1
|
Yang DW, Shim HM, Kim MS, Kim SH. Spatiotemporal regulation of dental pulpal innervation in the rat. Anat Histol Embryol 2024; 53:e13093. [PMID: 39056435 DOI: 10.1111/ahe.13093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
The dental pulp is a highly innervated tissue transmitting pain-related sensations in the tooth. Consequently, understanding the intricacies of its innervation mechanism in odontogenesis is crucial for gaining insights into dental pain and developing dental pain-modulating agents. This study examined neuroregulatory molecules such as neurotrophic factors (nerve growth factor [NGF], brain-derived neurotrophic factor [BDNF], neurotrophin-4 [NTF-4], and neurturin [NRTN]) and neuroinhibitory factors (slit2, ephrin isoforms and netrin-1) in developing rat teeth with follicles. NGF, BDNF and NRTN transcriptions showed time-dependent upregulation, particularly during the root formation stage. In contrast, NTF-4 mRNA was highly expressed at the cap stage, but became downregulated over time. Slit2 and ephrin-B2 expression was distinct at the cap stage and then downregulated in a time-dependent manner. Ephrin-A5 and netrin-1 expression did not significantly change. Immunofluorescence analysis revealed a robust expression of both ephrin-B2 and slit2 in the outer and inner dental epithelia of the enamel organ, a non-neurogenic tissue, during the cap stage of 3rd molar germs. In contrast, BDNF was predominantly localized in dental papilla cells and odontoblasts during the root formation stage. These results suggest that neuroregulatory molecules, such as BDNF, slit2 and ephrin-B2, may be important in identifying therapeutic targets for modulating dental pulp pain.
Collapse
Affiliation(s)
- Dong-Wook Yang
- Department of Oral Anatomy, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Hye-Min Shim
- Department of Oral Anatomy, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Min-Seok Kim
- Department of Oral Anatomy, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Sun-Hun Kim
- Department of Oral Anatomy, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
2
|
Zhang X, Yang Z, Zhang D, Bai M. The role of Semaphorin 3A in oral diseases. Oral Dis 2024; 30:1887-1896. [PMID: 37771213 DOI: 10.1111/odi.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023]
Abstract
Semaphorin 3A (SEMA3A), also referred to as H-Sema III, is a molecule with significant biological importance in regulating physiological and pathological processes. However, its role in oral diseases, particularly its association with inflammatory immunity and alveolar bone remodeling defects, remains poorly understood. This comprehensive review article aims to elucidate the recent advances in understanding SEMA3A in the oral system, encompassing nerve formation, periodontitis, pulpitis, apical periodontitis, and oral squamous cell carcinoma. Notably, we explore its novel function in inflammatory immunomodulation and alveolar bone formation during oral infectious diseases. By doing so, this review enhances our comprehension of SEMA3A's role in oral biology and opens up possibilities for modulatory approaches and potential treatments in oral diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhenqi Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Thai J, Fuller‐Jackson J, Ivanusic JJ. Using tissue clearing and light sheet fluorescence microscopy for the three-dimensional analysis of sensory and sympathetic nerve endings that innervate bone and dental tissue of mice. J Comp Neurol 2024; 532:e25582. [PMID: 38289188 PMCID: PMC10952626 DOI: 10.1002/cne.25582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/05/2023] [Accepted: 12/30/2023] [Indexed: 02/01/2024]
Abstract
Bone and dental tissues are richly innervated by sensory and sympathetic neurons. However, the characterization of the morphology, molecular phenotype, and distribution of nerves that innervate hard tissue has so far mostly been limited to thin histological sections. This approach does not adequately capture dispersed neuronal projections due to the loss of important structural information during three-dimensional (3D) reconstruction. In this study, we modified the immunolabeling-enabled imaging of solvent-cleared organs (iDISCO/iDISCO+) clearing protocol to image high-resolution neuronal structures in whole femurs and mandibles collected from perfused C57Bl/6 mice. Axons and their nerve terminal endings were immunolabeled with antibodies directed against protein gene product 9.5 (pan-neuronal marker), calcitonin gene-related peptide (peptidergic nociceptor marker), or tyrosine hydroxylase (sympathetic neuron marker). Volume imaging was performed using light sheet fluorescence microscopy. We report high-quality immunolabeling of the axons and nerve terminal endings for both sensory and sympathetic neurons that innervate the mouse femur and mandible. Importantly, we are able to follow their projections through full 3D volumes, highlight how extensive their distribution is, and show regional differences in innervation patterns for different parts of each bone (and surrounding tissues). Mapping the distribution of sensory and sympathetic axons, and their nerve terminal endings, in different bony compartments may be important in further elucidating their roles in health and disease.
