriapod and two chelicerate tio/tsh homologs. Our expression survey suggests that tio/tsh could play a role in specifying distal appendage identity across Arthropoda, but Hox regulation of tio/tsh homologs has been evolutionarily labile.
Collapse
Affiliation(s)
- Logan E March
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Rachel M Smaby
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
32
|
Evolution of the bilaterian mouth and anus. Nat Ecol Evol 2018; 2:1358-1376. [PMID: 30135501 DOI: 10.1038/s41559-018-0641-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
It is widely held that the bilaterian tubular gut with mouth and anus evolved from a simple gut with one major gastric opening. However, there is no consensus on how this happened. Did the single gastric opening evolve into a mouth, with the anus forming elsewhere in the body (protostomy), or did it evolve into an anus, with the mouth forming elsewhere (deuterostomy), or did it evolve into both mouth and anus (amphistomy)? These questions are addressed by the comparison of developmental fates of the blastopore, the opening of the embryonic gut, in diverse animals that live today. Here we review comparative data on the identity and fate of blastoporal tissue, investigate how the formation of the through-gut relates to the major body axes, and discuss to what extent evolutionary scenarios are consistent with these data. Available evidence indicates that stem bilaterians had a slit-like gastric opening that was partially closed in subsequent evolution, leaving open the anus and most likely also the mouth, which would favour amphistomy. We discuss remaining difficulties, and outline directions for future research.
Collapse
|
33
|
Paese CLB, Schoenauer A, Leite DJ, Russell S, McGregor AP. A SoxB gene acts as an anterior gap gene and regulates posterior segment addition in a spider. eLife 2018; 7:e37567. [PMID: 30126532 PMCID: PMC6167052 DOI: 10.7554/elife.37567] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023] Open
Abstract
Sox genes encode a set of highly conserved transcription factors that regulate many developmental processes. In insects, the SoxB gene Dichaete is the only Sox gene known to be involved in segmentation. To determine if similar mechanisms are used in other arthropods, we investigated the role of Sox genes during segmentation in the spider Parasteatoda tepidariorum. While Dichaete does not appear to be involved in spider segmentation, we found that the closely related Sox21b-1 gene acts as a gap gene during formation of anterior segments and is also part of the segmentation clock for development of the segment addition zone and sequential addition of opisthosomal segments. Thus, we have found that two different mechanisms of segmentation in a non-mandibulate arthropod are regulated by a SoxB gene. Our work provides new insights into the function of an important and conserved gene family, and the evolution of the regulation of segmentation in arthropods.
Collapse
Affiliation(s)
- Christian Louis Bonatto Paese
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| | - Anna Schoenauer
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| | - Daniel J Leite
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| | - Steven Russell
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Alistair P McGregor
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| |
Collapse
|
34
|
Iwasaki-Yokozawa S, Akiyama-Oda Y, Oda H. Genome-scale embryonic developmental profile of gene expression in the common house spider Parasteatoda tepidariorum. Data Brief 2018; 19:865-867. [PMID: 29900384 PMCID: PMC5997937 DOI: 10.1016/j.dib.2018.05.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 01/03/2023] Open
Abstract
We performed RNA sequencing (RNA-Seq) at ten successive developmental stages in embryos of the common house spider Parasteatoda tepidariorum. Two independent datasets from two pairs of parents represent the normalized coverage of mapped RNA-Seq reads along scaffolds of the P. tepidariorum genome assembly. Transcript abundance was calculated against existing AUGUSTUS gene models. The datasets have been deposited in the Gene Expression Omnibus (GEO) Database at the National Center for Biotechnology Information (NCBI) under the accession number GSE112712.
