1
|
Song H, Hao Y, Xie Q, Chen X, Li N, Wang J, Zhang X, Zhang Y, Hong J, Xue S, Zhang P, Xie S, Wang X. Hoxc10-mediated 'positional memory' regulates cartilage formation subsequent to femoral heterotopic grafting. J Cell Mol Med 2024; 28:e70140. [PMID: 39434203 PMCID: PMC11493555 DOI: 10.1111/jcmm.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
The Hox gene plays a crucial role in the bone development, determining their structure and morphology. Limb bone grafts expressing Hox positive genes are commonly used for free transplantation to repair Hox negative mandibular critical bone defects. However, the specific role of original Hox genes in newly formed bone during the cross-layer bone grafting healing process remains unexplored. Our findings demonstrate that femurs ectopically grafted into the mandibular environment retained a significant ability to differentiate into cartilage and form cartilaginous callus, which may be a key factor contributing to differences in bone graft healing. Hoxc10, an embryonic layer-specific genes, regulates cartilage formation during bone healing. Mechanistically, we observed Hoxc10 retention in co-cultured femoral BMSCs. Knocking out Hoxc10 narrows the bone gap and reduces cartilage formation. In summary, we reveal Hoxc10's 'positional memory' after adult cross-layer bone graft, influencing the outcomes of autologous bone graft.
Collapse
Affiliation(s)
- Haoyue Song
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Yujia Hao
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Qingpeng Xie
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Xiaohang Chen
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Na Li
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Jia Wang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Yuan Zhang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Jinjia Hong
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Shuyun Xue
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Pengfei Zhang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Si Xie
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Xing Wang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| |
Collapse
|
2
|
Leung AOW, Poon ACH, Wang X, Feng C, Chen P, Zheng Z, To MK, Chan WCW, Cheung M, Chan D. Suppression of apoptosis impairs phalangeal joint formation in the pathogenesis of brachydactyly type A1. Nat Commun 2024; 15:2229. [PMID: 38472182 PMCID: PMC10933404 DOI: 10.1038/s41467-024-45053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/12/2024] [Indexed: 03/14/2024] Open
Abstract
Apoptosis occurs during development when a separation of tissues is needed. Synovial joint formation is initiated at the presumptive site (interzone) within a cartilage anlagen, with changes in cellular differentiation leading to cavitation and tissue separation. Apoptosis has been detected in phalangeal joints during development, but its role and regulation have not been defined. Here, we use a mouse model of brachydactyly type A1 (BDA1) with an IhhE95K mutation, to show that a missing middle phalangeal bone is due to the failure of the developing joint to cavitate, associated with reduced apoptosis, and a joint is not formed. We showed an intricate relationship between IHH and interacting partners, CDON and GAS1, in the interzone that regulates apoptosis. We propose a model in which CDON/GAS1 may act as dependence receptors in this context. Normally, the IHH level is low at the center of the interzone, enabling the "ligand-free" CDON/GAS1 to activate cell death for cavitation. In BDA1, a high concentration of IHH suppresses apoptosis. Our findings provided new insights into the role of IHH and CDON in joint formation, with relevance to hedgehog signaling in developmental biology and diseases.
Collapse
Affiliation(s)
- Adrian On Wah Leung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Andrew Chung Hin Poon
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xue Wang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chen Feng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Hebei Orthopedic Clinical Research Center, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China
| | - Peikai Chen
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Zhengfan Zheng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Michael KaiTsun To
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wilson Cheuk Wing Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China.
| | - Martin Cheung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
3
|
Sedas Perez S, McQueen C, Stainton H, Pickering J, Chinnaiya K, Saiz-Lopez P, Placzek M, Ros MA, Towers M. Fgf signalling triggers an intrinsic mesodermal timer that determines the duration of limb patterning. Nat Commun 2023; 14:5841. [PMID: 37730682 PMCID: PMC10511490 DOI: 10.1038/s41467-023-41457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Complex signalling between the apical ectodermal ridge (AER - a thickening of the distal epithelium) and the mesoderm controls limb patterning along the proximo-distal axis (humerus to digits). However, the essential in vivo requirement for AER-Fgf signalling makes it difficult to understand the exact roles that it fulfils. To overcome this barrier, we developed an amenable ex vivo chick wing tissue explant system that faithfully replicates in vivo parameters. Using inhibition experiments and RNA-sequencing, we identify a transient role for Fgfs in triggering the distal patterning phase. Fgfs are then dispensable for the maintenance of an intrinsic mesodermal transcriptome, which controls proliferation/differentiation timing and the duration of patterning. We also uncover additional roles for Fgf signalling in maintaining AER-related gene expression and in suppressing myogenesis. We describe a simple logic for limb patterning duration, which is potentially applicable to other systems, including the main body axis.
Collapse
Affiliation(s)
- Sofia Sedas Perez
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Caitlin McQueen
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Chester Medical School, Chester, CH2 1BR, UK
| | - Holly Stainton
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Joseph Pickering
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Kavitha Chinnaiya
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Patricia Saiz-Lopez
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-Universidad de Cantabria), 39011, Santander, Spain
- Departamento de Anatomía y Biología Celular Facultad de Medicina, Universidad de Cantabria, 39011, Santander, Spain
| | - Marysia Placzek
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Maria A Ros
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-Universidad de Cantabria), 39011, Santander, Spain
- Departamento de Anatomía y Biología Celular Facultad de Medicina, Universidad de Cantabria, 39011, Santander, Spain
| | - Matthew Towers
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
4
|
Fuiten AM, Yoshimoto Y, Shukunami C, Stadler HS. Digits in a dish: An in vitro system to assess the molecular genetics of hand/foot development at single-cell resolution. Front Cell Dev Biol 2023; 11:1135025. [PMID: 36994104 PMCID: PMC10040768 DOI: 10.3389/fcell.2023.1135025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
In vitro models allow for the study of developmental processes outside of the embryo. To gain access to the cells mediating digit and joint development, we identified a unique property of undifferentiated mesenchyme isolated from the distal early autopod to autonomously re-assemble forming multiple autopod structures including: digits, interdigital tissues, joints, muscles and tendons. Single-cell transcriptomic analysis of these developing structures revealed distinct cell clusters that express canonical markers of distal limb development including: Col2a1, Col10a1, and Sp7 (phalanx formation), Thbs2 and Col1a1 (perichondrium), Gdf5, Wnt5a, and Jun (joint interzone), Aldh1a2 and Msx1 (interdigital tissues), Myod1 (muscle progenitors), Prg4 (articular perichondrium/articular cartilage), and Scx and Tnmd (tenocytes/tendons). Analysis of the gene expression patterns for these signature genes indicates that developmental timing and tissue-specific localization were also recapitulated in a manner similar to the initiation and maturation of the developing murine autopod. Finally, the in vitro digit system also recapitulates congenital malformations associated with genetic mutations as in vitro cultures of Hoxa13 mutant mesenchyme produced defects present in Hoxa13 mutant autopods including digit fusions, reduced phalangeal segment numbers, and poor mesenchymal condensation. These findings demonstrate the robustness of the in vitro digit system to recapitulate digit and joint development. As an in vitro model of murine digit and joint development, this innovative system will provide access to the developing limb tissues facilitating studies to discern how digit and articular joint formation is initiated and how undifferentiated mesenchyme is patterned to establish individual digit morphologies. The in vitro digit system also provides a platform to rapidly evaluate treatments aimed at stimulating the repair or regeneration of mammalian digits impacted by congenital malformation, injury, or disease.
Collapse
Affiliation(s)
- Allison M. Fuiten
- Research Center, Shriners Children’s, Portland, OR, United States
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, United States
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - H. Scott Stadler
- Research Center, Shriners Children’s, Portland, OR, United States
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, United States
- *Correspondence: H. Scott Stadler,
| |
Collapse
|
5
|
Johnson GL, Glasser MB, Charles JF, Duryea J, Lehoczky JA. En1 and Lmx1b do not recapitulate embryonic dorsal-ventral limb patterning functions during mouse digit tip regeneration. Cell Rep 2022; 41:111701. [PMID: 36417876 PMCID: PMC9727699 DOI: 10.1016/j.celrep.2022.111701] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
The mouse digit tip regenerates following amputation. How the regenerate is patterned is unknown, but a long-standing hypothesis proposes developmental patterning mechanisms are re-used during regeneration. The digit tip bone exhibits dorsal-ventral (DV) polarity, so we focus on En1 and Lmx1b, two factors necessary for DV patterning during limb development. We investigate whether they are re-expressed during regeneration in a developmental-like pattern and whether they direct DV morphology of the regenerate. We find that both En1 and Lmx1b are expressed in the regenerating digit tip epithelium and mesenchyme, respectively, but without DV polarity. Conditional genetics and quantitative analysis of digit tip bone morphology determine that genetic deletion of En1 or Lmx1b in adult digit tip regeneration modestly reduces bone regeneration but does not affect DV patterning. Collectively, our data suggest that, while En1 and Lmx1b are re-expressed during mouse digit tip regeneration, they do not define the DV axis during regeneration.
Collapse
Affiliation(s)
- Gemma L. Johnson
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Morgan B. Glasser
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Julia F. Charles
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Jeffrey Duryea
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Jessica A. Lehoczky
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA,Lead contact,Correspondence:
| |
Collapse
|
6
|
Liu Z, Yan N, Chen Y, Hu B. Hepatocyte Growth Factor Promotes Differentiation Potential and Stress Response of Human Stem Cells from Apical Papilla. Cells Tissues Organs 2022; 213:40-54. [PMID: 36170806 DOI: 10.1159/000527212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Harsh local microenvironment, such as hypoxia and lack of instructive clues for transplanted stem cells, presents the serious obstacle for stem cell therapies' efficacy. Therefore, continued efforts have been taken to improve stem cells' viability and plasticity. Hepatocyte growth factor (HGF) has previously been reported to mitigate the complications of various human diseases in animal model studies and in some clinical trials. Besides, human stem cells from the root apical papilla (SCAP) are deemed a better resource of mesenchymal stem cells due to derived stem cells holding greater amplification ability in vitro compared with those from other dental resources. To move forward, evaluating effects and understanding underlying molecular mechanisms of HGF on SCAP for periodontal regeneration are needed. In this study, HGF was transgenically expressed in SCAP, and it was found that HGF enhanced osteo/dentinogenic differentiation capacity of SCAP compared with those of non-treated control in an ectopic mineralization model. Moreover, HGF reduced the apoptosis of SCAP under both normoxic and hypoxic conditions, whereas the combination of HGF and hypoxia exposure had inhibitory effects on cell proliferation during an 8-day in vitro culture period. Transcriptome analysis further revealed that suppressed cell cycle progression and activated BMP/TGFβ, Hedgehog, WNT, FGF, HOX, and other morphogen family members result upon HGF overexpression, which may render SCAP recapitulate part of neural crest stem cell characteristics. Moreover, strengthened stress response modulation such as unfolded protein response, macroautophagy, and anti-apoptotic molecules might explain the increased viability of SCAP. In all, our results imply that these potential mechanisms underlying HGF-promoting SCAP differentiation could be further elucidated and harnessed to improve periodontal tissue regeneration.
