1
|
Ragle JM, Turzo A, Jackson A, Vo AA, Pham VT, Ward JD. The NHR-23-regulated putative protease inhibitor mlt-11 gene is necessary for C. elegans cuticle structure and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593762. [PMID: 38766248 PMCID: PMC11100798 DOI: 10.1101/2024.05.12.593762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
C. elegans molting offers a powerful entry point to understanding developmentally programmed apical extracellular matrix remodeling. However, the gene regulatory network controlling this process remains poorly understood. Focusing on targets of NHR-23, a key transcription factor that drives molting, we confirmed the Kunitz family protease inhibitor gene mlt-11 as an NHR-23 target. Through reporter assays, we identified NHR-23-binding sites that are necessary and sufficient for epithelial expression. We generated a translational fusion and demonstrated that MLT-11 is localized to the cuticle and lined openings to the exterior (vulva, rectum, mouth). We created a set of strains expressing varied levels of MLT-11 by deleting endogenous cis-regulatory element sequences. Combined deletion of two cis-regulatory elements caused developmental delay, motility defects, and failure of the cuticle barrier. Inactivation of mlt-11 by RNAi produced even more pronounced defects. mlt-11 is necessary to pattern every layer of the adult cuticle, suggesting a broad patterning role prior to the formation of the mature cuticle. Together these studies provide an entry point into understanding how individual cis-regulatory elements function to coordinate expression of oscillating genes involved in molting and how MLT-11 ensures proper cuticle assembly.
Collapse
Affiliation(s)
- James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ariela Turzo
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Anton Jackson
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - An A. Vo
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Vivian T. Pham
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jordan D. Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
2
|
Smith M, Lesperance M, Herrmann A, Vernooy S, Cherian A, Kivlehan E, Whipple L, Portman DS, Mason DA. Two C. elegans DM domain proteins, DMD-3 and MAB-3, function in late stages of male somatic gonad development. Dev Biol 2024; 514:50-65. [PMID: 38880276 DOI: 10.1016/j.ydbio.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
To bring about sexual dimorphism in form, information from the sex determination pathway must trigger sex-specific modifications in developmental programs. DM-domain encoding genes have been found to be involved in sex determination in a multitude of animals, often at the level of male somatic gonad formation. Here we report our findings that the DM-domain transcription factors MAB-3 and DMD-3 function together in multiple steps during the late stages of C. elegans male somatic gonad development. Both mab-3 and dmd-3 are expressed in the linker cell and hindgut of L4 males and dmd-3 is also expressed in presumptive vas deferens cells. Furthermore, dmd-3, but not mab-3, expression in the linker cell is downstream of nhr-67, a nuclear hormone receptor that was previously shown to control late stages of linker cell migration. In mab-3; dmd-3 double mutant males, the last stage of linker cell migration is partially defective, resulting in aberrant linker cell shapes and often a failure of the linker cell to complete its migration to the hindgut. When mab-3; dmd-3 double mutant linker cells do complete their migration, they fail to be engulfed by the hindgut, indicating that dmd-3 and mab-3 activity are essential for this process. Furthermore, linker cell death and clearance are delayed in mab-3; dmd-3 double mutants, resulting in the linker cell persisting into adulthood. Finally, DMD-3 and MAB-3 function to activate expression of the bZIP transcription factor encoding gene zip-5 and downregulate the expression of the zinc metalloprotease ZMP-1 in the linker cell. Taken together, these results demonstrate a requirement for DM-domain transcription factors in controlling C. elegans male gonad formation, supporting the notion that the earliest DM-domain genes were involved in male somatic gonad development in the last common ancestor of the bilaterians.
Collapse
Affiliation(s)
- Michele Smith
- Biology Department, Siena College, Loudonville, NY, 12211, USA
| | | | - Alyssa Herrmann
- Biology Department, Siena College, Loudonville, NY, 12211, USA
| | | | - Asher Cherian
- Biology Department, Siena College, Loudonville, NY, 12211, USA
| | - Emily Kivlehan
- Biology Department, Siena College, Loudonville, NY, 12211, USA
| | - Lauren Whipple
- Biology Department, Siena College, Loudonville, NY, 12211, USA
| | - Douglas S Portman
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, 14642, USA; Department of Neuroscience, University of Rochester, Rochester, NY, 14642, USA; Department of Biology, University of Rochester, Rochester, NY, 14642, USA
| | - D Adam Mason
- Biology Department, Siena College, Loudonville, NY, 12211, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
3
|
Liu J, Murray JI. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023; 225:iyad174. [PMID: 37847877 PMCID: PMC11491538 DOI: 10.1093/genetics/iyad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Network analysis in aged C. elegans reveals candidate regulatory genes of ageing. Biogerontology 2021; 22:345-367. [PMID: 33871732 DOI: 10.1007/s10522-021-09920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
Ageing is a biological process guided by genetic and environmental factors that ultimately lead to adverse outcomes for organismal lifespan and healthspan. Determination of molecular pathways that are affected with age and increase disease susceptibility is crucial. The gene expression profile of the ideal ageing model, namely the nematode Caenorhabditis elegans mapped with the microarray technology initially led to the identification of age-dependent gene expression alterations that characterize the nematode's ageing process. The list of differentially expressed genes was then utilized to construct a network of molecular interactions with their first neighbors/interactors using the interactions listed in the WormBase database. The subsequent network analysis resulted in the unbiased selection of 110 candidate genes, among which well-known ageing regulators appeared. More importantly, our approach revealed candidates that have never been linked to ageing before, thus suggesting promising potential targets/ageing regulators.