Collapse
Affiliation(s)
- Sawa Iwasaki-Yokozawa
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
- Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
- Laboratory of Biohistory, Department of Biological Sciences, Graduate School of Science, Osaka University, Japan
- Corresponding author at: Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.
| |
Collapse
|
35
|
Hemmi N, Akiyama-Oda Y, Fujimoto K, Oda H. A quantitative study of the diversity of stripe-forming processes in an arthropod cell-based field undergoing axis formation and growth. Dev Biol 2018; 437:84-104. [DOI: 10.1016/j.ydbio.2018.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 12/25/2022]
|
36
|
Auman T, Chipman AD. The Evolution of Gene Regulatory Networks that Define Arthropod Body Plans. Integr Comp Biol 2018; 57:523-532. [PMID: 28957519 DOI: 10.1093/icb/icx035] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Our understanding of the genetics of arthropod body plan development originally stems from work on Drosophila melanogaster from the late 1970s and onward. In Drosophila, there is a relatively detailed model for the network of gene interactions that proceeds in a sequential-hierarchical fashion to define the main features of the body plan. Over the years, we have a growing understanding of the networks involved in defining the body plan in an increasing number of arthropod species. It is now becoming possible to tease out the conserved aspects of these networks and to try to reconstruct their evolution. In this contribution, we focus on several key nodes of these networks, starting from early patterning in which the main axes are determined and the broad morphological domains of the embryo are defined, and on to later stage wherein the growth zone network is active in sequential addition of posterior segments. The pattern of conservation of networks is very patchy, with some key aspects being highly conserved in all arthropods and others being very labile. Many aspects of early axis patterning are highly conserved, as are some aspects of sequential segment generation. In contrast, regional patterning varies among different taxa, and some networks, such as the terminal patterning network, are only found in a limited range of taxa. The growth zone segmentation network is ancient and is probably plesiomorphic to all arthropods. In some insects, it has undergone significant modification to give rise to a more hardwired network that generates individual segments separately. In other insects and in most arthropods, the sequential segmentation network has undergone a significant amount of systems drift, wherein many of the genes have changed. However, it maintains a conserved underlying logic and function.
Collapse
Affiliation(s)
- Tzach Auman
- The Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Ariel D Chipman
- The Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| |
Collapse
|
37
|
Expression and function of the zinc finger transcription factor Sp6-9 in the spider Parasteatoda tepidariorum. Dev Genes Evol 2017; 227:389-400. [PMID: 29116381 DOI: 10.1007/s00427-017-0595-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/17/2017] [Indexed: 12/22/2022]
Abstract
Zinc finger transcription factors of the Sp6-9 group are evolutionarily conserved in all metazoans and have important functions in, e.g., limb formation and heart development. The function of Sp6-9-related genes has been studied in a number of vertebrates and invertebrates, but data from chelicerates (spiders and allies) was lacking so far. We have isolated the ortholog of Sp6-9 from the common house spider Parasteatoda tepidariorum and the cellar spider Pholcus phalangioides. We show that the Sp6-9 gene in these spider species is expressed in the developing appendages thus suggesting a conserved role in limb formation. Indeed, RNAi with Sp6-9 in P. tepidariorum leads not only to strong limb defects, but also to the loss of body segments and head defects in more strongly affected animals. Together with a new expression domain in the early embryo, these data suggest that Sp6-9 has a dual role P. tepidariorum. The early role in head and body segment formation is not known from other arthropods, but the role in limb formation is evolutionarily highly conserved.
Collapse
|
38
|
Nong QD, Mohamad Ishak NS, Matsuura T, Kato Y, Watanabe H. Mapping the expression of the sex determining factor Doublesex1 in Daphnia magna using a knock-in reporter. Sci Rep 2017; 7:13521. [PMID: 29097757 PMCID: PMC5668254 DOI: 10.1038/s41598-017-13730-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/27/2017] [Indexed: 01/21/2023] Open
Abstract
Sexually dimorphic traits are common and widespread among animals. The expression of the Doublesex-/Mab-3-domain (DM-domain) gene family has been widely studied in model organisms and has been proven to be essential for the development and maintenance of sex-specific traits. However, little is known about the detailed expression patterns in non-model organisms. In the present study, we demonstrated the spatiotemporal expression of the DM-domain gene, doublesex1 (dsx1), in the crustacean Daphnia magna, which parthenogenetically produces males in response to environmental cues. We developed a dsx1 reporter strain to track dsx1 activity in vivo by inserting the mCherry gene into the dsx1 locus using the TALEN-mediated knock-in approach. After confirming dsx1 expression in male-specific traits in juveniles and adults, we performed time-lapse imaging of embryogenesis. Shortly after gastrulation stage, a presumptive primary organiser, named cumulus, first showed male-specific dsx1 expression. This cell mass moved to the posterior growth zone that distributes dsx1-expressing progenitor cells across the body during axial elongation, before embryos start male-specific dsx1 expression in sexually dimorphic structures. The present study demonstrated the sex-specific dsx1 expression in cell populations involved in basal body formation.