Collapse
Affiliation(s)
- Zhenhai Liu
- Department of Stomatology, Beijing Jishuitan Hospital, Beijing, China
| | - Na Yan
- Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences. National Center for Nanoscience and Technology, Beijing, China
| | - Ying Chen
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Wuxi, China
| | - Bin Hu
- Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences. National Center for Nanoscience and Technology, Beijing, China
| |
Collapse
|
7
|
De la Fuente-Hernandez MA, Sarabia-Sanchez MA, Melendez-Zajgla J, Maldonado-Lagunas V. Role of lncRNAs into Mesenchymal Stromal Cell Differentiation. Am J Physiol Cell Physiol 2022; 322:C421-C460. [PMID: 35080923 DOI: 10.1152/ajpcell.00364.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Currently, findings support that 75% of the human genome is actively transcribed, but only 2% is translated into a protein, according to databases such as ENCODE (Encyclopedia of DNA Elements) [1]. The development of high-throughput sequencing technologies, computational methods for genome assembly and biological models have led to the realization of the importance of the previously unconsidered non-coding fraction of the genome. Along with this, noncoding RNAs have been shown to be epigenetic, transcriptional and post-transcriptional regulators in a large number of cellular processes [2]. Within the group of non-coding RNAs, lncRNAs represent a fascinating field of study, given the functional versatility in their mode of action on their molecular targets. In recent years, there has been an interest in learning about lncRNAs in MSC differentiation. The aim of this review is to address the signaling mechanisms where lncRNAs are involved, emphasizing their role in either stimulating or inhibiting the transition to differentiated cell. Specifically, the main types of MSC differentiation are discussed: myogenesis, osteogenesis, adipogenesis and chondrogenesis. The description of increasingly new lncRNAs reinforces their role as players in the well-studied field of MSC differentiation, allowing a step towards a better understanding of their biology and their potential application in the clinic.
Collapse
Affiliation(s)
- Marcela Angelica De la Fuente-Hernandez
- Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Miguel Angel Sarabia-Sanchez
- Facultad de Medicina, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | |
Collapse
|
8
|
Stainton H, Towers M. Retinoic acid influences the timing and scaling of avian wing development. Cell Rep 2022; 38:110288. [PMID: 35081337 PMCID: PMC8810399 DOI: 10.1016/j.celrep.2021.110288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/08/2021] [Accepted: 12/29/2021] [Indexed: 12/23/2022] Open
Abstract
A fundamental question in biology is how embryonic development is timed between different species. To address this problem, we compared wing development in the quail and the larger chick. We reveal that pattern formation is faster in the quail as determined by the earlier activation of 5′Hox genes, termination of developmental organizers (Shh and Fgf8), and the laying down of the skeleton (Sox9). Using interspecies tissue grafts, we show that developmental timing can be reset during a critical window of retinoic acid signaling. Accordingly, extending the duration of retinoic acid signaling switches developmental timing between the quail and the chick and the chick and the larger turkey. However, the incremental growth rate is comparable between all three species, suggesting that the pace of development primarily governs differences in the expansion of the skeletal pattern. The widespread distribution of retinoic acid could coordinate developmental timing throughout the embryo. Quail wings develop faster than chick and turkey wings Retinoic acid can set the species timing of wing development Developmental timing is independent of growth and scales the skeletal pattern
Collapse
Affiliation(s)
- Holly Stainton
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Matthew Towers
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
9
|
Fernandez-Guerrero M, Zdral S, Castilla-Ibeas A, Lopez-Delisle L, Duboule D, Ros MA. Time-sequenced transcriptomes of developing distal mouse limb buds: A comparative tissue layer analysis. Dev Dyn 2021; 251:1550-1575. [PMID: 34254395 DOI: 10.1002/dvdy.394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The development of the amniote limb has been an important model system to study patterning mechanisms and morphogenesis. For proper growth and patterning, it requires the interaction between the distal sub-apical mesenchyme and the apical ectodermal ridge (AER) that involve the separate implementation of coordinated and tissue-specific genetic programs. RESULTS Here, we produce and analyze the transcriptomes of both distal limb mesenchymal progenitors and the overlying ectodermal cells, following time-coursed dissections that cover from limb bud initiation to fully patterned limbs. The comparison of transcriptomes within each layer as well as between layers over time, allowed the identification of specific transcriptional signatures for each of the developmental stages. Special attention was given to the identification of genes whose transcription dynamics suggest a previously unnoticed role in the context of limb development and also to signaling pathways enriched between layers. CONCLUSION We interpret the transcriptomic data in light of the known development pattern and we conclude that a major transcriptional transition occurs in distal limb buds between E9.5 and E10.5, coincident with the switch from an early phase continuation of the signature of trunk progenitors, related to the initial proximo distal specification, to a late intrinsic phase of development.
Collapse
Affiliation(s)
- Marc Fernandez-Guerrero
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-University of Cantabria-SODERCAN), Santander, Spain
| | - Sofia Zdral
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-University of Cantabria-SODERCAN), Santander, Spain
| | - Alejandro Castilla-Ibeas
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-University of Cantabria-SODERCAN), Santander, Spain
| | | | - Denis Duboule
- School of Life Sciences, Federal Institute of Technology, Lausanne, Switzerland.,Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Collège de France, Paris, France
| | - Marian A Ros
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-University of Cantabria-SODERCAN), Santander, Spain.,Facultad de Medicina, Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
10
|
Wang Y, He B, Dong Y, He GJ, Qi XW, Li Y, Yang YF, Rao Y, Cen ZS, Han F, Ding J, Li JJ. Homeobox-A13 acts as a functional prognostic and diagnostic biomarker via regulating P53 and Wnt signaling pathways in lung cancer. Cancer Biomark 2021; 31:239-254. [PMID: 33896818 DOI: 10.3233/cbm-200540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The prognosis of lung cancer patients is poor without useful prognostic and diagnostic biomarker. To search for novel prognostic and diagnostic markers, we previously found homeobox-A13 (HOXA13) as a promising candidate in lung cancer. OBJECTIVE To determine the precisely clinical feature, prognostic and diagnostic value, possible role and mechanism of HOXA13. METHODS Gene-expression was explored by real-time quantitative-PCR, western-blot and tissue-microarray. The associations were analyzed by Chi-square test, Kaplan-Meier and Cox-regression. The roles and mechanisms were evaluated by MTS, EdU, transwell, xenograft tumor and luciferase-reporter assays. RESULTS HOXA13 expression is increased in tumors, and correlated with age of patients. HOXA13 expression is associated with unfavorable overall survival and relapse-free survival of patients in four cohorts. Interestingly, HOXA13 has different prognostic significance in adenocarcinoma (ADC) and squamous-cell carcinoma (SCC), and is a sex- and smoke-related prognostic factor only in ADC. Importantly, HOXA13 can serve as a diagnostic biomarker for lung cancer, especially for SCC. HOXA13 can promote cancer-cell proliferation, migration and invasion in vitro, and facilitate tumorigenicity and tumor metastasis in vivo. HOXA13 acts the oncogenic roles on tumor growth and metastasis by regulating P53 and Wnt/β-catenin signaling activities in lung cancer. CONCLUSIONS HOXA13 is a new prognostic and diagnostic biomarker associated with P53 and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pediatrics, Southwest Hospital, Army Medical University, Chongqing, China.,Department of Pediatrics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Bo He
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, China.,Department of Pediatrics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yan Dong
- Department of Oncology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Gong-Jing He
- Department of Otolaryngology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiao-Wei Qi
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yan Li
- Chongqing University Cancer Hospital, Chongqing, China
| | - Yi-Fei Yang
- Department of Pediatrics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yu Rao
- Department of Pediatrics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhong-Shun Cen
- Department of Pediatrics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Jun Ding
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Jun Li
- Department of Oncology, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
11
|
Beccari L, Jaquier G, Lopez-Delisle L, Rodriguez-Carballo E, Mascrez B, Gitto S, Woltering J, Duboule D. Dbx2 regulation in limbs suggests interTAD sharing of enhancers. Dev Dyn 2021; 250:1280-1299. [PMID: 33497014 PMCID: PMC8451760 DOI: 10.1002/dvdy.303] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND During tetrapod limb development, the HOXA13 and HOXD13 transcription factors are critical for the emergence and organization of the autopod, the most distal aspect where digits will develop. Since previous work had suggested that the Dbx2 gene is a target of these factors, we set up to analyze in detail this potential regulatory interaction. RESULTS We show that HOX13 proteins bind to mammalian-specific sequences at the vicinity of the Dbx2 locus that have enhancer activity in developing digits. However, the functional inactivation of the DBX2 protein did not elicit any particular phenotype related to Hox genes inactivation in digits, suggesting either redundant or compensatory mechanisms. We report that the neighboring Nell2 and Ano6 genes are also expressed in distal limb buds and are in part controlled by the same Dbx2 enhancers despite being localized into two different topologically associating domains (TADs) flanking the Dbx2 locus. CONCLUSIONS We conclude that Hoxa13 and Hoxd genes cooperatively activate Dbx2 expression in developing digits through binding to mammalian specific regulatory sequences in the Dbx2 neighborhood. Furthermore, these enhancers can overcome TAD boundaries in either direction to co-regulate a set of genes located in distinct chromatin domains.
Collapse
Affiliation(s)
- Leonardo Beccari
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, University Claude Bernard Lyon1, Lyon, France
| | - Gabriel Jaquier
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | | | - Eddie Rodriguez-Carballo
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Bénédicte Mascrez
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Sandra Gitto
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Joost Woltering
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Denis Duboule
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,School of Life Sciences, Federal School of Technology (EPFL), Lausanne, Switzerland.,Collège de France, Paris, France
| |
Collapse
|
12
|
Abstract
The vertebrate limb continues to serve as an influential model of growth, morphogenesis and pattern formation. With this Review, we aim to give an up-to-date picture of how a population of undifferentiated cells develops into the complex pattern of the limb. Focussing largely on mouse and chick studies, we concentrate on the positioning of the limbs, the formation of the limb bud, the establishment of the principal limb axes, the specification of pattern, the integration of pattern formation with growth and the determination of digit number. We also discuss the important, but little understood, topic of how gene expression is interpreted into morphology.
Collapse
Affiliation(s)
- Caitlin McQueen
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Matthew Towers
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
13
|
Fowler DA, Larsson HCE. The tissues and regulatory pattern of limb chondrogenesis. Dev Biol 2020; 463:124-134. [PMID: 32417169 DOI: 10.1016/j.ydbio.2020.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022]
Abstract
Initial limb chondrogenesis offers the first differentiated tissues that resemble the mature skeletal anatomy. It is a developmental progression of three tissues. The limb begins with undifferentiated mesenchyme-1, some of which differentiates into condensations-2, and this tissue then transforms into cartilage-3. Each tissue is identified by physical characteristics of cell density, shape, and extracellular matrix composition. Tissue specific regimes of gene regulation underlie the diagnostic physical and chemical properties of these three tissues. These three tissue based regimes co-exist amid a background of other gene regulatory regimes within the same tissues and time-frame of limb development. The bio-molecular indicators of gene regulation reveal six identifiable patterns. Three of these patterns describe the unique bio-molecular indicators of each of the three tissues. A fourth pattern shares bio-molecular indicators between condensation and cartilage. Finally, a fifth pattern is composed of bio-molecular indicators that are found in undifferentiated mesenchyme prior to any condensation differentiation, then these bio-molecular indicators are upregulated in condensations and downregulated in undifferentiated mesenchyme. The undifferentiated mesenchyme that remains in between the condensations and cartilage, the interdigit, contains a unique set of bio-molecular indicators that exhibit dynamic behaviour during chondrogenesis and therefore argue for its own inclusion as a tissue in its own right and for more study into this process of differentiation.