Collapse
|
5
|
Mathies LD, Ray S, Lopez-Alvillar K, Arbeitman MN, Davies AG, Bettinger JC. mRNA profiling reveals significant transcriptional differences between a multipotent progenitor and its differentiated sister. BMC Genomics 2019; 20:427. [PMID: 31138122 PMCID: PMC6540470 DOI: 10.1186/s12864-019-5821-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/21/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The two Caenorhabditis elegans somatic gonadal precursors (SGPs) are multipotent progenitors that generate all somatic tissues of the adult reproductive system. The sister cells of the SGPs are two head mesodermal cells (hmcs); one hmc dies by programmed cell death and the other terminally differentiates. Thus, a single cell division gives rise to one multipotent progenitor and one differentiated cell with identical lineage histories. We compared the transcriptomes of SGPs and hmcs in order to learn the determinants of multipotency and differentiation in this lineage. RESULTS We generated a strain that expressed fluorescent markers specifically in SGPs (ehn-3A::tdTomato) and hmcs (bgal-1::GFP). We dissociated cells from animals after the SGP/hmc cell division, but before the SGPs had further divided, and subjected the dissociated cells to fluorescence-activated cell sorting to collect isolated SGPs and hmcs. We analyzed the transcriptomes of these cells and found that 5912 transcripts were significantly differentially expressed, with at least two-fold change in expression, between the two cell types. The hmc-biased genes were enriched with those that are characteristic of neurons. The SGP-biased genes were enriched with those indicative of cell proliferation and development. We assessed the validity of our differentially expressed genes by examining existing reporters for five of the 10 genes with the most significantly biased expression in SGPs and found that two showed expression in SGPs. For one reporter that did not show expression in SGPs, we generated a GFP knock-in using CRISPR/Cas9. This reporter, in the native genomic context, was expressed in SGPs. CONCLUSIONS We found that the transcriptional profiles of SGPs and hmcs are strikingly different. The hmc-biased genes are enriched with those that encode synaptic transmission machinery, which strongly suggests that it has neuron-like signaling properties. In contrast, the SGP-biased genes are enriched with genes that encode factors involved in transcription and translation, as would be expected from a cell preparing to undergo proliferative divisions. Mediators of multipotency are likely to be among the genes differentially expressed in SGPs.
Collapse
Affiliation(s)
- Laura D. Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298 USA
| | - Surjyendu Ray
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306 USA
| | - Kayla Lopez-Alvillar
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298 USA
| | - Michelle N. Arbeitman
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306 USA
| | - Andrew G. Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298 USA
| | - Jill C. Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298 USA
| |
Collapse
|
6
|
Choi S, Ambros V. The C. elegans heterochronic gene lin-28 coordinates the timing of hypodermal and somatic gonadal programs for hermaphrodite reproductive system morphogenesis. Development 2019; 146:dev164293. [PMID: 30745431 PMCID: PMC6432661 DOI: 10.1242/dev.164293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Abstract
C. elegans heterochronic genes determine the timing of expression of specific cell fates in particular stages of developing larvae. However, their broader roles in coordinating developmental events across diverse tissues have been less well investigated. Here, we show that loss of lin-28, a central heterochronic regulator of hypodermal development, causes reduced fertility associated with abnormal somatic gonadal morphology. In particular, the abnormal spermatheca-uterine valve morphology of lin-28(lf) hermaphrodites traps embryos in the spermatheca, which disrupts ovulation and causes embryonic lethality. The same genes that act downstream of lin-28 in the regulation of hypodermal developmental timing also act downstream of lin-28 in somatic gonadal morphogenesis and fertility. Importantly, we find that hypodermal expression, but not somatic gonadal expression, of lin-28 is sufficient for restoring normal somatic gonadal morphology in lin-28(lf) mutants. We propose that the abnormal somatic gonadal morphogenesis of lin-28(lf) hermaphrodites results from temporal discoordination between the accelerated hypodermal development and normally timed somatic gonadal development. Thus, our findings exemplify how a cell-intrinsic developmental timing program can also control proper development of other interacting tissues, presumably by cell non-autonomous signal(s). This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Sungwook Choi
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Victor Ambros
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
7
|
Crosby A, Kroetz M. FKH-6 is expressed in male gonadal cells during L3 larval development. MICROPUBLICATION BIOLOGY 2018; 2018. [PMID: 32550370 PMCID: PMC7255771 DOI: 10.17912/micropub.biology.000079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Aaron Crosby
- Department of Biological Sciences, University of South Alabama, Mobile, AL, USA
| | - Mary Kroetz
- Department of Biological Sciences, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