Collapse
Affiliation(s)
- Quang Dang Nong
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Biotechnology Global Human Resource Development Program, Division of Advanced Science and Biotechnology, Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Nur Syafiqah Mohamad Ishak
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Biotechnology Global Human Resource Development Program, Division of Advanced Science and Biotechnology, Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan.
- Frontier Research Base of Global Young Researchers, Graduate School of Engineering, Osaka University, Suita, Japan.
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
39
|
Pechmann M, Benton MA, Kenny NJ, Posnien N, Roth S. A novel role for Ets4 in axis specification and cell migration in the spider Parasteatoda tepidariorum. eLife 2017; 6. [PMID: 28849761 PMCID: PMC5574703 DOI: 10.7554/elife.27590] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/13/2017] [Indexed: 11/13/2022] Open
Abstract
Organizers play important roles during the embryonic development of many animals. The most famous example is the Spemann organizer that sets up embryonic axes in amphibian embryos. In spiders, a group of BMP secreting mesenchymal cells (the cumulus) functions as an organizer of the dorsoventral axis. Similar to experiments performed with the Spemann organizer, transplantation of the cumulus is able to induce a secondary axis in spiders. Despite the importance of this structure, it is unknown which factors are needed to activate cumulus specific gene expression. To address this question, we performed a transcriptomic analysis of early embryonic development in the spider Parasteatoda tepidariorum. Through this work, we found that the transcription factor Pt-Ets4 is needed for cumulus integrity, dorsoventral patterning and for the activation of Pt-hunchback and Pt-twist expression. Furthermore, ectopic expression of Pt-Ets4 is sufficient to induce cell delamination and migration by inducing a mesoderm-like cell fate.
Collapse
Affiliation(s)
- Matthias Pechmann
- Developmental Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Matthew A Benton
- Developmental Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Nathan J Kenny
- Life Sciences Department, The Natural History Museum, London, United Kingdom
| | - Nico Posnien
- Department of Developmental Biology, University of Goettingen, Goettingen, Germany
| | - Siegfried Roth
- Developmental Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
40
|
Schwager EE, Sharma PP, Clarke T, Leite DJ, Wierschin T, Pechmann M, Akiyama-Oda Y, Esposito L, Bechsgaard J, Bilde T, Buffry AD, Chao H, Dinh H, Doddapaneni H, Dugan S, Eibner C, Extavour CG, Funch P, Garb J, Gonzalez LB, Gonzalez VL, Griffiths-Jones S, Han Y, Hayashi C, Hilbrant M, Hughes DST, Janssen R, Lee SL, Maeso I, Murali SC, Muzny DM, Nunes da Fonseca R, Paese CLB, Qu J, Ronshaugen M, Schomburg C, Schönauer A, Stollewerk A, Torres-Oliva M, Turetzek N, Vanthournout B, Werren JH, Wolff C, Worley KC, Bucher G, Gibbs RA, Coddington J, Oda H, Stanke M, Ayoub NA, Prpic NM, Flot JF, Posnien N, Richards S, McGregor AP. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biol 2017. [PMID: 28756775 DOI: 10.1186/s12915-017-0399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. RESULTS We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. CONCLUSIONS Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.