Collapse
Affiliation(s)
- Donald A Fowler
- Redpath Museum, McGill University, 859 Sherbrooke St W, Montréal, QC, H3A 0C4, Canada; Department of Biology, McGill University, Stewart Biology Building, 1205 Docteur Penfield, Montréal, QC, H3A 1B1, Canada.
| | - Hans C E Larsson
- Redpath Museum, McGill University, 859 Sherbrooke St W, Montréal, QC, H3A 0C4, Canada.
| |
Collapse
|
14
|
Nesteruk K, Janmaat VT, Liu H, Ten Hagen TLM, Peppelenbosch MP, Fuhler GM. Forced expression of HOXA13 confers oncogenic hallmarks to esophageal keratinocytes. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165776. [PMID: 32222541 DOI: 10.1016/j.bbadis.2020.165776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022]
Abstract
HOXA13 overexpression has been detected in human ESCC tissue and high HOXA13 protein expression is correlated with a shorter median survival time in ESCC patients. Although aberrant expression of HOXA13 in ESCC has thus been established, little is known regarding the functional consequences thereof. The present study aimed to examine to what extent aberrant HOXA13 might drive carcinogenesis in esophageal keratinocytes. To this end, we overexpressed HOXA13 in a non-transformed human esophageal cell line EPC2-hTERT, performed gene expression profiling to identify key processes and functions, and performed functional experiments. We found that HOXA13 expression confers oncogenic hallmarks to esophageal keratinocytes. It provides proliferation advantage to keratinocytes, reduces sensitivity to chemical agents, regulates MHC class I expression and differentiation status and promotes cellular migration. Our data indicate a crucial role of HOXA13 at early stages of esophageal carcinogenesis.
Collapse
Affiliation(s)
| | | | - Hui Liu
- Erasmus MC- University Medical Center Rotterdam, the Netherlands
| | | | | | - Gwenny M Fuhler
- Erasmus MC- University Medical Center Rotterdam, the Netherlands..
| |
Collapse
|
15
|
Carlson HL, Stadler HS. Development and functional characterization of a lncRNA-HIT conditional loss of function allele. Genesis 2020; 58:e23351. [PMID: 31838787 PMCID: PMC10041933 DOI: 10.1002/dvg.23351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/31/2022]
Abstract
Analysis of the human and murine transcriptomes has identified long noncoding RNAs (lncRNAs) as major functional components in both species. Transcriptional profiling of the murine limb led to our discovery of lncRNA-HIT, which our previous in vitro analyses suggested a potential role for this lncRNA in the development of limb, craniofacial, and genitourinary tissues (Carlson et al., 2015). To test this hypothesis, we developed a conditional lncRNA-HIT loss of function allele which uses Cre recombinase to activate an shRNA specific for lncRNA-HIT. Activation of the lncRNA-HIT shRNA allele resulted in a robust knock-down of lncRNA-HIT as well as co-activation of a mCherry reporter, confirming the efficacy of the shRNA allele to reduce endogenous lncRNA levels in a tissue- and cell-type specific manner. Developmental analyses of embryos expressing the activated shRNA and mCherry co-reporter revealed multiple malformations corresponding to the sites of shRNA activation, affecting craniofacial, limb, and genitourinary tissue development. These results confirm the efficacy of lncRNA-HIT shRNA allele to knock-down endogenous transcripts in tissue- and cell type specific manner and indicate a requirement for lncRNA-HIT in the development of these tissues.
Collapse
Affiliation(s)
- Hanqian L Carlson
- Shriners Hospitals for Children Skeletal Biology Research Center, Portland, Oregon
| | - H Scott Stadler
- Shriners Hospitals for Children Skeletal Biology Research Center, Portland, Oregon.,Oregon Health & Science University, Department of Orthopaedics and Rehabilitation, Portland, Oregon
| |
Collapse
|
16
|
Wen Y, Shu F, Chen Y, Chen Y, Lan Y, Duan X, Zhao SC, Zeng G. The prognostic value of HOXA13 in solid tumors: A meta-analysis. Clin Chim Acta 2018; 483:64-68. [DOI: 10.1016/j.cca.2018.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 11/30/2022]
|
17
|
Wood TWP, Nakamura T. Problems in Fish-to-Tetrapod Transition: Genetic Expeditions Into Old Specimens. Front Cell Dev Biol 2018; 6:70. [PMID: 30062096 PMCID: PMC6054942 DOI: 10.3389/fcell.2018.00070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/15/2018] [Indexed: 12/30/2022] Open
Abstract
The fish-to-tetrapod transition is one of the fundamental problems in evolutionary biology. A significant amount of paleontological data has revealed the morphological trajectories of skeletons, such as those of the skull, vertebrae, and appendages in vertebrate history. Shifts in bone differentiation, from dermal to endochondral bones, are key to explaining skeletal transformations during the transition from water to land. However, the genetic underpinnings underlying the evolution of dermal and endochondral bones are largely missing. Recent genetic approaches utilizing model organisms—zebrafish, frogs, chickens, and mice—reveal the molecular mechanisms underlying vertebrate skeletal development and provide new insights for how the skeletal system has evolved. Currently, our experimental horizons to test evolutionary hypotheses are being expanded to non-model organisms with state-of-the-art techniques in molecular biology and imaging. An integration of functional genomics, developmental genetics, and high-resolution CT scanning into evolutionary inquiries allows us to reevaluate our understanding of old specimens. Here, we summarize the current perspectives in genetic programs underlying the development and evolution of the dermal skull roof, shoulder girdle, and appendages. The ratio shifts of dermal and endochondral bones, and its underlying mechanisms, during the fish-to-tetrapod transition are particularly emphasized. Recent studies have suggested the novel cell origins of dermal bones, and the interchangeability between dermal and endochondral bones, obscuring the ontogenetic distinction of these two types of bones. Assimilation of ontogenetic knowledge of dermal and endochondral bones from different structures demands revisions of the prevalent consensus in the evolutionary mechanisms of vertebrate skeletal shifts.
Collapse
Affiliation(s)
- Thomas W P Wood
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Tetsuya Nakamura
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
18
|
McMillan SC, Zhang J, Phan HE, Jeradi S, Probst L, Hammerschmidt M, Akimenko MA. A regulatory pathway involving retinoic acid and calcineurin demarcates and maintains joint cells and osteoblasts in regenerating fin. Development 2018; 145:dev.161158. [PMID: 29752384 DOI: 10.1242/dev.161158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/01/2018] [Indexed: 12/21/2022]
Abstract
During zebrafish fin regeneration, blastema cells lining the epidermis differentiate into osteoblasts and joint cells to reconstruct the segmented bony rays. We show that osteoblasts and joint cells originate from a common cell lineage, but are committed to different cell fates. Pre-osteoblasts expressing runx2a/b commit to the osteoblast lineage upon expressing sp7, whereas the strong upregulation of hoxa13a correlates with a commitment to a joint cell type. In the distal regenerate, hoxa13a, evx1 and pthlha are sequentially upregulated at regular intervals to define the newly identified presumptive joint cells. Presumptive joint cells mature into joint-forming cells, a distinct cell cluster that maintains the expression of these factors. Analysis of evx1 null mutants reveals that evx1 is acting upstream of pthlha and downstream of or in parallel with hoxa13a Calcineurin activity, potentially through the inhibition of retinoic acid signaling, regulates evx1, pthlha and hoxa13a expression during joint formation. Furthermore, retinoic acid treatment induces osteoblast differentiation in mature joint cells, leading to ectopic bone deposition in joint regions. Overall, our data reveal a novel regulatory pathway essential for joint formation in the regenerating fin.
Collapse
Affiliation(s)
- Stephanie C McMillan
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada K1N 6N5.,CAREG, 30 Marie Curie, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Jing Zhang
- CAREG, 30 Marie Curie, University of Ottawa, Ottawa, ON, Canada K1N 6N5.,Department of Biology, 30 Marie Curie, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Hue-Eileen Phan
- CAREG, 30 Marie Curie, University of Ottawa, Ottawa, ON, Canada K1N 6N5.,Department of Biology, 30 Marie Curie, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Shirine Jeradi
- Institute for Developmental Biology, Cologne University, Cologne 50674, Germany.,Institut Polytechnique Privé, Université Libre de Tunis, Tunis 1003, Tunisia
| | - Leona Probst
- CAREG, 30 Marie Curie, University of Ottawa, Ottawa, ON, Canada K1N 6N5.,Department of Biology, 30 Marie Curie, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | | | - Marie-Andrée Akimenko
- CAREG, 30 Marie Curie, University of Ottawa, Ottawa, ON, Canada K1N 6N5 .,Department of Biology, 30 Marie Curie, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| |
Collapse
|
19
|
Sheth R, Barozzi I, Langlais D, Osterwalder M, Nemec S, Carlson HL, Stadler HS, Visel A, Drouin J, Kmita M. Distal Limb Patterning Requires Modulation of cis-Regulatory Activities by HOX13. Cell Rep 2017; 17:2913-2926. [PMID: 27974206 PMCID: PMC5697718 DOI: 10.1016/j.celrep.2016.11.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 01/12/2023] Open
Abstract
The combinatorial expression of Hox genes along the body axes is a major determinant of cell fate and plays a pivotal role in generating the animal body plan. Loss of HOXA13 and HOXD13 transcription factors (HOX13) leads to digit agenesis in mice, but how HOX13 proteins regulate transcriptional outcomes and confer identity to the distal-most limb cells has remained elusive. Here, we report on the genome-wide profiling of HOXA13 and HOXD13 in vivo binding and changes of the transcriptome and chromatin state in the transition from the early to the late-distal limb developmental program, as well as in Hoxa13−/−; Hoxd13−/−limbs. Our results show that proper termination of the early limb transcriptional program and activation of the late-distal limb program are coordinated by the dual action of HOX13 on cis-regulatory modules.
Collapse
Affiliation(s)
- Rushikesh Sheth
- Laboratory of Genetics and Development, Institut de Recherches Cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, QC H2W1R7, Canada.
| | - Iros Barozzi
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David Langlais
- Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montréal, H3G0B1 QC, Canada
| | | | - Stephen Nemec
- Laboratory of Molecular Genetics, Institut de Recherches Cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, H2W1R7 QC, Canada
| | - Hanqian L Carlson
- Department of Skeletal Biology, Shriners Hospital for Children, 3101 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - H Scott Stadler
- Department of Skeletal Biology, Shriners Hospital for Children, 3101 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Axel Visel
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, CA 95340, USA
| | - Jacques Drouin
- Laboratory of Molecular Genetics, Institut de Recherches Cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, H2W1R7 QC, Canada; Department of Medicine, Université de Montréal, Montréal, H3T1J4 QC, Canada
| | - Marie Kmita
- Laboratory of Genetics and Development, Institut de Recherches Cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, QC H2W1R7, Canada; Department of Medicine, Université de Montréal, Montréal, H3T1J4 QC, Canada.
| |
Collapse
|
20
|
Loro E, Ramaswamy G, Chandra A, Tseng WJ, Mishra MK, Shore EM, Khurana TS. IL15RA is required for osteoblast function and bone mineralization. Bone 2017; 103:20-30. [PMID: 28602725 PMCID: PMC5598756 DOI: 10.1016/j.bone.2017.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
Abstract
Interleukin-15 receptor alpha (IL15RA) is an important component of interleukin-15 (IL15) pro-inflammatory signaling. In addition, IL15 and IL15RA are present in the circulation and are detected in a variety of tissues where they influence physiological functions such as muscle contractility and overall metabolism. In the skeletal system, IL15RA was previously shown to be important for osteoclastogenesis. Little is known, however, about its role in osteoblast function and bone mineralization. In this study, we evaluated bone structural and mechanical properties of an Il15ra whole-body knockout mouse (Il15ra-/-) and used in vitro and bioinformatic analyses to understand the role IL15/IL15RA signaling on osteoblast function. We show that lack of IL15RA decreased bone mineralization in vivo and in isolated primary osteogenic cultures, suggesting a cell-autonomous effect. Il15ra-/- osteogenic cultures also had reduced Rankl/Opg mRNA ratio, indicating defective osteoblast/osteoclast coupling. We analyzed the transcriptome of primary pre-osteoblasts from normal and Il15ra-/- mice and identified 1150 genes that were differentially expressed at a FDR of 5%. Of these, 844 transcripts were upregulated and 306 were downregulated in Il15ra-/- cells. The largest functional clusters, highlighted using DAVID analysis, were related to metabolism, immune response, bone mineralization and morphogenesis. The transcriptome analysis was validated by qPCR of some of the most significant hits. Using bioinformatic approaches, we identified candidate genes, including Cd200 and Enpp1, that could contribute to the reduced mineralization. Silencing Il15ra using shRNA in the calvarial osteoblast MC3T3-E1 cell line decreased ENPP1 activity. Taken together, these data support that IL15RA plays a cell-autonomous role in osteoblast function and bone mineralization.