8
|
Abstract
In the nematode Caenorhabditis elegans, RNA interference (RNAi) triggered by double-stranded RNA (dsRNA) spreads systemically to cause gene silencing throughout the organism and its progeny. We confirm that Caenorhabditis nematode SID-1 orthologs have dsRNA transport activity and demonstrate that the SID-1 paralog CHUP-1 does not transport dsRNA. Sequence comparison of these similar proteins, in conjunction with analysis of loss-of-function missense alleles, identifies several conserved 2–7 amino acid microdomains within the extracellular domain (ECD) that are important for dsRNA transport. Among these missense alleles, we identify and characterize a sid-1 allele, qt95, which causes tissue-specific silencing defects most easily explained as a systemic RNAi export defect. However, we conclude from genetic and biochemical analyses that sid-1(qt95) disrupts only import, and speculate that the apparent export defect is caused by the cumulative effect of sequentially impaired dsRNA import steps. Thus, consistent with previous studies, we fail to detect a requirement for sid-1 in dsRNA export, but demonstrate for the first time that SID-1 functions in the intestine to support environmental RNAi (eRNAi).
Collapse
|
9
|
Subirana JA, Messeguer X. Evolution of Tandem Repeat Satellite Sequences in Two Closely Related Caenorhabditis Species. Diminution of Satellites in Hermaphrodites. Genes (Basel) 2017; 8:genes8120351. [PMID: 29182550 PMCID: PMC5748669 DOI: 10.3390/genes8120351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 01/15/2023] Open
Abstract
The availability of the genome sequence of the unisexual (male-female) Caenorhabditis nigoni offers an opportunity to compare its non-coding features with the related hermaphroditic species Caenorhabditis briggsae; to understand the evolutionary dynamics of their tandem repeat sequences (satellites), as a result of evolution from the unisexual ancestor. We take advantage of the previously developed SATFIND program to build satellite families defined by a consensus sequence. The relative number of satellites (satellites/Mb) in C. nigoni is 24.6% larger than in C. briggsae. Some satellites in C. nigoni have developed from a proto-repeat present in the ancestor species and are conserved as an isolated sequence in C. briggsae. We also identify unique satellites which occur only once and joint satellite families with a related sequence in both species. Some of these families are only found in C. nigoni, which indicates a recent appearance; they contain conserved adjacent 5′ and 3′ regions, which may favor transposition. Our results show that the number, length and turnover of satellites are restricted in the hermaphrodite C. briggsae when compared with the unisexual C. nigoni. We hypothesize that this results from differences in unequal recombination during meiotic chromosome pairing, which limits satellite turnover in hermaphrodites.
Collapse
Affiliation(s)
- Juan A Subirana
- Department of Computer Science, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain.
- Evolutionary Genomics Group, Research Program on Biomedical Informatics (GRIB)-Hospital del Mar Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Doctor Aiguader 86, 08003 Barcelona, Spain.
| | - Xavier Messeguer
- Department of Computer Science, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain.
| |
Collapse
|
10
|
Sallee MD, Littleford HE, Greenwald I. A bHLH Code for Sexually Dimorphic Form and Function of the C. elegans Somatic Gonad. Curr Biol 2017; 27:1853-1860.e5. [PMID: 28602651 DOI: 10.1016/j.cub.2017.05.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/05/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
Abstract
How sexually dimorphic gonads are generated is a fundamental question at the interface of developmental and evolutionary biology [1-3]. In C. elegans, sexual dimorphism in gonad form and function largely originates in different apportionment of roles to three regulatory cells of the somatic gonad primordium in young larvae. Their essential roles include leading gonad arm outgrowth, serving as the germline niche, connecting to epithelial openings, and organizing reproductive organ development. The development and function of the regulatory cells in both sexes requires the basic-helix-loop-helix (bHLH) transcription factor HLH-2, the sole ortholog of the E proteins mammalian E2A and Drosophila Daughterless [4-8], yet how they adopt different fates to execute their different roles has been unknown. Here, we show that each regulatory cell expresses a distinct complement of bHLH-encoding genes-and therefore distinct HLH-2:bHLH dimers-and formulate a "bHLH code" hypothesis for regulatory cell identity. We support this hypothesis by showing that the bHLH gene complement is both necessary and sufficient to confer particular regulatory cell fates. Strikingly, prospective regulatory cells can be directly reprogrammed into other regulatory cell types simply by loss or ectopic expression of bHLH genes, and male-to-female and female-to-male transformations indicate that the code is instructive for sexual dimorphism. The bHLH code appears to be embedded in a bow-tie regulatory architecture [9, 10], wherein sexual, positional, temporal, and lineage inputs connect through bHLH genes to diverse outputs for terminal features and provides a plausible mechanism for the evolutionary plasticity of gonad form seen in nematodes [11-15].