Collapse
Affiliation(s)
- Evelyn E Schwager
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA, 01854, USA
| | - Prashant P Sharma
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Thomas Clarke
- Department of Biology, Washington and Lee University, 204 West Washington Street, Lexington, VA, 24450, USA
- Department of Biology, University of California, Riverside, Riverside, CA, 92521, USA
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
| | - Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Torsten Wierschin
- Ernst Moritz Arndt University Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17487, Greifswald, Germany
| | - Matthias Pechmann
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- Department of Developmental Biology, University of Cologne, Cologne Biocenter, Institute of Zoology, Zuelpicher Straße 47b, 50674, Cologne, Germany
| | - Yasuko Akiyama-Oda
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
- Osaka Medical College, Takatsuki, Osaka, Japan
| | - Lauren Esposito
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| | - Jesper Bechsgaard
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Trine Bilde
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Alexandra D Buffry
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - HarshaVardhan Doddapaneni
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cornelius Eibner
- Department of Genetics, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Peter Funch
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Jessica Garb
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA, 01854, USA
| | - Luis B Gonzalez
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Vanessa L Gonzalez
- Smithsonian National Museum of Natural History, MRC-163, P.O. Box 37012, Washington, DC, 20013-7012, USA
| | - Sam Griffiths-Jones
- Faculty of Biology Medicine and Health, University of Manchester, D.1416 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Yi Han
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cheryl Hayashi
- Department of Biology, University of California, Riverside, Riverside, CA, 92521, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA
| | - Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
- Department of Developmental Biology, University of Cologne, Cologne Biocenter, Institute of Zoology, Zuelpicher Straße 47b, 50674, Cologne, Germany
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Sevilla, Spain
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rodrigo Nunes da Fonseca
- Nucleo em Ecologia e Desenvolvimento SocioAmbiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 27941-222, Brazil
| | - Christian L B Paese
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Matthew Ronshaugen
- Faculty of Biology Medicine and Health, University of Manchester, D.1416 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Christoph Schomburg
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Montserrat Torres-Oliva
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Natascha Turetzek
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Bram Vanthournout
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
- Evolution and Optics of Nanostructure group (EON), Biology Department, Ghent University, Gent, Belgium
| | - John H Werren
- Biology Department, University of Rochester, Rochester, NY, 14627, USA
| | - Carsten Wolff
- Humboldt-Universität of Berlin, Institut für Biologie, Philippstr.13, 10115, Berlin, Germany
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach-Institute, GZMB, Georg-August-University, Göttingen Campus, Justus von Liebig Weg 11, 37077, Göttingen, Germany.
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Jonathan Coddington
- Smithsonian National Museum of Natural History, MRC-163, P.O. Box 37012, Washington, DC, 20013-7012, USA.
| | - Hiroki Oda
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan.
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan.
| | - Mario Stanke
- Ernst Moritz Arndt University Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17487, Greifswald, Germany.
| | - Nadia A Ayoub
- Department of Biology, Washington and Lee University, 204 West Washington Street, Lexington, VA, 24450, USA.
| | - Nikola-Michael Prpic
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
| | - Jean-François Flot
- Université libre de Bruxelles (ULB), Evolutionary Biology & Ecology, C.P. 160/12, Avenue F.D. Roosevelt 50, 1050, Brussels, Belgium.
| | - Nico Posnien
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
41
|
Schwager EE, Sharma PP, Clarke T, Leite DJ, Wierschin T, Pechmann M, Akiyama-Oda Y, Esposito L, Bechsgaard J, Bilde T, Buffry AD, Chao H, Dinh H, Doddapaneni H, Dugan S, Eibner C, Extavour CG, Funch P, Garb J, Gonzalez LB, Gonzalez VL, Griffiths-Jones S, Han Y, Hayashi C, Hilbrant M, Hughes DST, Janssen R, Lee SL, Maeso I, Murali SC, Muzny DM, Nunes da Fonseca R, Paese CLB, Qu J, Ronshaugen M, Schomburg C, Schönauer A, Stollewerk A, Torres-Oliva M, Turetzek N, Vanthournout B, Werren JH, Wolff C, Worley KC, Bucher G, Gibbs RA, Coddington J, Oda H, Stanke M, Ayoub NA, Prpic NM, Flot JF, Posnien N, Richards S, McGregor AP. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biol 2017; 15:62. [PMID: 28756775 PMCID: PMC5535294 DOI: 10.1186/s12915-017-0399-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022] Open
Abstract
Background The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. Results We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. Conclusions Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0399-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evelyn E Schwager
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.,Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA, 01854, USA
| | - Prashant P Sharma
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Thomas Clarke
- Department of Biology, Washington and Lee University, 204 West Washington Street, Lexington, VA, 24450, USA.,Department of Biology, University of California, Riverside, Riverside, CA, 92521, USA.,J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
| | - Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Torsten Wierschin