Collapse
Affiliation(s)
- Jenny Thai
- Department of Anatomy and PhysiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | | | - Jason J. Ivanusic
- Department of Anatomy and PhysiologyUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
4
|
Liu M, Yang Q, Zuo H, Zhang X, Mishina Y, Chen Z, Yang J. Dynamic patterns of histone lactylation during early tooth development in mice. J Mol Histol 2023; 54:665-673. [PMID: 37787911 DOI: 10.1007/s10735-023-10154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
Histone lactylation on its lysine (K) residues has been reported to have indispensable roles in lung fibrosis, embryogenesis, neural development, inflammation, and tumors. However, little is known about the lactylation activity towards histone lysine residue during tooth development. We investigated the dynamic patterns of lactate-derived histone lysine lactylation (Kla) using a pan-Kla antibody during murine tooth development, including lower first molar and lower incisor. The results showed that pan-Kla exhibited temporo-spatial patterns in both dental epithelium and mesenchyme cells during development. Notably, pan-Kla was identified in primary enamel knot (PEK), stratum intermedium (SI), stellate reticulum (SR), dental follicle cells, odontoblasts, ameloblasts, proliferating cells in dental mesenchyme, as well as osteoblasts around the tooth germ. More importantly, pan-Kla was also identified to be co-localized with neurofilament during tooth development, suggesting histone lysine lactylation may be involved in neural invasion during tooth development. These findings suggest that histone lysine lactylation may play important roles in regulating tooth development.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Qian Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Huanyan Zuo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Xinye Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Yuji Mishina
- Department of Biologic & Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, MI, 48109, USA
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Jingwen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China.
| |
Collapse
|
5
|
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev 2023; 103:1899-1964. [PMID: 36656056 DOI: 10.1152/physrev.00019.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wan-Min Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Azumane M, Ikezaki S, Otsu K, Kumakami-Sakano M, Arai H, Yamada H, Kettunen P, Harada H. Semaphorin-RhoA signaling regulates HERS maintenance by acting against TGF-β-induced EMT. J Periodontal Res 2023; 58:184-194. [PMID: 36517910 DOI: 10.1111/jre.13080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Hertwig's epithelial root sheath (HERS) plays a role in root dentin formation. It produces the epithelial rests of Malassez (ERM) for the induction of periodontal tissue development during root formation. Although ERM is thought to be caused by epithelial-mesenchymal transition (EMT), the mechanism by which HERS is maintained as epithelium is unknown. Here, we aimed to elucidate the molecular mechanisms regulating the relationship between HERS maintenance and ERM development. METHODS To understand the relationship between HERS and ERM development during root formation, we observed the developing molar root using cytokeratin14 (CK14) Cre/tdTomato mice via stereomicroscopy. The relationship between semaphorin and transforming growth factor (TGF) signaling in the maintenance of HERS and ERM development was examined using CK14cre/R26-tdTomato mice and a HERS cell line. RESULTS tdTomato-positive cells were observed on HERS and the migrating cells from HERS. The migrating cells showed reduced E-cadherin expression. In contrast, HERS cells expressed semaphorin receptors and active RhoA. Semaphorin signaling was associated with RhoA activation and cell-cell adhesion, while TGF-β induced decreased E-cadherin and active RhoA expression, and consequently enhanced cell migration. CONCLUSION HERS induces root formation by controlling epithelial maintenance and EMT through the opposing effects of semaphorin and TGF-β signaling.