Collapse
Affiliation(s)
- Emanuele Loro
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Girish Ramaswamy
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Abhishek Chandra
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Division of Geriatric Medicine and Gerontology, Mayo Clinic, Rochester, MN, USA
| | - Wei-Ju Tseng
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Manoj K Mishra
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Tejvir S Khurana
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Wu DC, Wang SSW, Liu CJ, Wuputra K, Kato K, Lee YL, Lin YC, Tsai MH, Ku CC, Lin WH, Wang SW, Kishikawa S, Noguchi M, Wu CC, Chen YT, Chai CY, Lin CLS, Kuo KK, Yang YH, Miyoshi H, Nakamura Y, Saito S, Nagata K, Lin CS, Yokoyama KK. Reprogramming Antagonizes the Oncogenicity of HOXA13-Long Noncoding RNA HOTTIP Axis in Gastric Cancer Cells. Stem Cells 2017; 35:2115-2128. [PMID: 28782268 DOI: 10.1002/stem.2674] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 06/26/2017] [Accepted: 07/15/2017] [Indexed: 12/26/2022]
Abstract
Reprogramming of cancer cells into induced pluripotent stem cells (iPSCs) is a compelling idea for inhibiting oncogenesis, especially through modulation of homeobox proteins in this reprogramming process. We examined the role of various long noncoding RNAs (lncRNAs)-homeobox protein HOXA13 axis on the switching of the oncogenic function of bone morphogenetic protein 7 (BMP7), which is significantly lost in the gastric cancer cell derived iPS-like cells (iPSLCs). BMP7 promoter activation occurred through the corecruitment of HOXA13, mixed-lineage leukemia 1 lysine N-methyltransferase, WD repeat-containing protein 5, and lncRNA HoxA transcript at the distal tip (HOTTIP) to commit the epigenetic changes to the trimethylation of lysine 4 on histone H3 in cancer cells. By contrast, HOXA13 inhibited BMP7 expression in iPSLCs via the corecruitment of HOXA13, enhancer of zeste homolog 2, Jumonji and AT rich interactive domain 2, and lncRNA HoxA transcript antisense RNA (HOTAIR) to various cis-element of the BMP7 promoter. Knockdown experiments demonstrated that HOTTIP contributed positively, but HOTAIR regulated negatively to HOXA13-mediated BMP7 expression in cancer cells and iPSLCs, respectively. These findings indicate that the recruitment of HOXA13-HOTTIP and HOXA13-HOTAIR to different sites in the BMP7 promoter is crucial for the oncogenic fate of human gastric cells. Reprogramming with octamer-binding protein 4 and Jun dimerization protein 2 can inhibit tumorigenesis by switching off BMP7. Stem Cells 2017;35:2115-2128.
Collapse
Affiliation(s)
- Deng-Chyang Wu
- Division of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Stem Cell Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Sophie S W Wang
- Division of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Stem Cell Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Stem Cell Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kohsuke Kato
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, the University of Tsukuba, Tsukuba, Japan
| | | | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Ho Tsai
- Graduate Institute of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Hsin Lin
- Graduate Institute of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shin-Wei Wang
- Division of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Stem Cell Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shotaro Kishikawa
- Gene Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Michiya Noguchi
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Chu-Chieh Wu
- Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ting Chen
- Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chen-Lung Steve Lin
- Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kung-Kai Kuo
- Center for Stem Cell Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Han Yang
- Center for Stem Cell Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hiroyuki Miyoshi
- Department of Physiology, Keio University School of Medicine, Shinanomachi, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Shigeo Saito
- School of Science and Engineering, Teikyo University, Utsunomia, Tochigi, Japan.,Saito Laboratory of Cell Technology, Yaita, Tochigi, Japan
| | - Kyosuke Nagata
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, the University of Tsukuba, Tsukuba, Japan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Kazunari K Yokoyama
- Center for Stem Cell Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Infection Biology, Graduate School of Comprehensive Human Sciences, the University of Tsukuba, Tsukuba, Japan.,Department of Molecular Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Dong Y, Cai Y, Liu B, Jiao X, Li ZT, Guo DY, Li XW, Wang YJ, Yang DK. HOXA13 is associated with unfavorable survival and acts as a novel oncogene in prostate carcinoma. Future Oncol 2017; 13:1505-1516. [PMID: 28766961 DOI: 10.2217/fon-2016-0522] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM To investigate the clinical relevance and functional role of HOXA13 in prostate cancer Methods: PCR, western blot and immunohistochemistry were performed to determine the expression. Kaplan-Meier and Cox regression survival analyses investigated the clinical relevance. Cell viability, flow cytometry and transwell assays were used to determine the functional roles. RESULTS HOXA13 expression is sharply increased in carcinoma tissues and is significantly associated with poor prognosis of prostate cancer patients. Interestingly, nucleus not cytoplasm HOXA13 expression is associated with unfavorable survival of the patients. Furthermore, nucleus HOXA13 expression represents an unfavorable and independent prognosis factor of histological grade 2 or Gleason grade <8 patients. Functionally, forced expression of HOXA13 obviously promotes tumor cell proliferation, migration and invasion, whereas inhibits tumor cell apoptosis. CONCLUSION HOXA13 is an unfavorable prognostic factor and a novel oncogene for prostate cancer.
Collapse
Affiliation(s)
- Yan Dong
- Department of Urology, 159th Hospital of PLA, Zhumadian, China.,Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ying Cai
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Bo Liu
- Department of Burns & plastic Surgery, 159th Hospital of PLA, Zhumadian, China
| | - Xiang Jiao
- Department of Urology, 159th Hospital of PLA, Zhumadian, China
| | - Zhong-Tai Li
- Department of Urology, 159th Hospital of PLA, Zhumadian, China
| | - Da-Yong Guo
- Department of Urology, 159th Hospital of PLA, Zhumadian, China
| | - Xin-Wei Li
- Department of Urology, 159th Hospital of PLA, Zhumadian, China
| | - Yong-Jun Wang
- Department of Urology, 159th Hospital of PLA, Zhumadian, China
| | - Deng-Ke Yang
- Department of Urology, 159th Hospital of PLA, Zhumadian, China
| |
Collapse
|
23
|
Preativatanyou K, Honsawek S. RhBMP-2 and -7 combined with absorbable collagen sponge carrier enhance ectopic bone formation: An in vivo bioassay. ASIAN BIOMED 2017. [DOI: 10.5372/1905-7415.0501.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Background: Recombinant human bone morphogenetic proteins (rhBMPs) have been characterized especially chondrogenic and osteogenic activity both in vitro and in vivo studies. However, delivery of more than one growth factor by sustained release carrier to orthopedic site has yet been questionable in terms of efficacy and synergism.
Objective: Evaluate osteoinductivity and synergistic effect of rhBMP-2 and -7 using absorbable collagen sponge (ACS) carrier system in vivo.
Methods: cDNA of BMP-2 and -7 active domains were cloned and expressed in Escherichia coli BL21 StarTM (DE3) using pRSETc expression system. Then, the purified rhBMPs were loaded onto ACS and evaluated by in vivo rat subcutaneous bioassay. Two and eight weeks postoperatively, all treated groups were histologically verified for evidence of new bone formation and neovascularization by hematoxylin-eosin staining and light microscopy.
Results: The Wistar rat treated with rhBMP-2 or -7/ACS exhibited new bone formation, compared to ACS control. The group treated with ACS supplemented with both rhBMP-2 and -7 significantly showed the osteoid matrix very well-organized into trabeculae-like structure with significant blood vessel invasion.
Conclusion: The osteogenic induction of rhBMPs was combined with ACS carrier in the in vivo bioassay. In addition, the combination of both two potent recombinant osteoinductive cytokines, rhBMP-2 and -7, with ACS carrier demonstrated synergistic effect and might be a more promising and effective choice for therapeutic applications.
Collapse
Affiliation(s)
- Kanok Preativatanyou
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sittisak Honsawek
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
24
|
Huang BL, Trofka A, Furusawa A, Norrie JL, Rabinowitz AH, Vokes SA, Mark Taketo M, Zakany J, Mackem S. An interdigit signalling centre instructs coordinate phalanx-joint formation governed by 5'Hoxd-Gli3 antagonism. Nat Commun 2016; 7:12903. [PMID: 27713395 PMCID: PMC5059757 DOI: 10.1038/ncomms12903] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 08/12/2016] [Indexed: 12/20/2022] Open
Abstract
The number of phalanges and joints are key features of digit 'identity' and are central to limb functionality and evolutionary adaptation. Prior chick work indicated that digit phalanges and their associated joints arise in a different manner than the more sparsely jointed long bones, and their identity is regulated by differential signalling from adjacent interdigits. Currently, there is no genetic evidence for this model, and the molecular mechanisms governing digit joint specification remain poorly understood. Using genetic approaches in mouse, here we show that functional 5'Hoxd-Gli3 antagonism acts indirectly, through Bmp signalling from the interdigital mesenchyme, to regulate specification of joint progenitors, which arise in conjunction with phalangeal precursors at the digit tip. Phalanx number, although co-regulated, can be uncoupled from joint specification. We propose that 5'Hoxd genes and Gli3 are part of an interdigital signalling centre that sets net Bmp signalling levels from different interdigits to coordinately regulate phalanx and joint formation.
Collapse
Affiliation(s)
- Bau-Lin Huang
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| | - Anna Trofka
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| | - Aki Furusawa
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| | - Jacqueline L. Norrie
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Adam H. Rabinowitz
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Steven A. Vokes
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - M. Mark Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606–8501, Japan
| | - Jozsef Zakany
- Department of Genetics and Evolution, University of Geneva, Geneva 4 1211, Switzerland
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| |
Collapse
|
25
|
Rogers MB, Shah TA, Shaikh NN. Turning Bone Morphogenetic Protein 2 (BMP2) on and off in Mesenchymal Cells. J Cell Biochem 2016; 116:2127-38. [PMID: 25776852 DOI: 10.1002/jcb.25164] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/10/2015] [Indexed: 01/26/2023]
Abstract
The concentration, location, and timing of bone morphogenetic protein 2 (BMP2, HGNC:1069, GeneID: 650) gene expression must be precisely regulated. Abnormal BMP2 levels cause congenital anomalies and diseases involving the mesenchymal cells that differentiate into muscle, fat, cartilage, and bone. The molecules and conditions that influence BMP2 synthesis are diverse. Understandably, complex mechanisms control Bmp2 gene expression. This review includes a compilation of agents and conditions that can induce Bmp2. The currently known trans-regulatory factors and cis-regulatory elements that modulate Bmp2 expression are summarized and discussed. Bone morphogenetic protein 2 (BMP2, HGNC:1069, GeneID: 650) is a classical morphogen; a molecule that acts at a distance and whose concentration influences cell behavior. In mesenchymal cells, the concentration of BMP2 influences myogenesis, adipogenesis, chondrogenesis, and osteogenesis. Because the amount, timing, and location of BMP2 synthesis influence the allocation of cells to muscle, fat, cartilage, and bone, the mechanisms that regulate the Bmp2 gene are crucial. Key early mesodermal events that require precise Bmp2 regulation include heart specification and morphogenesis. Originally named for its osteoinductive properties, healing fractures requires BMP2. The human Bmp2 gene also has been linked to osteoporosis and osteoarthritis. In addition, all forms of pathological calcification in the vasculature and in cardiac valves involve the pro-osteogenic BMP2. The diverse tissues, mechanisms, and diseases influenced by BMP2 are too numerous to list here (see OMIM: 112261). However, in all BMP2-influenced pathologies, changes in the behavior and differentiation of pluripotent mesenchymal cells are a recurring theme. Consequently, much effort has been devoted to identifying the molecules and conditions that influence BMP2 synthesis and the complex mechanisms that control Bmp2 gene expression. This review begins with an overview of the Bmp2 gene's chromosomal neighborhood and then summarizes and evaluates known regulatory mechanisms and inducers.