- Ernst Moritz Arndt University Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17487, Greifswald, Germany
| | - Matthias Pechmann
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.,Department of Developmental Biology, University of Cologne, Cologne Biocenter, Institute of Zoology, Zuelpicher Straße 47b, 50674, Cologne, Germany
| | - Yasuko Akiyama-Oda
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan.,Osaka Medical College, Takatsuki, Osaka, Japan
| | - Lauren Esposito
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| | - Jesper Bechsgaard
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Trine Bilde
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Alexandra D Buffry
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - HarshaVardhan Doddapaneni
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cornelius Eibner
- Department of Genetics, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Peter Funch
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Jessica Garb
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA, 01854, USA
| | - Luis B Gonzalez
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Vanessa L Gonzalez
- Smithsonian National Museum of Natural History, MRC-163, P.O. Box 37012, Washington, DC, 20013-7012, USA
| | - Sam Griffiths-Jones
- Faculty of Biology Medicine and Health, University of Manchester, D.1416 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Yi Han
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cheryl Hayashi
- Department of Biology, University of California, Riverside, Riverside, CA, 92521, USA.,Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA
| | - Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.,Department of Developmental Biology, University of Cologne, Cologne Biocenter, Institute of Zoology, Zuelpicher Straße 47b, 50674, Cologne, Germany
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Sevilla, Spain
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rodrigo Nunes da Fonseca
- Nucleo em Ecologia e Desenvolvimento SocioAmbiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 27941-222, Brazil
| | - Christian L B Paese
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Matthew Ronshaugen
- Faculty of Biology Medicine and Health, University of Manchester, D.1416 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Christoph Schomburg
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Montserrat Torres-Oliva
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Natascha Turetzek
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Bram Vanthournout
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark.,Evolution and Optics of Nanostructure group (EON), Biology Department, Ghent University, Gent, Belgium
| | - John H Werren
- Biology Department, University of Rochester, Rochester, NY, 14627, USA
| | - Carsten Wolff
- Humboldt-Universität of Berlin, Institut für Biologie, Philippstr.13, 10115, Berlin, Germany
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach-Institute, GZMB, Georg-August-University, Göttingen Campus, Justus von Liebig Weg 11, 37077, Göttingen, Germany.
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Jonathan Coddington
- Smithsonian National Museum of Natural History, MRC-163, P.O. Box 37012, Washington, DC, 20013-7012, USA.
| | - Hiroki Oda
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan. .,Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan.
| | - Mario Stanke
- Ernst Moritz Arndt University Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17487, Greifswald, Germany.
| | - Nadia A Ayoub
- Department of Biology, Washington and Lee University, 204 West Washington Street, Lexington, VA, 24450, USA.
| | - Nikola-Michael Prpic
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
| | - Jean-François Flot
- Université libre de Bruxelles (ULB), Evolutionary Biology & Ecology, C.P. 160/12, Avenue F.D. Roosevelt 50, 1050, Brussels, Belgium.
| | - Nico Posnien
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
42
|
Setton EVW, March LE, Nolan ED, Jones TE, Cho H, Wheeler WC, Extavour CG, Sharma PP. Expression and function of spineless orthologs correlate with distal deutocerebral appendage morphology across Arthropoda. Dev Biol 2017; 430:224-236. [PMID: 28764892 DOI: 10.1016/j.ydbio.2017.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 07/03/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
Abstract
The deutocerebral (second) head segment is putatively homologous across Arthropoda, in spite of remarkable disparity of form and function of deutocerebral appendages. In Mandibulata this segment bears a pair of sensory antennae, whereas in Chelicerata the same segment bears a pair of feeding appendages called chelicerae. Part of the evidence for the homology of deutocerebral appendages is the conserved function of homothorax (hth), which has been shown to specify antennal or cheliceral fate in the absence of Hox signaling, in both mandibulate and chelicerate exemplars. However, the genetic basis for the morphological disparity of antenna and chelicera is not understood. To test whether downstream targets of hth have diverged in a lineage-specific manner, we examined the evolution of the function and expression of spineless (ss), which in two holometabolous insects is known to act as a hth target and distal antennal determinant. Toward expanding phylogenetic representation of gene expression data, here we show that strong expression of ss is observed in developing antennae of a hemimetabolous insect, a centipede, and an amphipod crustacean. By contrast, ss orthologs are not expressed throughout the cheliceral limb buds of spiders or harvestmen during developmental stages when appendage fate is specified. RNA interference-mediated knockdown of ss in Oncopeltus fasciatus, which bears a simple plesiomorphic antenna, resulted in homeotic distal antenna-to-leg transformation, comparable to data from holometabolous insect counterparts. Knockdown of hth in Oncopeltus fasciatus abrogated ss expression, suggesting conservation of upstream regulation. These data suggest that ss may be a flagellar (distal antennal) determinant more broadly, and that this function was acquired at the base of Mandibulata.