Collapse
Affiliation(s)
- Maria D Sallee
- Department of Genetics and Development, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027, USA
| | - Hana E Littleford
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Iva Greenwald
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
11
|
Kroetz MB, Zarkower D. Cell-Specific mRNA Profiling of the Caenorhabditis elegans Somatic Gonadal Precursor Cells Identifies Suites of Sex-Biased and Gonad-Enriched Transcripts. G3 (BETHESDA, MD.) 2015; 5:2831-41. [PMID: 26497144 PMCID: PMC4683654 DOI: 10.1534/g3.115.022517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/16/2015] [Indexed: 02/07/2023]
Abstract
The Caenorhabditis elegans somatic gonad differs greatly between the two sexes in its pattern of cell divisions, migration, and differentiation. Despite decades of study, the genetic pathways directing early gonadal development and establishing sexual dimorphism in the gonad remain largely unknown. To help define the genetic networks that regulate gonadal development, we employed cell-specific RNA-seq. We identified transcripts present in the somatic gonadal precursor cells and their daughter cells of each sex at the onset of sexual differentiation. We identified several hundred gonad-enriched transcripts, including the majority of known regulators of early gonadal development, and transgenic reporter analysis confirmed the effectiveness of this approach. Before the division of the somatic gonad precursors, few sex-biased gonadal transcripts were detectable; less than 6 hr later, after their division, we identified more than 250 sex-biased transcripts, of which about a third were enriched in the somatic gonad compared to the whole animal. This indicates that a robust sex-biased developmental program, some of it gonad-specific, initiates in the somatic gonadal precursor cells around the time of their first division. About 10% of male-biased transcripts had orthologs with male-biased expression in the early mouse gonad, suggesting possible conservation of gonad sex differentiation. Cell-specific analysis also identified approximately 70 previously unannotated mRNA isoforms that are enriched in the somatic gonad. Our data illustrate the power of cell-specific transcriptome analysis and suggest that early sex differentiation in the gonad is controlled by a relatively small suite of differentially expressed genes, even after dimorphism has become apparent.
Collapse
Affiliation(s)
- Mary B Kroetz
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - David Zarkower
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455 Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
12
|
LaBonty M, Szmygiel C, Byrnes LE, Hughes S, Woollard A, Cram EJ. CACN-1/Cactin plays a role in Wnt signaling in C. elegans. PLoS One 2014; 9:e101945. [PMID: 24999833 PMCID: PMC4084952 DOI: 10.1371/journal.pone.0101945] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/13/2014] [Indexed: 11/19/2022] Open
Abstract
Wnt signaling is tightly regulated during animal development and controls cell proliferation and differentiation. In C. elegans, activation of Wnt signaling alters the activity of the TCF/LEF transcription factor, POP-1, through activation of the Wnt/β-catenin or Wnt/β-catenin asymmetry pathways. In this study, we have identified CACN-1 as a potential regulator of POP-1 in C. elegans larval development. CACN-1/Cactin is a well-conserved protein of unknown molecular function previously implicated in the regulation of several developmental signaling pathways. Here we have used activation of POPTOP, a POP-1-responsive reporter construct, as a proxy for Wnt signaling. POPTOP requires POP-1 and SYS-1/β-catenin for activation in L4 uterine cells. RNAi depletion experiments show that CACN-1 is needed to prevent excessive activation of POPTOP and for proper levels and/or localization of POP-1. Surprisingly, high POPTOP expression correlates with increased levels of POP-1 in uterine nuclei, suggesting POPTOP may not mirror endogenous gene expression in all respects. Genetic interaction studies suggest that CACN-1 may act partially through LIT-1/NLK to alter POP-1 localization and POPTOP activation. Additionally, CACN-1 is required for proper proliferation of larval seam cells. Depletion of CACN-1 results in a loss of POP-1 asymmetry and reduction of terminal seam cell number, suggesting an adoption of the anterior, differentiated fate by the posterior daughter cells. These findings suggest CACN-1/Cactin modulates Wnt signaling during larval development.