Collapse
Affiliation(s)
- Melissa B Rogers
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ
| | - Tapan A Shah
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ
| | - Nadia N Shaikh
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
26
|
HoxA Genes and the Fin-to-Limb Transition in Vertebrates. J Dev Biol 2016; 4:jdb4010010. [PMID: 29615578 PMCID: PMC5831813 DOI: 10.3390/jdb4010010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/27/2016] [Accepted: 02/04/2016] [Indexed: 12/12/2022] Open
Abstract
HoxA genes encode for important DNA-binding transcription factors that act during limb development, regulating primarily gene expression and, consequently, morphogenesis and skeletal differentiation. Within these genes, HoxA11 and HoxA13 were proposed to have played an essential role in the enigmatic evolutionary transition from fish fins to tetrapod limbs. Indeed, comparative gene expression analyses led to the suggestion that changes in their regulation might have been essential for the diversification of vertebrates' appendages. In this review, we highlight three potential modifications in the regulation and function of these genes that may have boosted appendage evolution: (1) the expansion of polyalanine repeats in the HoxA11 and HoxA13 proteins; (2) the origin of +a novel long-non-coding RNA with a possible inhibitory function on HoxA11; and (3) the acquisition of cis-regulatory elements modulating 5' HoxA transcription. We discuss the relevance of these mechanisms for appendage diversification reviewing the current state of the art and performing additional comparative analyses to characterize, in a phylogenetic framework, HoxA11 and HoxA13 expression, alanine composition within the encoded proteins, long-non-coding RNAs and cis-regulatory elements.
Collapse
|
27
|
Carlson HL, Quinn JJ, Yang YW, Thornburg CK, Chang HY, Stadler HS. LncRNA-HIT Functions as an Epigenetic Regulator of Chondrogenesis through Its Recruitment of p100/CBP Complexes. PLoS Genet 2015; 11:e1005680. [PMID: 26633036 PMCID: PMC4669167 DOI: 10.1371/journal.pgen.1005680] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/27/2015] [Indexed: 01/23/2023] Open
Abstract
Gene expression profiling in E 11 mouse embryos identified high expression of the long noncoding RNA (lncRNA), LNCRNA-HIT in the undifferentiated limb mesenchyme, gut, and developing genital tubercle. In the limb mesenchyme, LncRNA-HIT was found to be retained in the nucleus, forming a complex with p100 and CBP. Analysis of the genome-wide distribution of LncRNA-HIT-p100/CBP complexes by ChIRP-seq revealed LncRNA-HIT associated peaks at multiple loci in the murine genome. Ontological analysis of the genes contacted by LncRNA-HIT-p100/CBP complexes indicate a primary role for these loci in chondrogenic differentiation. Functional analysis using siRNA-mediated reductions in LncRNA-HIT or p100 transcripts revealed a significant decrease in expression of many of the LncRNA-HIT-associated loci. LncRNA-HIT siRNA treatments also impacted the ability of the limb mesenchyme to form cartilage, reducing mesenchymal cell condensation and the formation of cartilage nodules. Mechanistically the LncRNA-HIT siRNA treatments impacted pro-chondrogenic gene expression by reducing H3K27ac or p100 activity, confirming that LncRNA-HIT is essential for chondrogenic differentiation in the limb mesenchyme. Taken together, these findings reveal a fundamental epigenetic mechanism functioning during early limb development, using LncRNA-HIT and its associated proteins to promote the expression of multiple genes whose products are necessary for the formation of cartilage. A fundamental problem studied by skeletal biologists is the development of regenerative therapies to replace cartilage tissues impacted by injury or disease, which for individuals affected by osteoarthritis represents nearly half of all of all adults over the age of sixty five. To date, no therapies exist to promote sustained cartilage regeneration, as we have not been able to recapitulate the programming events necessary to instruct cells to form articular cartilage without these cells continuing to differentiate into bone. Our analysis of the early programming events occurring during cartilage formation led to the identification of LncRNA-HIT a long noncoding RNA that is essential for the differentiation of the embryonic limb mesenchyme into cartilage. A genome wide analysis of LncRNA-HIT’s distribution in the mesenchyme revealed strong association between LncRNA-HIT and numerous genes whose products facilitate cartilage formation. In the absence of LncRNA-HIT, the expression of these chondrogenic genes is severely reduced, impacting the differentiation of these cells into cartilage. Mechanistically, LncRNA-HIT regulates these pro-chondrogenic genes by recruiting p100 and CBP to these loci, facilitating H3K27ac and transcriptional activation. LncRNA-HIT also appears to be present in most vertebrate species, suggesting that the epigenetic program regulated by this lncRNA may represent a fundamental mechanism used by many species to promote cartilage formation.
Collapse
Affiliation(s)
- Hanqian L. Carlson
- Skeletal Biology Program, Shriners Hospitals for Children, Portland, Oregon, United States of America
| | - Jeffrey J. Quinn
- Program in Epithelial Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yul W. Yang
- Program in Epithelial Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Chelsea K. Thornburg
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Howard Y. Chang
- Program in Epithelial Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - H. Scott Stadler
- Skeletal Biology Program, Shriners Hospitals for Children, Portland, Oregon, United States of America
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
28
|
Pineault KM, Swinehart IT, Garthus KN, Ho E, Yao Q, Schipani E, Kozloff KM, Wellik DM. Hox11 genes regulate postnatal longitudinal bone growth and growth plate proliferation. Biol Open 2015; 4:1538-48. [PMID: 26500224 PMCID: PMC4728342 DOI: 10.1242/bio.012500] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hox genes are critical regulators of skeletal development and Hox9-13 paralogs, specifically, are necessary for appendicular development along the proximal to distal axis. Loss of function of both Hoxa11 and Hoxd11 results in severe malformation of the forelimb zeugopod. In the radius and ulna of these mutants, chondrocyte development is perturbed, growth plates are not established, and skeletal growth and maturation fails. In compound mutants in which one of the four Hox11 alleles remains wild-type, establishment of a growth plate is preserved and embryos develop normally through newborn stages, however, skeletal phenotypes become evident postnatally. During postnatal development, the radial and ulnar growth rate slows compared to wild-type controls and terminal bone length is reduced. Growth plate height is decreased in mutants and premature growth plate senescence occurs along with abnormally high levels of chondrocyte proliferation in the reserve and proliferative zones. Compound mutants additionally develop an abnormal curvature of the radius, which causes significant distortion of the carpal elements. The progressive bowing of the radius appears to result from physical constraint caused by the disproportionately slower growth of the ulna than the radius. Collectively, these data are consistent with premature depletion of forelimb zeugopod progenitor cells in the growth plate of Hox11 compound mutants, and demonstrate a continued function for Hox genes in postnatal bone growth and patterning.
Collapse
Affiliation(s)
- Kyriel M Pineault
- Program in Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Ilea T Swinehart
- Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Kayla N Garthus
- Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Edward Ho
- Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Qing Yao
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kenneth M Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deneen M Wellik
- Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
29
|
Turner M, Zhang Y, Carlson HL, Stadler HS, Ames JB. Chemical shift assignments of mouse HOXD13 DNA binding domain bound to duplex DNA. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:267-270. [PMID: 25491407 PMCID: PMC4465062 DOI: 10.1007/s12104-014-9589-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/03/2014] [Indexed: 06/04/2023]
Abstract
The homeobox gene (Hoxd13) codes for a transcription factor protein that binds to AT-rich DNA sequences and controls expression of proteins that control embryonic morphogenesis. We report NMR chemical shift assignments of mouse Hoxd13 DNA binding domain bound to an 11-residue DNA duplex (BMRB No. 25133).
Collapse
Affiliation(s)
- Matthew Turner
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Yonghong Zhang
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Hanqian L Carlson
- Shriners Hospital for Children Research Department, 3101 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - H Scott Stadler
- Shriners Hospital for Children Research Department, 3101 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - James B Ames
- Department of Chemistry, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
30
|
Abstract
Apoptosis is a cellular suicide program, which is on the one hand used to remove superfluous cells thereby promoting tissue or organ morphogenesis. On the other hand, the programmed killing of cells is also critical when potentially harmful cells emerge in a developing or adult organism thereby endangering survival. Due to its critical role apoptosis is tightly controlled, however so far, its regulation on the transcriptional level is less studied and understood. Hox genes, a highly conserved gene family encoding homeodomain transcription factors, have crucial roles in development. One of their prominent functions is to shape animal body plans by eliciting different developmental programs along the anterior-posterior axis. To this end, Hox proteins transcriptionally regulate numerous processes in a coordinated manner, including cell-type specification, differentiation, motility, proliferation as well as apoptosis. In this review, we will focus on how Hox proteins control organismal morphology and function by regulating the apoptotic machinery. We will first focus on well-established paradigms of Hox-apoptosis interactions and summarize how Hox transcription factors control morphological outputs and differentially shape tissues along the anterior-posterior axis by fine-tuning apoptosis in a healthy organism. We will then discuss the consequences when this interaction is disturbed and will conclude with some ideas and concepts emerging from these studies.
Collapse
|
31
|
Safety and efficacy of recombinant human bone morphogenetic protein 2 on cranial defect closure in the pediatric population. J Craniofac Surg 2015; 24:917-22. [PMID: 23714911 DOI: 10.1097/scs.0b013e318256657c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Traditional reconstructive options for cranial defects include autogenous bone graft, bone substitutes, and synthetic materials. The established standard for repairing cranial defects is autogenous bone. However, young children do not have abundant donor sites for bone harvest, which leads to challenges in closing calvarial defects. Synthetic materials are not ideal alternatives because they require subsequent retrieval and are prone to infection. Their long-term effects on growth of the skull are also not well studied. Bone morphogenetic protein 2 (BMP-2), are shown to positively affect closure of cranial defects in animal models. We present a study comparing the efficacy and safety of closure of cranial defect with bone graft augmented with recombinant human BMP-2 (rhBMP-2) and compared with a series of patients treated with bone graft alone. METHODS This study is a retrospective multicenter evaluation of 36 patients spanning 5 years. Twenty-one patients undergoing cranial defect closure augmented with rhBMP-2 were compared with 15 patients who underwent cranial defect closure using cranial bone shavings alone. We measured preoperative and postoperative defect size on volumetric computed tomographic scan reconstructions to compare defect sizes. RESULTS The rhBMP-2 group had slightly increased proportional closure compared with the control group, 86% versus 76% (P < 0.018), respectively. Two patients in the rhBMP-2 group had postoperative fusion of a suture that was known to be patent at the time of cranial defect closure. No instances of brain edema, herniation, airway compromise, or other adverse effects directly attributable to rhBMP-2 were observed. CONCLUSIONS Bone morphogenetic protein 2 may increase the amplitude and uptake of cranial bone grafts in cranial defect closure. This study shows that defect sizes of up to 16 cm can be reliably closed using this technique. Postoperative fusion of uninvolved sutures in 2 patients indicates that rhBMP-2 may have unreported adverse effects; consideration of this finding should be weighed against the benefit of improved closure of calvarial defects.