Collapse
Affiliation(s)
- Marii Azumane
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Iwate, Japan.,Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University Hospital, Iwate, Japan
| | - Shojiro Ikezaki
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Iwate, Japan
| | - Keishi Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Iwate, Japan
| | - Mika Kumakami-Sakano
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Iwate, Japan
| | - Haruno Arai
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Iwate, Japan.,Division of Pediatric and Special Care Dentistry, Department of Oral Health Science, School of Dentistry, Iwate Medical University, Iwate, Japan
| | - Hiroyuki Yamada
- Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University Hospital, Iwate, Japan
| | - Päivi Kettunen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Iwate, Japan
| |
Collapse
|
7
|
Nomdedeu-Sancho G, Alsina B. Wiring the senses: Factors that regulate peripheral axon pathfinding in sensory systems. Dev Dyn 2023; 252:81-103. [PMID: 35972036 PMCID: PMC10087148 DOI: 10.1002/dvdy.523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 01/04/2023] Open
Abstract
Sensory neurons of the head are the ones that transmit the information about the external world to our brain for its processing. Axons from cranial sensory neurons sense different chemoattractant and chemorepulsive molecules during the journey and in the target tissue to establish the precise innervation with brain neurons and/or receptor cells. Here, we aim to unify and summarize the available information regarding molecular mechanisms guiding the different afferent sensory axons of the head. By putting the information together, we find the use of similar guidance cues in different sensory systems but in distinct combinations. In vertebrates, the number of genes in each family of guidance cues has suffered a great expansion in the genome, providing redundancy, and robustness. We also discuss recently published data involving the role of glia and mechanical forces in shaping the axon paths. Finally, we highlight the remaining questions to be addressed in the field.
Collapse
Affiliation(s)
- Gemma Nomdedeu-Sancho
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Berta Alsina
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Neural Regulations in Tooth Development and Tooth-Periodontium Complex Homeostasis: A Literature Review. Int J Mol Sci 2022; 23:ijms232214150. [PMID: 36430624 PMCID: PMC9698398 DOI: 10.3390/ijms232214150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The tooth-periodontium complex and its nerves have active reciprocal regulation during development and homeostasis. These effects are predominantly mediated by a range of molecules secreted from either the nervous system or the tooth-periodontium complex. Different strategies mimicking tooth development or physiological reparation have been applied to tooth regeneration studies, where the application of these nerve- or tooth-derived molecules has been proven effective. However, to date, basic studies in this field leave many vacancies to be filled. This literature review summarizes the recent advances in the basic studies on neural responses and regulation during tooth-periodontium development and homeostasis and points out some research gaps to instruct future studies. Deepening our understanding of the underlying mechanisms of tooth development and diseases will provide more clues for tooth regeneration.
Collapse
|
9
|
Stanwick M, Barkley C, Serra R, Kruggel A, Webb A, Zhao Y, Pietrzak M, Ashman C, Staats A, Shahid S, Peters SB. Tgfbr2 in Dental Pulp Cells Guides Neurite Outgrowth in Developing Teeth. Front Cell Dev Biol 2022; 10:834815. [PMID: 35265620 PMCID: PMC8901236 DOI: 10.3389/fcell.2022.834815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Transforming growth factor β (TGFβ) plays an important role in tooth morphogenesis and mineralization. During postnatal development, the dental pulp (DP) mesenchyme secretes neurotrophic factors that guide trigeminal nerve fibers into and throughout the DP. This process is tightly linked with dentin formation and mineralization. Our laboratory established a mouse model in which Tgfbr2 was conditionally deleted in DP mesenchyme using an Osterix promoter-driven Cre recombinase (Tgfbr2 cko ). These mice survived postnatally with significant defects in bones and teeth, including reduced mineralization and short roots. Hematoxylin and eosin staining revealed reduced axon-like structures in the mutant mice. Reporter imaging demonstrated that Osterix-Cre activity within the tooth was active in the DP and derivatives, but not in neuronal afferents. Immunofluorescence staining for β3 tubulin (neuronal marker) was performed on serial cryosections from control and mutant molars on postnatal days 7 and 24 (P7, P24). Confocal imaging and pixel quantification demonstrated reduced innervation in Tgfbr2 cko first molars at both stages compared to controls, indicating that signals necessary to promote neurite outgrowth were disrupted by Tgfbr2 deletion. We performed mRNA-Sequence (RNA-Seq) and gene onotology analyses using RNA from the DP of P7 control and mutant mice to investigate the pathways involved in Tgfbr2-mediated tooth development. These analyses identified downregulation of several mineralization-related and neuronal genes in the Tgfbr2 cko DP compared to controls. Select gene expression patterns were confirmed by quantitative real-time PCR and immunofluorescence imaging. Lastly, trigeminal neurons were co-cultured atop Transwell filters overlying primary Tgfbr2 f/f DP cells. Tgfbr2 in the DP was deleted via Adenovirus-expressed Cre recombinase. Confocal imaging of axons through the filter pores showed increased axonal sprouting from neurons cultured with Tgfbr2-positive DP cells compared to neurons cultured alone. Axon sprouting was reduced when Tgfbr2 was knocked down in the DP cells. Immunofluorescence of dentin sialophosphoprotein in co-cultured DP cells confirmed reduced mineralization potential in cells with Tgfbr2 deletion. Both our proteomics and RNA-Seq analyses indicate that axonal guidance cues, particularly semaphorin signaling, were disrupted by Tgfbr2 deletion. Thus, Tgfbr2 in the DP mesenchyme appears to regulate differentiation and the cells' ability to guide neurite outgrowth during tooth mineralization and innervation.