Collapse
Affiliation(s)
- Melissa LaBonty
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Cleo Szmygiel
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Lauren E. Byrnes
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Samantha Hughes
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Alison Woollard
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Erin J. Cram
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Emmons SW. The development of sexual dimorphism: studies of the Caenorhabditis elegans male. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2014; 3:239-62. [PMID: 25262817 PMCID: PMC4181595 DOI: 10.1002/wdev.136] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/02/2014] [Indexed: 01/09/2023]
Abstract
Studies of the development of the Caenorhabditis elegans male have been carried out with the aim of understanding the basis of sexual dimorphism. Postembryonic development of the two C. elegans sexes differs extensively. Development along either the hermaphrodite or male pathway is specified initially by the X to autosome ratio. The regulatory events initiated by this ratio include a male-determining paracrine intercellular signal. Expression of this signal leads to different consequences in three regions of the body: the nongonadal soma, the somatic parts of the gonad, and the germ line. In the nongonadal soma, activity of the key Zn-finger transcription factor TRA-1 determines hermaphrodite development; in its absence, the male pathway is followed. Only a few genes directly regulated by TRA-1 are currently known, including members of the evolutionarily conserved, male-determining DM domain Zn-finger transcription factors. In the somatic parts of the gonad and germ line, absence of TRA-1 activity is not sufficient for full expression of the male pathway. Several additional transcription factors involved have been identified. In the germ line, regulatory genes for sperm development that act at the level of RNA in the cytoplasm play a prominent role.
Collapse
Affiliation(s)
- Scott W. Emmons
- Albert Einstein College of Medicine 1300 Morris Park Ave. Bronx, New York 10461
| |
Collapse
|
14
|
Kovacevic I, Cram EJ. FLN-1/filamin is required for maintenance of actin and exit of fertilized oocytes from the spermatheca in C. elegans. Dev Biol 2010; 347:247-57. [PMID: 20707996 DOI: 10.1016/j.ydbio.2010.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/29/2010] [Accepted: 08/03/2010] [Indexed: 10/25/2022]
Abstract
Filamin, known primarily for its actin cross-linking function, is a stretch-sensitive structural and signaling scaffold that binds transmembrane receptors and a wide variety of intracellular signaling proteins. The Caenorhabditis elegans filamin ortholog, FLN-1, has a well conserved overall structure, including an N-terminal actin-binding domain, and a series of 20 immunoglobulin (Ig)-like repeats. FLN-1 partially colocalizes with actin filaments in spermathecal and uterine cells. Analysis of phenotypes resulting from a deletion allele and RNAi depletion indicates FLN-1 is required to maintain the actin cytoskeleton in the spermatheca and uterus, and to allow the exit of embryos from the spermatheca. FLN-1 deficient animals accumulate embryos in the spermatheca, lay damaged and unfertilized eggs, and consequently exhibit dramatically reduced brood sizes. The phospholipase PLC-1 is also required for the exit of embryos from the spermatheca, and analysis of doubly mutant animals suggests that PLC-1 and FLN-1 act in the same pathway to promote proper transit of embryos from the spermatheca to the uterus. Given the modular protein structure, subcellular localization, genetic interaction with PLC-1, and known mechanosensory functions of filamin, we postulate that FLN-1 may be required to convert mechanical information about the presence of the oocyte into a biochemical signal, thereby allowing timely exit of the embryo from the spermatheca.
Collapse
Affiliation(s)
- Ismar Kovacevic
- Department of Biology, Northeastern University, 134 Mugar Hall, 360 Huntington Ave, Boston, MA 02115, USA
| | | |
Collapse
|
15
|
Kalis AK, Murphy MW, Zarkower D. EGL-5/ABD-B plays an instructive role in male cell fate determination in the C. elegans somatic gonad. Dev Biol 2010; 344:827-35. [PMID: 20553900 DOI: 10.1016/j.ydbio.2010.05.516] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/26/2010] [Accepted: 05/28/2010] [Indexed: 01/15/2023]
Abstract
Hox genes of the Abdominal-B (Abd-B) class regulate gonadal development in diverse metazoans. Here we have investigated the role of the Abd-B homolog egl-5 in C. elegans gonadal development. Previous work showed that egl-5 is required male-specifically in the gonad and that mutant gonads are highly dysgenic and possibly feminized. We have used sex-specific gonadal reporter genes to confirm that the gonads of egl-5 males are extensively feminized. Sex-specific expression of egl-5 requires the global sex determination gene tra-1 and the gonadal masculinizing gene fkh-6, but mutagenesis of a short male gonadal enhancer element in egl-5 suggested that this regulation is indirect. Ectopic expression of EGL-5 in hermaphrodites is sufficient to induce male gonadal gene expression, indicating that EGL-5 plays an instructive role in male gonadal fate determination. EGL-5 acts in parallel with a Wnt/beta-catenin pathway to regulate male gonadal fates and can physically interact with the Wnt pathway transcription factor POP-1 and modulate activity of a POP-1 dependent reporter gene. We propose that EGL-5 imparts sex-specific function on POP-1 by recruiting it to male-specific gonadal target genes.