Collapse
|
32
|
Singarete ME, Grizante MB, Milograna SR, Nery MF, Kin K, Wagner GP, Kohlsdorf T. Molecular evolution of HoxA13 and the multiple origins of limbless morphologies in amphibians and reptiles. Genet Mol Biol 2015; 38:255-62. [PMID: 26500429 PMCID: PMC4612600 DOI: 10.1590/s1415-475738320150039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/23/2015] [Indexed: 03/03/2023] Open
Abstract
Developmental processes and their results, morphological characters, are inherited through transmission of genes regulating development. While there is ample evidence that cis-regulatory elements tend to be modular, with sequence segments dedicated to different roles, the situation for proteins is less clear, being particularly complex for transcription factors with multiple functions. Some motifs mediating protein-protein interactions may be exclusive to particular developmental roles, but it is also possible that motifs are mostly shared among different processes. Here we focus on HoxA13, a protein essential for limb development. We asked whether the HoxA13 amino acid sequence evolved similarly in three limbless clades: Gymnophiona, Amphisbaenia and Serpentes. We explored variation in ω (dN/dS) using a maximum-likelihood framework and HoxA13sequences from 47 species. Comparisons of evolutionary models provided low ω global values and no evidence that HoxA13 experienced relaxed selection in limbless clades. Branch-site models failed to detect evidence for positive selection acting on any site along branches of Amphisbaena and Gymnophiona, while three sites were identified in Serpentes. Examination of alignments did not reveal consistent sequence differences between limbed and limbless species. We conclude that HoxA13 has no modules exclusive to limb development, which may be explained by its involvement in multiple developmental processes.
Collapse
Affiliation(s)
- Marina E Singarete
- Programa de Pós-Graduação em Biologia Celular e Molecular, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Mariana B Grizante
- School of Life Sciences, Arizona State University, Tempe, AZ, USA. ; Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Sarah R Milograna
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Mariana F Nery
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil. ; Departamento de Genética, Evolução e Bioagentes, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Koryu Kin
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. ; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Tiana Kohlsdorf
- Programa de Pós-Graduação em Biologia Celular e Molecular, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil. ; Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
33
|
Raines AM, Magella B, Adam M, Potter SS. Key pathways regulated by HoxA9,10,11/HoxD9,10,11 during limb development. BMC DEVELOPMENTAL BIOLOGY 2015; 15:28. [PMID: 26186931 PMCID: PMC4506574 DOI: 10.1186/s12861-015-0078-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/07/2015] [Indexed: 11/17/2022]
Abstract
Background The 39 mammalian Hox genes show problematic patterns of functional overlap. In order to more fully define the developmental roles of Hox genes it is necessary to remove multiple combinations of paralogous and flanking genes. In addition, the downstream molecular pathways regulated by Hox genes during limb development remain incompletely delineated. Results In this report we examine limb development in mice with frameshift mutations in six Hox genes, Hoxa9,10,11 and Hoxd9,10,11. The mice were made with a novel recombineering method that allows the simultaneous targeting of frameshift mutations into multiple flanking genes. The Hoxa9,10,11−/−/Hoxd9,10,11−/− mutant mice show a reduced ulna and radius that is more severe than seen in Hoxa11−/−/Hoxd11−/− mice, indicating a minor role for the flanking Hox9,10 genes in zeugopod development, as well as their primary function in stylopod development. The mutant mice also show severe reduction of Shh expression in the zone of polarizing activity, and decreased Fgf8 expression in the apical ectodermal ridge, thereby better defining the roles of these specific Hox genes in the regulation of critical signaling centers during limb development. Importantly, we also used laser capture microdissection coupled with RNA-Seq to characterize the gene expression programs in wild type and mutant limbs. Resting, proliferative and hypertrophic compartments of E15.5 forelimb zeugopods were examined. The results provide an RNA-Seq characterization of the progression of gene expression patterns during normal endochondral bone formation. In addition of the Hox mutants showed strongly altered expression of Pknox2, Zfp467, Gdf5, Bmpr1b, Dkk3, Igf1, Hand2, Shox2, Runx3, Bmp7 and Lef1, all of which have been previously shown to play important roles in bone formation. Conclusions The recombineering based frameshift mutation of the six flanking and paralogous Hoxa9,10,11 and Hoxd9,10,11 genes provides a resource for the analysis of their overlapping functions. Analysis of the Hoxa9,10,11−/−/Hoxd9,10,11−/− mutant limbs confirms and extends the results of previous studies using mice with Hox mutations in single paralogous groups or with entire Hox cluster deletions. The RNA-Seq analysis of specific compartments of the normal and mutant limbs defines the multiple key perturbed pathways downstream of these Hox genes. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0078-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna M Raines
- Division of Developmental Biology, Cincinnati Children's Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
| | - Bliss Magella
- Division of Developmental Biology, Cincinnati Children's Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
| |
Collapse
|
34
|
Pan TT, Jia WD, Yao QY, Sun QK, Ren WH, Huang M, Ma J, Li JS, Ma JL, Yu JH, Ge YS, Liu WB, Zhang CH, Xu GL. Overexpression of HOXA13 as a potential marker for diagnosis and poor prognosis of hepatocellular carcinoma. TOHOKU J EXP MED 2015; 234:209-19. [PMID: 25341685 DOI: 10.1620/tjem.234.209] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
HOXA13 is a member of homeobox genes that encode transcription factors regulating embryonic development and cell fate. Abnormal HOXA13 expression was reported in hepatocellular carcinoma (HCC), but its correlation with tumor angiogenesis and prognosis still remain unclear. This study was aimed to uncover the expression, diagnostic and prognostic significance of HOXA13 in HCC. Immunohistochemistry was performed to detect HOXA13 expression in HCC and corresponding paracarcinomatous tissues from 90 patients. Enzyme-linked immunosorbent assay was used to detect serum HOXA13 in 90 HCC patients and 20 healthy volunteers. Receiver operating characteristics was analyzed to calculate diagnostic accuracy of serum HOXA13, alpha-fetoprotein (AFP) and their combination. Immunoreactivity of HOXA13 was detected in 72.2% of HCC, and 12.2% of adjacent non-cancerous samples. HOXA13 expression was significantly associated with tumor size, microvascular invasion, pathological grade, tumor capsula status, AFP level, tumor-node-metastasis stage and positively correlated with VEGF (p < 0.001) and microvessel density (p < 0.001). The combination of serum HOXA13 and AFP had a markedly higher area under the curve than HOXA13 alone. HOXA13 expression was associated with unfavorable overall survival (OS) (p < 0.001) and disease-free survival (DFS) (p < 0.001). Multivariate analysis indicated that patients with HOXA13-expressing tumors had a significantly shorter OS (p = 0.030) and DFS (p = 0.005) than those with HOXA13-negative tumors. Thus, HOXA13 expression possibly plays an important role in tumor angiogenesis, progression and prognosis of HCC. Moreover, we demonstrate that serum HOXA13 may serve as a biomarker for early HCC diagnosing and predicting outcome.
Collapse
|
35
|
Huang AH, Riordan TJ, Pryce B, Weibel JL, Watson SS, Long F, Lefebvre V, Harfe BD, Stadler HS, Akiyama H, Tufa SF, Keene DR, Schweitzer R. Musculoskeletal integration at the wrist underlies the modular development of limb tendons. Development 2015; 142:2431-41. [PMID: 26062940 DOI: 10.1242/dev.122374] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/02/2015] [Indexed: 01/18/2023]
Abstract
The long tendons of the limb extend from muscles that reside in the zeugopod (arm/leg) to their skeletal insertions in the autopod (paw). How these connections are established along the length of the limb remains unknown. Here, we show that mouse limb tendons are formed in modular units that combine to form a functional contiguous structure; in muscle-less limbs, tendons develop in the autopod but do not extend into the zeugopod, and in the absence of limb cartilage the zeugopod segments of tendons develop despite the absence of tendons in the autopod. Analyses of cell lineage and proliferation indicate that distinct mechanisms govern the growth of autopod and zeugopod tendon segments. To elucidate the integration of these autopod and zeugopod developmental programs, we re-examined early tendon development. At E12.5, muscles extend across the full length of a very short zeugopod and connect through short anlagen of tendon progenitors at the presumptive wrist to their respective autopod tendon segment, thereby initiating musculoskeletal integration. Zeugopod tendon segments are subsequently generated by proximal elongation of the wrist tendon anlagen, in parallel with skeletal growth, underscoring the dependence of zeugopod tendon development on muscles for tendon anchoring. Moreover, a subset of extensor tendons initially form as fused structures due to initial attachment of their respective wrist tendon anlage to multiple muscles. Subsequent individuation of these tendons depends on muscle activity. These results establish an integrated model for limb tendon development that provides a framework for future analyses of tendon and musculoskeletal phenotypes.
Collapse
Affiliation(s)
- Alice H Huang
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Timothy J Riordan
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Brian Pryce
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Jennifer L Weibel
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Spencer S Watson
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Fanxin Long
- Department of Orthopaedics, Washington University, St Louis, MO 63110, USA
| | - Veronique Lefebvre
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Brian D Harfe
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - H Scott Stadler
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Haruhiko Akiyama
- Department of Orthopaedics, Gifu University, Gifu City, 501-1193, Japan
| | - Sara F Tufa
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Douglas R Keene
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| |
Collapse
|
36
|
Scotti M, Kherdjemil Y, Roux M, Kmita M. A Hoxa13:Cre mouse strain for conditional gene manipulation in developing limb, hindgut, and urogenital system. Genesis 2015; 53:366-76. [PMID: 25980463 DOI: 10.1002/dvg.22859] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 11/06/2022]
Abstract
The developing limb is a useful model for studying organogenesis and developmental processes. Although Cre alleles exist for conditional loss- or gain-of-function in limbs, Cre alleles targeting specific limb subdomains are desirable. Here we report on the generation of the Hoxa13:Cre line, in which the Cre gene is inserted in the endogenous Hoxa13 gene. We provide evidence that the Cre is active in embryonic tissues/regions where the endogenous Hoxa13 gene is expressed. Our results show that cells expressing Hoxa13 in developing limb buds contribute to the entire autopod (hand/feet) skeleton and validate Hoxa13 as a distal limb marker as far as the skeleton is concerned. In contrast, in the limb musculature, Cre-based fate mapping shows that almost all muscle masses of the zeugopod (forearm) and part of the triceps contain Hoxa13-expressing cells and/or their descendants. Besides the limb, the activity of the Cre is detectable in the urogenital system and the hindgut, primarily in the epithelium and smooth muscles. Together our data show that the Hoxa13:Cre allele is a useful tool for conditional gene manipulation in the urogenital system, posterior digestive tract, autopod and part of the limb musculature.