Collapse
Affiliation(s)
- Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Logan E March
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Erik D Nolan
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Tamsin E Jones
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Holly Cho
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA.
| |
Collapse
|
43
|
Janssen R, Budd GE. Investigation of endoderm marker-genes during gastrulation and gut-development in the velvet worm Euperipatoides kanangrensis. Dev Biol 2017; 427:155-164. [DOI: 10.1016/j.ydbio.2017.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/14/2017] [Accepted: 04/23/2017] [Indexed: 11/30/2022]
|
44
|
Abstract
Background Classical cadherins are a metazoan-specific family of homophilic cell-cell adhesion molecules that regulate morphogenesis. Type I and type IV cadherins in this family function at adherens junctions in the major epithelial tissues of vertebrates and insects, respectively, but they have distinct, relatively simple domain organizations that are thought to have evolved by independent reductive changes from an ancestral type III cadherin, which is larger than derived paralogs and has a complicated domain organization. Although both type III and type IV cadherins have been identified in hexapods and branchiopods, the process by which the type IV cadherin evolved is still largely unclear. Results Through an analysis of arthropod genome sequences, we found that the only classical cadherin encoded in chelicerate genomes was the type III cadherin and that the two type III cadherin genes found in the spider Parasteatoda tepidariorum genome exhibited a complex yet ancestral exon-intron organization in arthropods. Genomic and transcriptomic data from branchiopod, copepod, isopod, amphipod, and decapod crustaceans led us to redefine the type IV cadherin category, which we separated into type IVa and type IVb, which displayed a similar domain organization, except type IVb cadherins have a larger number of extracellular cadherin (EC) domains than do type IVa cadherins (nine versus seven). We also showed that type IVa cadherin genes occurred in the hexapod, branchiopod, and copepod genomes whereas only type IVb cadherin genes were present in malacostracans. Furthermore, comparative characterization of the type IVb cadherins suggested that the presence of two extra EC domains in their N-terminal regions represented primitive characteristics. In addition, we identified an evolutionary loss of two highly conserved cysteine residues among the type IVa cadherins of insects. Conclusions We provide a genomic perspective of the evolution of classical cadherins among bilaterians, with a focus on the Arthropoda, and suggest that following the divergence of early arthropods, the precursor of the insect type IV cadherin evolved through stepwise reductive changes from the ancestral type III state. In addition, the complementary distributions of polarized genomic characters related to type IVa/IVb cadherins may have implications for our interpretations of pancrustacean phylogeny. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0991-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mizuki Sasaki
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, 569-1125, Osaka, Japan.,Current address: Department of Parasitology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-higashi, Asahikawa, 078-8510, Hokkaido, Japan
| | - Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, 569-1125, Osaka, Japan.,Department of Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, 569-1125, Osaka, Japan. .,Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan.