Collapse
Affiliation(s)
- Andrea K Kalis
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
16
|
Functional genomic identification of genes required for male gonadal differentiation in Caenorhabditis elegans. Genetics 2010; 185:523-35. [PMID: 20308279 DOI: 10.1534/genetics.110.116038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Caenorhabditis elegans somatic gonad develops from a four-cell primordium into a mature organ that differs dramatically between the sexes in overall morphology (two arms in hermaphrodites and one in males) and in the cell types comprising it. Gonadal development in C. elegans is well studied, but regulation of sexual differentiation, especially later in gonadal development, remains poorly elucidated. To identify genes involved in this process, we performed a genome-wide RNAi screen using sex-specifically expressed gonadal GFP reporters. This screen identified several phenotypic classes, including approximately 70 genes whose depletion feminized male gonadal cells. Among the genes required for male cell fate specification are Wnt/beta-catenin pathway members, cell cycle regulators, and genes required for mitotic spindle function and cytokinesis. We find that a Wnt/beta-catenin pathway independent of extracellular Wnt ligand is essential for asymmetric cell divisions and male differentiation during gonadal development in larvae. We also find that the cell cycle regulators cdk-1 and cyb-3 and the spindle/cytokinesis regulator zen-4 are required for Wnt/beta-catenin pathway activity in the developing gonad. After sex is determined in the gonadal primordium the global sex determination pathway is dispensable for gonadal sexual fate, suggesting that male cell fates are promoted and maintained independently of the global pathway during this period.
Collapse
|
17
|
Abstract
Correct distal tip cell (DTC) migration in the nematode C. elegans requires sensing soluble and matrix cues, remodeling extracellular matrix, and signaling through conserved integrin and netrin pathways. The DTC executes a complex path and coordinates its migration with the developmental stages of larval morphogenesis. This chapter outlines a method for investigating DTC migration in C. elegans using feeding RNA interference (RNAi) and light microscopy. To deplete a candidate gene of interest, nematode eggs are added to plates seeded with RNAi-inducing bacterial lawns. The animals hatch and begin to eat the RNAi bacteria, releasing dsRNA and causing the targeted gene to be depleted during larval development. Positions of migratory cells are monitored in larvae and young adults using differential interference contrast (DIC) and epifluorescence microscopy.
Collapse
|
18
|
Large EE, Mathies LD. hunchback and Ikaros-like zinc finger genes control reproductive system development in Caenorhabditis elegans. Dev Biol 2009; 339:51-64. [PMID: 20026024 DOI: 10.1016/j.ydbio.2009.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 11/30/2009] [Accepted: 12/09/2009] [Indexed: 01/29/2023]
Abstract
Here we provide evidence for a C2H2 zinc finger gene family with similarity to Ikaros and hunchback. The founding member of this family is Caenorhabditis elegans ehn-3, which has important and poorly understood functions in somatic gonad development. We examined the expression and function of four additional hunchback/Ikaros-like (HIL) genes in C. elegans reproductive system development. Two genes, ehn-3 and R08E3.4, are expressed in somatic gonadal precursors (SGPs) and have overlapping functions in their development. In ehn-3; R08E3.4 double mutants, we find defects in the generation of distal tip cells, anchor cells, and spermatheca; three of the five tissues derived from the SGPs. We provide in vivo evidence that C. elegans HIL proteins have functionally distinct zinc finger domains, with specificity residing in the N-terminal set of four zinc fingers and a likely protein-protein interaction domain provided by the C-terminal pair of zinc fingers. In addition, we find that a chimeric human Ikaros protein containing the N-terminal zinc fingers of EHN-3 functions in C. elegans. Together, these results lend support to the idea that the C. elegans HIL genes and Ikaros have similar functional domains. We propose that hunchback, Ikaros, and the HIL genes arose from a common ancestor that was present prior to the divergence of protostomes and deuterostomes.
Collapse
Affiliation(s)
- Edward E Large
- Department of Genetics, North Carolina State University, 3510 Thomas Hall, Raleigh, NC 27695-7614, USA
| | | |
Collapse
|
19
|
Wolff JR, Zarkower D. Chapter 1 Somatic Sexual Differentiation in Caenorhabditis elegans. Curr Top Dev Biol 2008; 83:1-39. [DOI: 10.1016/s0070-2153(08)00401-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Gissendanner CR, Kelley K, Nguyen TQ, Hoener MC, Sluder AE, Maina CV. The Caenorhabditis elegans NR4A nuclear receptor is required for spermatheca morphogenesis. Dev Biol 2007; 313:767-86. [PMID: 18096150 DOI: 10.1016/j.ydbio.2007.11.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 10/30/2007] [Accepted: 11/10/2007] [Indexed: 10/22/2022]
Abstract
The gene nhr-6 encodes the Caenorhabditis elegans ortholog of the NR4A nuclear receptor. We determined the biological functions of NHR-6 through the isolation and characterization of a deletion allele of nhr-6, lg6001. We demonstrate that nhr-6 has an essential role in the development of the C. elegans somatic gonad. Specifically, nhr-6 is required for the development of the hermaphrodite spermatheca, a somatic gonad organ that serves as the site of sperm storage and oocyte fertilization. Using a variety of spermatheca cell markers, we have determined that loss of nhr-6 function causes severe morphological defects in the spermatheca and associated spermathecal valves. This appears to be due to specific requirements for nhr-6 in regulating cell proliferation and cell differentiation during development of these structures. The improper development of these structures in nhr-6(lg6001) mutants leads to defects in ovulation and significantly reduced fecundity of C. elegans hermaphrodites. The phenotypes of nhr-6(lg6001) mutants are consistent with a role for nhr-6 in organogenesis, similar to the functions of its mammalian homologs.