Collapse
Affiliation(s)
- Martina Scotti
- Laboratory of Genetics and Development, Institut de Recherches Cliniques de Montréal (IRCM), Université de Montréal, Montréal Québec, Canada
| | - Yacine Kherdjemil
- Laboratory of Genetics and Development, Institut de Recherches Cliniques de Montréal (IRCM), Université de Montréal, Montréal Québec, Canada
| | - Marine Roux
- Laboratory of Genetics and Development, Institut de Recherches Cliniques de Montréal (IRCM), Université de Montréal, Montréal Québec, Canada
| | - Marie Kmita
- Laboratory of Genetics and Development, Institut de Recherches Cliniques de Montréal (IRCM), Université de Montréal, Montréal Québec, Canada
| |
Collapse
|
37
|
Shakir S, MacIsaac ZM, Naran S, Smith DM, Bykowski MR, Cray JJ, Craft TK, Wang D, Weiss L, Campbell PG, Mooney MP, Losee JE, Cooper GM. Transforming growth factor beta 1 augments calvarial defect healing and promotes suture regeneration. Tissue Eng Part A 2015; 21:939-47. [PMID: 25380311 DOI: 10.1089/ten.tea.2014.0189] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Repair of complex cranial defects is hindered by a paucity of appropriate donor tissue. Bone morphogenetic protein 2 (BMP2) and transforming growth factor beta 1 (TGFβ1) have been shown separately to induce bone formation through physiologically distinct mechanisms and potentially improve surgical outcome for cranial defect repair by obviating the need for donor tissue. We hypothesize that a combination of BMP2 and TGFβ1 would improve calvarial defect healing by augmenting physiologic osteogenic mechanisms. METHODS/RESULTS Coronal suturectomies (3×15 mm) were performed in 10-day-old New Zealand White rabbits. DermaMatrix™ (3×15mm) patterned with four treatments (vehicle, 350 ng BMP2, 200 ng TGFβ1, or 350 ng BMP2+200 ng TGFβ1) was placed in suturectomy sites and rabbits were euthanized at 6 weeks of age. Two-dimensional (2D) defect healing, bone volume, and bone density were quantified by computed tomography. Regenerated bone was qualitatively assessed histologically. One-way analysis of variance revealed significant group main effects for all bone quantity measures. Analysis revealed significant differences in 2D defect healing, bone volume, and bone density between the control group and all treatment groups, but no significant differences were detected among the three growth factor treatment groups. Qualitatively, TGFβ1 treatment produced bone with morphology most similar to native bone. TGFβ1-regenerated bone contained a suture-like tissue, growing from the lateral edge of the defect margin toward the midline. Unique to the BMP2 treatment group, regenerated bone contained lacunae with chondrocytes, demonstrating the presence of endochondral ossification. CONCLUSIONS/SIGNIFICANCE Total healing in BMP2 and TGFβ1 treatment groups is not significantly different. The combination of BMP2+TGFβ1 did not significantly increase bone healing compared with treatment with BMP2 or TGFβ1 alone postoperatively at 4 weeks. We highlight the potential use of TGFβ1 to regenerate calvarial bone and cranial sutures. TGFβ1 therapy significantly augmented bony defect healing at an earlier time point when compared with control, regenerated bone along the native intramembranous ossification pathway, and (unlike BMP2 alone or in combination with TGFβ1) permitted normal suture reformation. We propose a novel method of craniofacial bone regeneration using low-dose, spatially controlled growth factor therapies to minimize potentially harmful effects while maximizing local bioavailability and regenerating native tissues.
Collapse
Affiliation(s)
- Sameer Shakir
- 1 Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Imagawa E, Kayserili H, Nishimura G, Nakashima M, Tsurusaki Y, Saitsu H, Ikegawa S, Matsumoto N, Miyake N. Severe manifestations of hand-foot-genital syndrome associated with a novel HOXA13 mutation. Am J Med Genet A 2014; 164A:2398-402. [PMID: 24934387 DOI: 10.1002/ajmg.a.36648] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 05/21/2014] [Indexed: 11/10/2022]
Abstract
We report on a girl with absent nails, short/absent distal phalanges of the second to fifth fingers and toes, short thumbs, absent halluces, and carpo-tarsal coalition who also had genitourinary malformations. Trio-based whole exome sequencing identified a novel de novo mutation (c.1102A>T, p.Ile368Phe) in the HOXA13 gene. Heterozygous HOXA13 mutations have been previously reported in hand-foot-genital syndrome and Guttmacher syndrome, which are variably associated with small nails, short distal and middle phalanges, short thumbs and halluces, but not absent nails. Considering the molecular data, the phenotype in the present patient was defined as the severe end of hand-foot-genital and Guttmacher syndrome spectrum. Our observation expands the clinical spectrum caused by heterozygous HOXA13 mutations and reinforces the difficulty of differential diagnosis on clinical grounds for the disorders with short distal phalanges, short thumbs, and short halluces.
Collapse
Affiliation(s)
- Eri Imagawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
González-Martín MC, Mallo M, Ros MA. Long bone development requires a threshold of Hox function. Dev Biol 2014; 392:454-65. [PMID: 24930703 DOI: 10.1016/j.ydbio.2014.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/30/2014] [Accepted: 06/04/2014] [Indexed: 11/30/2022]
Abstract
The Hoxd(Del(11-13)) mutant is one of the animal models for human synpolydactyly, characterized by short and syndactylous digits. Here we have characterized in detail the cartilage and bone defects in these mutants. We report two distinct phenotypes: (i) a delay and change in pattern of chondrocyte maturation of metacarpals/metatarsals and (ii) formation of a poor and not centrally positioned primary ossification center in the proximal-intermediate phalanx. In the metacarpals of Hoxd(Del(11-13)) mutants, ossification occurs postnataly, in the absence of significant Ihh expression and without the establishment of growth plates, following patterns similar to those of short bones. The strong downregulation in Ihh expression is associated with a corresponding increase of the repressor form of Gli3. To evaluate the contribution of this alteration to the phenotype, we generated double Hoxd(Del(11-13));Gli3 homozygous mutants. Intriguingly, these double mutants showed a complete rescue of the phenotype in metatarsals but only partial phenotypic rescue in metacarpals. Our results support Hox genes being required in a dose-dependent manner for long bone cartilage maturation and suggest that and excess of Gli3R mediates a significant part of the Hoxd(Del(11-13)) chondrogenic phenotype.
Collapse
Affiliation(s)
- Ma Carmen González-Martín
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN., 39011 Santander, Spain
| | - Moises Mallo
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Marian A Ros
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN., 39011 Santander, Spain; Dpto. de Anatomía y Biología Celular, Universidad de Cantabria, 39011 Santander, Spain.
| |
Collapse
|
40
|
Sánchez-Herrero E. Hox targets and cellular functions. SCIENTIFICA 2013; 2013:738257. [PMID: 24490109 PMCID: PMC3892749 DOI: 10.1155/2013/738257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
Hox genes are a group of genes that specify structures along the anteroposterior axis in bilaterians. Although in many cases they do so by modifying a homologous structure with a different (or no) Hox input, there are also examples of Hox genes constructing new organs with no homology in other regions of the body. Hox genes determine structures though the regulation of targets implementing cellular functions and by coordinating cell behavior. The genetic organization to construct or modify a certain organ involves both a genetic cascade through intermediate transcription factors and a direct regulation of targets carrying out cellular functions. In this review I discuss new data from genome-wide techniques, as well as previous genetic and developmental information, to describe some examples of Hox regulation of different cell functions. I also discuss the organization of genetic cascades leading to the development of new organs, mainly using Drosophila melanogaster as the model to analyze Hox function.
Collapse
Affiliation(s)
- Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
41
|
Zhou X, Zheng C, He B, Zhu Z, Li P, He X, Zhu S, Yang C, Lao Z, Zhu Q, Liu X. A novel mutation outside homeodomain of HOXD13 causes synpolydactyly in a Chinese family. Bone 2013; 57:237-41. [PMID: 23948678 DOI: 10.1016/j.bone.2013.07.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/05/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Human synpolydactyly (SPD), belonging to syndactyly (SD) II, is caused by mutations in homeobox d13 (HOXD13). Here, we describe the study of a two-generation Chinese family with a variant form of synpolydactyly. MATERIALS AND METHODS The sequence of the HOXD13 gene was analyzed. Luciferase assays were conducted to determine whether the mutation affected the function of the HOXD13 protein. RESULTS We identified a novel c.659G>C (p.Gly220Ala) mutation outside the HOXD13 homeodomain responsible for the disease in this family. This mutation was not found in any of the unaffected family members and healthy control. Luciferase assays demonstrated that this mutation affected the transcriptional activation ability of HOXD13 (only approximately 84.7% of wild type, p<0.05). CONCLUSION Phenotypes displayed by individuals carrying the novel mutation present additional features, such as the fifth finger clinodactyly, which is not always associated with canonical SPD. This finding enhances our understanding about the phenotypic spectrum associated with HOXD13 mutations and advances our understanding of human limb development.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Palmieri C, Riccardi E. Immunohistochemical expression of HOXA-13 in normal, hyperplastic and neoplastic canine prostatic tissue. J Comp Pathol 2013; 149:417-23. [PMID: 23809907 DOI: 10.1016/j.jcpa.2013.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/28/2013] [Accepted: 05/07/2013] [Indexed: 01/24/2023]
Abstract
Homeobox genes are known to be examples of the intimate relationship between embryogenesis and tumourigenesis. Specifically, the HOXA13 gene plays a fundamental role in the development of the urogenital tract and external genitalia and in prostate organogenesis. There are no reports on the expression of HOXA13 in normal, hyperplastic or neoplastic canine prostate tissue or in other types of tumours. Six normal, 16 hyperplastic and 12 neoplastic canine prostates were examined microscopically and immunohistochemically with a polyclonal antibody specific for human HOXA13. An immunohistochemical score was generated. HOXA13 was expressed in the cytoplasm of epithelial cells in normal, hyperplastic and neoplastic prostates. The percentage of immunolabelled cells in all prostatic carcinomas (PCs) was greatly increased, with a score of 85.3 (±5.25) compared with normal (2 ± 0.71) and hyperplastic prostates (6.08 ± 2.21). The increase in HOXA13 expression in canine PCs suggests the involvement of this transcription factor in carcinogenesis and promotion of tumour growth.
Collapse
Affiliation(s)
- C Palmieri
- School of Veterinary Science, University of Queensland, Gatton Campus, Gatton 4343, Queensland, Australia.
| | | |
Collapse
|
43
|
Misexpression of Pknox2 in mouse limb bud mesenchyme perturbs zeugopod development and deltoid crest formation. PLoS One 2013; 8:e64237. [PMID: 23717575 PMCID: PMC3661445 DOI: 10.1371/journal.pone.0064237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/10/2013] [Indexed: 01/30/2023] Open
Abstract
The TALE (Three Amino acid Loop Extension) family consisting of Meis, Pbx and Pknox proteins is a group of transcriptional co-factors with atypical homeodomains that play pivotal roles in limb development. Compared to the in-depth investigations of Meis and Pbx protein functions, the role of Pknox2 in limb development remains unclear. Here, we showed that Pknox2 was mainly expressed in the zeugopod domain of the murine limb at E10.5 and E11.5. Misexpression of Pknox2 in the limb bud mesenchyme of transgenic mice led to deformities in the zeugopod and forelimb stylopod deltoid crest, but left the autopod and other stylopod skeletons largely intact. These malformations in zeugopod skeletons were recapitulated in mice overexpressing Pknox2 in osteochondroprogenitor cells. Molecular and cellular analyses indicated that the misexpression of Pknox2 in limb bud mesenchyme perturbed the Hox10-11 gene expression profiles, decreased Col2 expression and Bmp/Smad signaling activity in the limb. These results indicated that Pknox2 misexpression affected mesenchymal condensation and early chondrogenic differentiation in the zeugopod skeletons of transgenic embryos, suggesting Pknox2 as a potential regulator of zeugopod and deltoid crest formation.