Collapse
Affiliation(s)
- Monica Stanwick
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Courtney Barkley
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rosa Serra
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew Kruggel
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Yue Zhao
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Chandler Ashman
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Allie Staats
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Shifa Shahid
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Sarah B. Peters
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States,Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: Sarah B. Peters,
| |
Collapse
|
10
|
Feng Wang, Jiang W, Chen B, Li R. The Mechanism of MSX1 and PAX9 Implication in Tooth Development Based on the Weighted Gene Co-Expression Network Analysis. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421030085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Shindo S, Kumagai T, Shirawachi S, Takeda K, Shiba H. Semaphorin3A released from human dental pulp cells inhibits the increase in interleukin-6 and CXC chemokine ligand 10 production induced by tumor necrosis factor-α through suppression of nuclear factor-κB activation. Cell Biol Int 2020; 45:238-244. [PMID: 32926524 DOI: 10.1002/cbin.11466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 01/18/2023]
Abstract
Human dental pulp cells (HDPCs) play an important role in pulpitis. Semaphorin3A (Sema3A), which is an axon guidance molecule, is a member of the secretory semaphorin family. Recently, Sema3A has been reported to be an osteoprotective factor and to be involved in the immune response. However, the role of Sema3A in dental pulp inflammation remains unknown. The aim of this study was to reveal the existence of Sema3A in human dental pulp tissue and the effect of Sema3A which is released from tumor necrosis factor (TNF)-α-stimulated HDPCs on production of proinflammatory cytokines, such as interleukin (IL)-6 and CXC chemokine ligand 10 (CXCL10), from HDPCs stimulated with TNF-α. Sema3A was detected in inflamed pulp as compared to normal pulp. HDPCs expressed Neuropilin-1(Nrp1) which is Sema3A receptor. TNF-α increased the levels of IL-6 and CXCL10 in HDPCs in time-dependent manner. Sema3A inhibited production of these two cytokines from TNF-α-stimulated HDPCs. TNF-α induced soluble Sema3A production from HDPCs. Moreover, antibody-based neutralization of Sema3A further promoted production of IL-6 and CXCL10 from TNF-α-stimulated HDPCs. Sema3A inhibited nuclear factor (NF)-κB P65 phosphorylation and inhibitor κBα degradation in TNF-α-stimulated HDPCs. These results indicated that Sema3A is induced in human dental pulp, and TNF-α acts on HDPCs to produce Sema3A, which partially inhibits the increase in IL-6 and CXCL10 production induced by TNF-α, and that the inhibition leads to suppression of NF-κB activation. Therefore, it is suggested that Sema3A may regulate inflammation in dental pulp and be novel antiinflammatory target molecule for pulpitis.