Collapse
Affiliation(s)
- Chris R Gissendanner
- Department of Biology, University of Louisiana at Monroe, Monroe, LA 71209, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Large EE, Mathies LD. Chromatin regulation and sex determination in Caenorhabditis elegans. Trends Genet 2007; 23:314-7. [PMID: 17449136 DOI: 10.1016/j.tig.2007.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 03/12/2007] [Accepted: 04/04/2007] [Indexed: 10/23/2022]
Abstract
Glioma-associated oncogene (GLI) transcription factors function downstream of the hedgehog signal transduction pathway to regulate the development of many animals. Although the nematode Caenorhabditis elegans lacks a hedgehog pathway, it does have a GLI protein that represses male development in favor of hermaphrodite development. As we discuss here, recent findings implicate two conserved transcription-repressor complexes in the repression of male-specific genes. This research indicates a possible conserved role for these complexes in either GLI-directed gene repression or sex determination.
Collapse
Affiliation(s)
- Edward E Large
- Department of Genetics, North Carolina State University, Raleigh, NC 27695-7614, USA
| | | |
Collapse
|
22
|
Ceron J, Rual JF, Chandra A, Dupuy D, Vidal M, van den Heuvel S. Large-scale RNAi screens identify novel genes that interact with the C. elegans retinoblastoma pathway as well as splicing-related components with synMuv B activity. BMC DEVELOPMENTAL BIOLOGY 2007; 7:30. [PMID: 17417969 PMCID: PMC1863419 DOI: 10.1186/1471-213x-7-30] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Accepted: 04/06/2007] [Indexed: 11/10/2022]
Abstract
Background The retinoblastoma tumor suppressor (Rb) acts in a conserved pathway that is deregulated in most human cancers. Inactivation of the single Rb-related gene in Caenorhabditis elegans, lin-35, has only limited effects on viability and fertility, yet causes changes in cell-fate and cell-cycle regulation when combined with inactivation of specific other genes. For instance, lin-35 Rb is a synthetic multivulva (synMuv) class B gene, which causes a multivulva phenotype when inactivated simultaneously with a class A or C synMuv gene. Results We used the ORFeome RNAi library to identify genes that interact with C. elegans lin-35 Rb and identified 57 genes that showed synthetic or enhanced RNAi phenotypes in lin-35 mutants as compared to rrf-3 and eri-1 RNAi hypersensitive mutants. Based on characterizations of a deletion allele, the synthetic lin-35 interactor zfp-2 was found to suppress RNAi and to cooperate with lin-35 Rb in somatic gonad development. Interestingly, ten splicing-related genes were found to function similar to lin-35 Rb, as synMuv B genes that prevent inappropriate vulval induction. Partial inactivation of specific spliceosome components revealed further similarities with lin-35 Rb functions in cell-cycle control, transgene expression and restricted expression of germline granules. Conclusion We identified an extensive series of candidate lin-35 Rb interacting genes and validated zfp-2 as a novel lin-35 synthetic lethal gene. In addition, we observed a novel role for a subset of splicing components in lin-35 Rb-controlled processes. Our data support novel hypotheses about possibilities for anti-cancer therapies and multilevel regulation of gene expression.