Collapse
|
44
|
Shou S, Carlson HL, Perez WD, Stadler HS. HOXA13 regulates Aldh1a2 expression in the autopod to facilitate interdigital programmed cell death. Dev Dyn 2013; 242:687-98. [PMID: 23553814 DOI: 10.1002/dvdy.23966] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 02/05/2013] [Accepted: 03/21/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Retinoic acid (RA), plays an essential role in the growth and patterning of vertebrate limb. While the developmental processes regulated by RA are well understood, little is known about the transcriptional mechanisms required to precisely control limb RA synthesis. Here, Aldh1a2 functions as the primary enzyme necessary for RA production which regulates forelimb outgrowth and hindlimb digit separation. Because mice lacking HOXA13 exhibit similar defects in digit separation as Aldh1a2 mutants, we hypothesized that HOXA13 regulates Aldh1a2 to facilitate RA-mediated interdigital programmed cell death (IPCD) and digit separation. RESULTS In this report, we identify Aldh1a2 as a direct target of HOXA13. In absence of HOXA13 function, Aldh1a2 expression, RA signaling, and IPCD are reduced. In the limb, HOXA13 binds a conserved cis-regulatory element in the Aldh1a2 locus that can be regulated by HOXA13 to promote gene expression. Finally, decreased RA signaling and IPCD can be partially rescued in the Hoxa13 mutant hindlimb by maternal RA supplementation. CONCLUSIONS Defects in IPCD and digit separation in Hoxa13 mutant mice may be caused in part by reduced levels of RA signaling stemming from a loss in the direct regulation of Aldh1a2. These findings provide new insights into the transcriptional regulation of RA signaling necessary for limb morphogenesis.
Collapse
Affiliation(s)
- Siming Shou
- University of Chicago Microarray Core, Room G405, Hospital Building MC5100, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
45
|
Rabinowitz AH, Vokes SA. Integration of the transcriptional networks regulating limb morphogenesis. Dev Biol 2012; 368:165-80. [PMID: 22683377 DOI: 10.1016/j.ydbio.2012.05.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 12/29/2022]
Abstract
The developing limb is one of the best described vertebrate systems for understanding how coordinated gene expression during embryogenesis leads to the structures present in the mature organism. This knowledge, derived from decades of research, is largely based upon gain- and loss-of-function experiments. These studies have provided limited information about how the key signaling pathways interact with each other and the downstream effectors of these pathways. We summarize our current understanding of known genetic interactions in the context of three temporally defined gene regulatory networks. These networks crystallize our current knowledge, depicting a dynamic process involving multiple feedback loops between the ectoderm and mesoderm. At the same time, they highlight the fact that many essential processes are still largely undescribed. Much of the dynamic transcriptional activity occurring during development is regulated by distal cis-regulatory elements. Modern genomic tools have provided new approaches for studying the function of cis-regulatory elements and we discuss the results of these studies in regard to understanding limb development. Ultimately, these genomic techniques will allow scientists to understand how multiple signaling pathways are integrated in space and time to drive gene expression and regulate the formation of the limb.
Collapse
Affiliation(s)
- Adam H Rabinowitz
- Section of Molecular Cell & Developmental Biology, Institute for Cellular and Molecular Biology, One University Station A4800, Austin, TX 78712, USA
| | | |
Collapse
|
46
|
Park KH, Kang JW, Lee EM, Kim JS, Rhee YH, Kim M, Jeong SJ, Park YG, Kim SH. Melatonin promotes osteoblastic differentiation through the BMP/ERK/Wnt signaling pathways. J Pineal Res 2011; 51:187-94. [PMID: 21470302 DOI: 10.1111/j.1600-079x.2011.00875.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although melatonin has a variety of biological actions such as antitumor, antiangiogenic, and antioxidant activities, the osteogenic mechanism of melatonin still remains unclear. Thus, in the present study, the molecular mechanism of melatonin was elucidated in the differentiation of mouse osteoblastic MC3T3-E1 cells. Melatonin enhanced osteoblastic differentiation and mineralization compared to untreated controls in preosteoblastic MC3T3-E1 cells. Also, melatonin increased wound healing and dose-dependently activated osteogenesis markers such as runt-related transcription factor 2 (Runx2), osteocalcin (OCN), bone morphogenic protein (BMP)-2 and -4 in MC3T3-E1 cells. Of note, melatonin activated Wnt 5 α/β, β-catenin and the phosphorylation of c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) in a time-dependent manner while it attenuated phosphorylation of glycogen synthase kinase 3 beta (GSK-3β) in MC3T3-E1 cells. Consistently, confocal microscope observation revealed that BMP inhibitor Noggin blocked melatonin-induced nuclear localization of β-catenin. Furthermore, Western blotting showed that Noggin reversed activation of β-catenin and Wnt5 α/β and suppression of GSK-3β induced by melatonin in MC3T3-E1 cells, which was similarly induced by ERK inhibitor PD98059. Overall, these findings demonstrate that melatonin promotes osteoblastic differentiation and mineralization in MC3T3-E1 cells via the BMP/ERK/Wnt pathways.
Collapse
Affiliation(s)
- Ki-Ho Park
- Department of Orthodondritics, Kyung-Hee University College of Dental Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang Y, Larsen CA, Stadler HS, Ames JB. Structural basis for sequence specific DNA binding and protein dimerization of HOXA13. PLoS One 2011; 6:e23069. [PMID: 21829694 PMCID: PMC3148250 DOI: 10.1371/journal.pone.0023069] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/12/2011] [Indexed: 11/18/2022] Open
Abstract
The homeobox gene (HOXA13) codes for a transcription factor protein that binds to AT-rich DNA sequences and controls expression of genes during embryonic morphogenesis. Here we present the NMR structure of HOXA13 homeodomain (A13DBD) bound to an 11-mer DNA duplex. A13DBD forms a dimer that binds to DNA with a dissociation constant of 7.5 nM. The A13DBD/DNA complex has a molar mass of 35 kDa consistent with two molecules of DNA bound at both ends of the A13DBD dimer. A13DBD contains an N-terminal arm (residues 324 – 329) that binds in the DNA minor groove, and a C-terminal helix (residues 362 – 382) that contacts the ATAA nucleotide sequence in the major groove. The N370 side-chain forms hydrogen bonds with the purine base of A5* (base paired with T5). Side-chain methyl groups of V373 form hydrophobic contacts with the pyrimidine methyl groups of T5, T6* and T7*, responsible for recognition of TAA in the DNA core. I366 makes similar methyl contacts with T3* and T4*. Mutants (I366A, N370A and V373G) all have decreased DNA binding and transcriptional activity. Exposed protein residues (R337, K343, and F344) make intermolecular contacts at the protein dimer interface. The mutation F344A weakens protein dimerization and lowers transcriptional activity by 76%. We conclude that the non-conserved residue, V373 is critical for structurally recognizing TAA in the major groove, and that HOXA13 dimerization is required to activate transcription of target genes.
Collapse
Affiliation(s)
- Yonghong Zhang
- Department of Chemistry, University of California Davis, Davis, California, United States of America
| | - Christine A. Larsen
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, United States of America
- Shriners Hospital for Children Research Department, Portland, Oregon, United States of America
| | - H. Scott Stadler
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, United States of America
- Shriners Hospital for Children Research Department, Portland, Oregon, United States of America
| | - James B. Ames
- Department of Chemistry, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Oxburgh L. Control of the bone morphogenetic protein 7 gene in developmental and adult life. Curr Genomics 2011; 10:223-30. [PMID: 19949543 PMCID: PMC2709933 DOI: 10.2174/138920209788488490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 03/20/2009] [Accepted: 03/20/2009] [Indexed: 11/24/2022] Open
Abstract
The TGFβ superfamily growth factor BMP7 performs essential biological functions in embryonic development and regeneration of injured tissue in the adult. BMP7 activity is regulated at numerous levels in the signaling pathway by the expression of extracellular antagonists, decoy receptors and inhibitory cell signaling components. Additionally, expression of the BMP7 gene is tightly controlled both during embryonic development and adult life. In this review, the current status of work on regulation of BMP7 at the genomic level is discussed. In situ hybridization and reporter gene studies have conclusively defined patterns of BMP7 expression in many tissues. Additionally, both in vivo and cell culture studies have defined some of the mechanistic bases for this regulation. In addition to transcriptional activation mediated by binding of activating transcription factors, there is also strong evidence for repression through recruitment of histone modifying enzymes to specific genetic elements. This review summarizes our current understanding of BMP7 gene regulation in embryonic development and adult tissues.
Collapse
Affiliation(s)
- Leif Oxburgh
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| |
Collapse
|
49
|
Su JL, Chiou J, Tang CH, Zhao M, Tsai CH, Chen PS, Chang YW, Chien MH, Peng CY, Hsiao M, Kuo ML, Yen ML. CYR61 regulates BMP-2-dependent osteoblast differentiation through the {alpha}v{beta}3 integrin/integrin-linked kinase/ERK pathway. J Biol Chem 2010; 285:31325-36. [PMID: 20675382 DOI: 10.1074/jbc.m109.087122] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osteoporosis is one of the most common bone pathologies. A number of novel molecules have been reported to increase bone formation including cysteine-rich protein 61 (CYR61), a ligand of integrin receptor, but mechanisms remain unclear. It is known that bone morphogenetic proteins (BMPs), especially BMP-2, are crucial regulators of osteogenesis. However, the interaction between CYR61 and BMP-2 is unclear. We found that CYR61 significantly increases proliferation and osteoblastic differentiation in MC3T3-E1 osteoblasts and primary cultured osteoblasts. CYR61 enhances mRNA and protein expression of BMP-2 in a time- and dose-dependent manner. Moreover, CYR61-mediated proliferation and osteoblastic differentiation are significantly decreased by knockdown of BMP-2 expression or inhibition of BMP-2 activity. In this study we found integrin α(v)β(3) is critical for CYR61-mediated BMP-2 expression and osteoblastic differentiation. We also found that integrin-linked kinase, which is downstream of the α(v)β(3) receptor, is involved in CYR61-induced BMP-2 expression and subsequent osteoblastic differentiation through an ERK-dependent pathway. Taken together, our results show that CYR61 up-regulates BMP-2 mRNA and protein expression, resulting in enhanced cell proliferation and osteoblastic differentiation through activation of the α(v)β(3) integrin/integrin-linked kinase/ERK signaling pathway.
Collapse
Affiliation(s)
- Jen-Liang Su
- Graduate Institute of Cancer Biology, College of Medicine, and the eGraduate Institute of Basic Medical Science, China Medical University, Taichung 404,Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang Y, Thornburg CK, Stadler HS, Ames JB. Backbone chemical shift assignments of mouse HOXA13 DNA binding domain bound to duplex DNA. BIOMOLECULAR NMR ASSIGNMENTS 2010; 4:97-99. [PMID: 20232265 PMCID: PMC2862170 DOI: 10.1007/s12104-010-9216-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 03/02/2010] [Indexed: 05/28/2023]
Abstract
The homeobox gene (Hoxa13) codes for a transcription factor protein that binds to AT-rich DNA sequences and controls expression of many important proteins during embryonic morphogenesis. We report complete backbone NMR chemical shift assignments of mouse Hoxa13 DNA binding domain bound to an 11-residue DNA duplex (BMRB no. 16577).
Collapse
Affiliation(s)
- Yonghong Zhang
- Department of Chemistry, University of California, Davis, CA 95616 USA
| | - Chelsea K. Thornburg
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 SW Sam Jackson park Road, Portland, OR 97239 USA
- Shriners Hospital for Children Research Department, 2101 SW Sam Jackson Park Road, Portland, OR 97239 USA
| | - H. Scott Stadler
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 SW Sam Jackson park Road, Portland, OR 97239 USA
- Shriners Hospital for Children Research Department, 2101 SW Sam Jackson Park Road, Portland, OR 97239 USA
| | - James B. Ames
- Department of Chemistry, University of California, Davis, CA 95616 USA
| |
Collapse
|