Collapse
Affiliation(s)
- Satoru Shindo
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoki Kumagai
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Satomi Shirawachi
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Katsuhiro Takeda
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideki Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
12
|
Chen D, Yu F, Wu F, Bai M, Lou F, Liao X, Wang C, Ye L. The role of Wnt7B in the mediation of dentinogenesis via the ERK1/2 pathway. Arch Oral Biol 2019; 104:123-132. [PMID: 31181411 DOI: 10.1016/j.archoralbio.2019.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/24/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES This study investigates the role of Wnt7b in mouse dentin formation. DESIGN C57BL/6 mouse tooth germs at different developmental stages were collected to measure the expression of Wnt7b by immunohistochemical staining. The morphology of mandibles of Dmp1-cre;ROSA26-Wnt7b transgenic mice and ROSA26-Wnt7b littermates was analyzed by Micro-CT and HE staining. The ultramicrostructure of dentin was scanned with an electron microscope. Primary mouse dental papillae cells (MDPCs) and odontoblastic cell line (A11) were cultured and infected with adenovirus to overexpress Wnt7b. Cell proliferation and cell apoptosis were evaluated using CCK-8 and flow cytometry. Osteogenic differentiation of MDPCs and A11 was assessed by Alizarin red staining, and qPCR detection of osteogenic gene expression. The activation of signaling pathways was measured by the use of western blot analysis. The ERK1/2 inhibitor was used to test the effect of Wnt7b regulated cell differentiation. RESULTS Wnt7b was expressed principally in the mouse odontoblast layer after the early bell stage. In transgenic mice, Wnt7b was over-expressed in tooth mesenchyme, with a thinner predentin layer and thicker intertubular dentin. Both the micro-hardness value and the Ca/Pi ratio of dentin of transgenic mice were higher. Wnt7b promoted proliferation and mineralization of MDPCs and A11. The protein level of p-ERK1/2 was found to be higher in A11 infected with Ad-Wnt7b. The ERK signaling pathway inhibitor partly rescued the Wnt7b-induced differentiation of A11. CONCLUSIONS Wnt7b enhances dentinogenesis by increasing the proliferation and differentiation of dental mesenchymal cells partly through ERK1/2 pathway.
Collapse
Affiliation(s)
- Dian Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China
| | - Feng Lou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China
| | - Xueyang Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China.
| |
Collapse
|
13
|
Donnelly CR, Shah AA, Suh EB, Pierchala BA. Ret Signaling Is Required for Tooth Pulp Innervation during Organogenesis. J Dent Res 2019; 98:705-712. [PMID: 30958726 DOI: 10.1177/0022034519837971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During organogenesis, the timing and patterning of dental pulp innervation require both chemoattractive and chemorepellent cues for precise spatiotemporal regulation. Our understanding of the signaling mechanisms that regulate tooth innervation during development, as well as the basic biology of these sensory neurons, remains rudimentary. In this study, we analyzed the expression and function of glial cell line-derived neurotrophic factor (GDNF) and its receptor tyrosine kinase, Ret, in the regulation of innervation of the mouse tooth pulp by dental pulpal afferent (DPA) neurons of the trigeminal ganglion (TG). Using reporter mouse models, we demonstrate that Ret is highly expressed by a subpopulation of DPA neurons projecting to the tooth pulp at both postnatal day 7 (P7) and in the adult. In the adult tooth, GDNF is highly expressed by many cell types throughout the dental pulp. Using a ubiquitous tamoxifen (TMX)-inducible Cre ( UBC-Cre/ERT2) line crossed to Ret conditional knockout mice ( Retfx/fx), Ret was deleted immediately prior to tooth innervation, and the neural projections into P7 molars were analyzed. TMX treatment was efficient in ablating >95% of Ret protein. We observed that UBC-Cre/ERT2; Retfx/fx mice had a significant reduction in the total number of neurites present within the pulp at P7, with a significant accumulation of aberrant fibers in the dental follicle and periodontium. In agreement with these findings, inhibition of Ret signaling through in vivo administration of a highly specific pharmacologic inhibitor (1NM-PP1) of Ret also caused a substantial reduction in pulpal innervation. Taken together, these findings indicate that Ret signaling regulates the timing and patterning of tooth innervation by dental primary afferent neurons of the TG during organogenesis and provide a rationale to explore whether alterations in the GDNF-Ret pathway contribute to pathophysiological conditions in the adult dentition.