Collapse
Affiliation(s)
- Julian Ceron
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, 02129 MA, USA
- Present address : Molecular Oncology and Aging Research, Centre d'Investigacions en Bioquímica I Biología Molecular (CIBBIM), Hospital Universitari Vall d'Hebron 119-129, Barcelona 08035, Spain
| | - Jean-François Rual
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, 44 Binney Street, Boston, 02115 MA, USA
| | - Abha Chandra
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, 02129 MA, USA
| | - Denis Dupuy
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, 44 Binney Street, Boston, 02115 MA, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, 44 Binney Street, Boston, 02115 MA, USA
| | - Sander van den Heuvel
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, 02129 MA, USA
- Department of Developmental Biology, Utrecht University, Kruytbuilding, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
23
|
Tilmann C, Kimble J. Cyclin D regulation of a sexually dimorphic asymmetric cell division. Dev Cell 2005; 9:489-99. [PMID: 16198291 PMCID: PMC1513624 DOI: 10.1016/j.devcel.2005.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 08/15/2005] [Accepted: 09/07/2005] [Indexed: 01/11/2023]
Abstract
The C. elegans somatic gonadal precursor cell (SGP) divides asymmetrically to establish gonad-specific coordinates in both sexes. In addition, the SGP division is sexually dimorphic and initiates sex-specific programs of gonadogenesis. Wnt/MAPK signaling determines the gonadal axes, and the FKH-6 transcription factor specifies the male mode of SGP division. In this paper, we demonstrate that C. elegans cyclin D controls POP-1/TCF asymmetry in the SGP daughters as well as fkh-6 and rnr expression in the SGPs. Although cyclin D mutants have delayed SGP divisions, the cyclin D defects are not mimicked by other methods of retarding the SGP division. We find that EFL-1/E2F has an antagonistic effect on fkh-6 expression and gonadogenesis, which is relieved by cyclin D activity. We propose that cyclin D and other canonical regulators of the G1/S transition coordinate key regulators of axis formation and sex determination with cell cycle progression to achieve the sexually dimorphic SGP asymmetric division.
Collapse
Affiliation(s)
- Christopher Tilmann
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
24
|
Thoemke K, Yi W, Ross JM, Kim S, Reinke V, Zarkower D. Genome-wide analysis of sex-enriched gene expression during C. elegans larval development. Dev Biol 2005; 284:500-8. [PMID: 15987632 DOI: 10.1016/j.ydbio.2005.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 05/16/2005] [Accepted: 05/16/2005] [Indexed: 10/25/2022]
Abstract
Sex determination in C. elegans is controlled by the TRA-1 zinc finger protein, a Ci/GLI homolog that promotes female cell fates throughout the body. The regulatory hierarchy that controls TRA-1 is well established, but the downstream effectors that establish sexual dimorphism during larval development remain largely unknown. Here, we describe the use of cDNA microarrays to identify sex-enriched transcripts expressed during three stages of C. elegans larval development. By excluding previously identified germline-enriched transcripts, we focused on somatic sexual development. This approach identified a large number of sex-enriched transcripts that are good candidates to encode regulators of somatic sexual development. We found little overlap between genes with sex-enriched expression in early versus late larval development, indicating that distinct sexual regulatory programs operate at these times. Genes with sex-enriched expression are found throughout the genome, with no strong bias between autosomes and X chromosomes. Reporter gene analysis revealed that these genes are expressed in highly specific patterns in a variety of sexually dimorphic cells. We searched for TRA-1 consensus DNA binding sites near genes with sex-enriched expression, and found that most strongly sex-enriched mRNAs are likely to be regulated indirectly by TRA-1. These results suggest that TRA-1 controls sexual dimorphism through a small number of intermediary regulators rather than by acting directly on the full constellation of genes involved in sex-specific differentiation.
Collapse
Affiliation(s)
- Kara Thoemke
- Department of Genetics, Cell Biology, and Development, and Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
25
|
Chang W, Lloyd CE, Zarkower D. DSH-2 regulates asymmetric cell division in the early C. elegans somatic gonad. Mech Dev 2005; 122:781-9. [PMID: 15907376 DOI: 10.1016/j.mod.2005.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 03/22/2005] [Accepted: 03/22/2005] [Indexed: 11/29/2022]
Abstract
Like other organs, the C. elegans gonad develops from a simple primordium that must undergo axial patterning to generate correct adult morphology. Proximal/distal (PD) polarity in the C. elegans gonad is established early during gonadogenesis by the somatic gonad precursor cells, Z1 and Z4. Z1 and Z4 each divide asymmetrically to generate one daughter with a proximal fate and one with a distal fate. PD polarity of the Z1/Z4 lineages requires the activity of a Wnt pathway that activates the TCF/LEF homolog pop-1. How the gonadal pathway controlling pop-1 is regulated by upstream factors has been unclear, as neither Wnt nor Dishevelled (Dsh) proteins have been shown to be required. Here we show that the C. elegansdsh homolog dsh-2 controls gonadal polarity. As in pop-1 mutants, dsh-2 hermaphrodites have Z1 and Z4 lineage defects indicative of defective PD polarity and are missing gonadal arms. Males have an elongated but disorganized gonad, also with lineage defects. DSH-2 protein is expressed in the Z1/Z4 gonadal precursor cells. Asymmetric distribution of nuclear GFP::POP-1 in Z1 and Z4 daughter cells is reversed in dsh-2 mutants, with higher levels in distal than proximal daughters. dsh-2 and the frizzled receptor homolog lin-17 have a strong genetic interaction, suggesting that they act in a common pathway. We suggest that DSH-2 functions as an upstream regulator of POP-1 in the somatic gonad to control asymmetric cell division, thereby establishing proximal-distal polarity of the developing organ.
Collapse
Affiliation(s)
- Weiru Chang
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|