| |
Collapse
|
45
|
Janssen R. Gene expression reveals evidence for EGFR-dependent proximal-distal limb patterning in a myriapod. Evol Dev 2017; 19:124-135. [PMID: 28444830 DOI: 10.1111/ede.12222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evolution of segmented limbs is one of the key innovations of Arthropoda, allowing development of functionally specific specialized head and trunk appendages, a major factor behind their unmatched evolutionary success. Proximodistal limb patterning is controlled by two regulatory networks in the vinegar fly Drosophila melanogaster, and other insects. The first is represented by the function of the morphogens Wingless (Wg) and Decapentaplegic (Dpp); the second by the EGFR-signaling cascade. While the role of Wg and Dpp has been studied in a wide range of arthropods representing all main branches, that is, Pancrustacea (= Hexapoda + Crustacea), Myriapoda and Chelicerata, investigation of the potential role of EGFR-signaling is restricted to insects (Hexapoda). Gene expression analysis of Egfr, its potential ligands, and putative downstream factors in the pill millipede Glomeris marginata (Myriapoda: Diplopoda), reveals that-in at least mandibulate arthropods-EGFR-signaling is likely a conserved regulatory mechanism in proximodistal limb patterning.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
46
|
Feitosa NM, Pechmann M, Schwager EE, Tobias-Santos V, McGregor AP, Damen WGM, Nunes da Fonseca R. Molecular control of gut formation in the spider Parasteatoda tepidariorum. Genesis 2017; 55. [PMID: 28432834 DOI: 10.1002/dvg.23033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/23/2017] [Accepted: 03/16/2017] [Indexed: 12/16/2022]
Abstract
The development of a digestive system is an essential feature of bilaterians. Studies of the molecular control of gut formation in arthropods have been studied in detail in the fruit fly Drosophila melanogaster. However, little is known in other arthropods, especially in noninsect arthropods. To better understand the evolution of arthropod alimentary system, we investigate the molecular control of gut development in the spider Parasteatoda tepidariorum (Pt), the primary chelicerate model species for developmental studies. Orthologs of the ectodermal genes Pt-wingless (Pt-wg) and Pt-hedgehog (Pt-hh), of the endodermal genes, Pt-serpent (Pt-srp) and Pt-hepatocyte-nuclear factor-4 (Pt-hnf4) and of the mesodermal gene Pt-twist (Pt-twi) are expressed in the same germ layers during spider gut development as in D. melanogaster. Thus, our expression data suggest that the downstream molecular components involved in gut development in arthropods are conserved. However, Pt-forkhead (Pt-fkh) expression and function in spiders is considerably different from its D. melanogaster ortholog. Pt-fkh is expressed before gastrulation in a cell population that gives rise to endodermal and mesodermal precursors, suggesting a possible role for this factor in specification of both germ layers. To test this hypothesis, we knocked down Pt-fkh via RNA interference. Pt-fkh RNAi embryos not only fail to develop a proper gut, but also lack the mesodermal Pt-twi expressing cells. Thus, in spiders Pt-fkh specifies endodermal and mesodermal germ layers. We discuss the implications of these findings for the evolution and development of gut formation in Ecdysozoans.
Collapse
Affiliation(s)
- Natália Martins Feitosa
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, Rio de Janeiro, 27920-560, Brazil
| | - Matthias Pechmann
- Institute for Developmental Biology, University of Cologne, Cologne, North-Rhine Westphalia, 50674, Germany
| | - Evelyn E Schwager
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, Massachusetts, 01854
| | - Vitória Tobias-Santos
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, Rio de Janeiro, 27920-560, Brazil
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, United Kingdom
| | - Wim G M Damen
- Department of Genetics, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena, 07743, Germany
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, Rio de Janeiro, 27920-560, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Universidade Federal do Rio de Janeiro (UFRJ), 21941-599 Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Turetzek N, Prpic NM. Observations on germ band development in the cellar spider Pholcus phalangioides. Dev Genes Evol 2016; 226:413-422. [PMID: 27581033 DOI: 10.1007/s00427-016-0562-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/22/2016] [Indexed: 11/24/2022]
Abstract
Most recent studies of spider embryonic development have focused on representatives of the species-rich group of entelegyne spiders (over 80 % of all extant species). Embryogenesis in the smaller spider groups, however, is less well studied. Here, we describe the development of the germ band in the spider species Pholcus phalangioides, a representative of the haplogyne spiders that are phylogenetically the sister group of the entelegyne spiders. We show that the transition from radially symmetric embryonic anlage to the bilaterally symmetric germ band involves the accumulation of cells in the centre of the embryonic anlage (primary thickening). These cells then disperse all across the embryonic anlage. A secondary thickening of cells then appears in the centre of the embryonic anlage, and this thickening expands and forms the segment addition zone. We also confirm that the major part of the opisthosoma initially develops as a tube shaped structure, and its segments are then sequentially folded down on the yolk during inversion. This special mode of opisthosoma formation has not been reported for entelegyne spiders, but a more comprehensive sampling of this diverse group is necessary to decide whether this peculiarity is indeed lacking in the entelegyne spiders.
Collapse
Affiliation(s)
- Natascha Turetzek
- Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Abteilung für Entwicklungsbiologie, 37077, Göttingen, Germany.,Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Nikola-Michael Prpic
- Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Abteilung für Entwicklungsbiologie, 37077, Göttingen, Germany. .,Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
48
|
Whittle CA, Extavour CG. Expression-Linked Patterns of Codon Usage, Amino Acid Frequency, and Protein Length in the Basally Branching Arthropod Parasteatoda tepidariorum. Genome Biol Evol 2016; 8:2722-36. [PMID: 27017527 PMCID: PMC5630913 DOI: 10.1093/gbe/evw068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Spiders belong to the Chelicerata, the most basally branching arthropod subphylum. The common house spider, Parasteatoda tepidariorum, is an emerging model and provides a valuable system to address key questions in molecular evolution in an arthropod system that is distinct from traditionally studied insects. Here, we provide evidence suggesting that codon usage, amino acid frequency, and protein lengths are each influenced by expression-mediated selection in P. tepidariorum. First, highly expressed genes exhibited preferential usage of T3 codons in this spider, suggestive of selection. Second, genes with elevated transcription favored amino acids with low or intermediate size/complexity (S/C) scores (glycine and alanine) and disfavored those with large S/C scores (such as cysteine), consistent with the minimization of biosynthesis costs of abundant proteins. Third, we observed a negative correlation between expression level and coding sequence length. Together, we conclude that protein-coding genes exhibit signals of expression-related selection in this emerging, noninsect, arthropod model.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Organismic and Evolutionary Biology, Harvard University
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University Department of Molecular and Cellular Biology, Harvard University
| |
Collapse
|
49
|
Pechmann M. Formation of the germ-disc in spider embryos by a condensation-like mechanism. Front Zool 2016; 13:35. [PMID: 27525029 PMCID: PMC4982120 DOI: 10.1186/s12983-016-0166-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/18/2016] [Indexed: 01/08/2023] Open
Abstract
Background Determination of the embryonic body axes is a crucial developmental process in all animals. The establishment of the embryonic axes of spiders has been best studied in the common-house-spider Parasteatoda tepidariorum. Here, anteroposterior (AP) polarity arises during germ disc formation; the centre of the germ-disc marks the future posterior pole, and the rim of the disc the future anterior pole of the spider embryo. The centre of the germ disc is also needed for the formation of the cumulus, a group of migratory cells needed to establish dorsoventral (DV) polarity. Thus, both body axes depend on proper germ disc formation and patterning. However, these processes have not been fully analysed at the cellular and molecular level. Results Here I present new techniques to stain the cell membranes/outlines in live and fixed spider embryos. I show that the germ-disc is formed from a regular and contiguous blastoderm and that co-ordinated cell shape changes, rather than migration of single cells, are required to drive germ-disc formation in P. tepidariorum embryos. Furthermore, I show that the rate of cell divisions within the embryonic and extra-embryonic region is not involved in the rapid establishment of the germ-disc. Finally, I show that the process of germ-disc formation is dependent on the initiation of zygotic transcription. Conclusions The presented data provide new insights in to the formation of the germ-disc in spider embryos. The establishment of the germ-disc in Parasteatoda embryos is a highly dynamic process that involves wide scale cell-shape changes. While most of the blastodermal cells become cuboidal to form the dense germ-disc, the remaining blastodermal cells stay squamous and develop into huge extra-embryonic, yolk rich cells. In addition, this study shows that the onset of zygotic transcription is needed to establish the germ-disc itself, and that the mid-blastula transition of Parasteatoda tepidariorum embryos is prior to any overt axis establishment. Electronic supplementary material The online version of this article (doi:10.1186/s12983-016-0166-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthias Pechmann
- University of Cologne, Cologne Biocenter, Zülpicher Str. 47B, 50674 Cologne, Germany
| |
Collapse
|
50
|
Leite DJ, McGregor AP. Arthropod evolution and development: recent insights from chelicerates and myriapods. Curr Opin Genet Dev 2016; 39:93-100. [DOI: 10.1016/j.gde.2016.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 01/30/2023]
|