Collapse
Affiliation(s)
- C R Donnelly
- 1 Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA
| | - A A Shah
- 1 Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA
| | - E B Suh
- 1 Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA
| | - B A Pierchala
- 1 Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Rostampour N, Appelt CM, Abid A, Boughner JC. Expression of new genes in vertebrate tooth development and p63 signaling. Dev Dyn 2019; 248:744-755. [PMID: 30875130 DOI: 10.1002/dvdy.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/15/2019] [Accepted: 03/11/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND p63 is an evolutionarily ancient transcription factor essential to vertebrate tooth development. Our recent gene expression screen comparing wild-type and "toothless" p63-/- mouse embryos implicated in tooth development several new genes that we hypothesized act downstream of p63 in dental epithelium, where p63 is also expressed. RESULTS Via in situ hybridization and immunohistochemistry, we probed mouse embryos (embryonic days 10.5-14.5) and spotted gar fish embryos (14 days postfertilization) for these newly linked genes, Cbln1, Cldn23, Fermt1, Krt15, Pltp and Prss8, which were expressed in mouse and gar dental epithelium. Loss of p63 altered expression levels but not domains. Expression was comparable between murine upper and lower tooth organs, implying conserved gene functions in maxillary and mandibular dentitions. Our meta-analysis of gene expression databases supported that these genes act within a p63-driven gene regulatory network important to tooth development in mammals and more evolutionary ancient vertebrates (fish, amphibians). CONCLUSIONS Cbln1, Cldn23, Fermt1, Krt15, Pltp, and Prss8 were expressed in mouse and fish dental epithelium at placode, bud, and/or cap stages. We theorize that these genes participate in cell-cell adhesion, cell polarity, and extracellular matrix signaling to support dental epithelium integrity, folding, and epithelial-mesenchymal cross talk during tooth development.
Collapse
Affiliation(s)
- Nasim Rostampour
- Department of Anatomy & Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Cassy M Appelt
- Department of Anatomy & Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Aunum Abid
- Department of Anatomy & Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Julia C Boughner
- Department of Anatomy & Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
15
|
Sudiwala S, Knox SM. The emerging role of cranial nerves in shaping craniofacial development. Genesis 2019; 57:e23282. [PMID: 30628162 DOI: 10.1002/dvg.23282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 12/17/2022]
Abstract
Organs and structures of the vertebrate head perform a plethora of tasks including visualization, digestion, vocalization/communication, auditory functions, and respiration in response to neuronal input. This input is primarily derived from afferent and efferent fibers of the cranial nerves (sensory and motor respectively) and efferent fibers of the cervical sympathetic trunk. Despite their essential contribution to the function and integration of processes necessary for survival, how organ innervation is established remains poorly understood. Furthermore, while it has been appreciated for some time that innervation of organs by cranial nerves is regulated in part by secreted factors and cell surface ligands expressed by those organs, whether nerves also regulate the development of facial organs is only beginning to be elucidated. This review will provide an overview of cranial nerve development in relation to the organs they innervate, and outline their known contributions to craniofacial development, thereby providing insight into how nerves may shape the organs they innervate during development. Throughout, the interaction between different cell and tissue types will be highlighted.
Collapse
Affiliation(s)
- Sonia Sudiwala
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, San Francisco, California
| | - Sarah M Knox
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, San Francisco, California
| |
Collapse
|
16
|
Shadad O, Chaulagain R, Luukko K, Kettunen P. Establishment of tooth blood supply and innervation is developmentally regulated and takes place through differential patterning processes. J Anat 2019; 234:465-479. [PMID: 30793310 DOI: 10.1111/joa.12950] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2019] [Indexed: 01/08/2023] Open
Abstract
Teeth are richly supported by blood vessels and peripheral nerves. The aim of this study was to describe in detail the developmental time-course and localization of blood vessels during early tooth formation and to compare that to innervation, as well as to address the putative role of vascular endothelial growth factor (VEGF), which is an essential regulator of vasculature development, in this process. The localization of blood vessels and neurites was compared using double immunofluorescence staining on sections at consecutive stages of the embryonic (E) and postnatal (PN) mandibular first molar tooth germ (E11-PN7). Cellular mRNA expression domains of VEGF and its signaling receptor VEGFR2 were studied using sectional radioactive in situ hybridization. Expression of VEGF mRNA and the encoded protein were studied by RT-PCR and western blot analysis, respectively, in the cap and early bell stage tooth germs, respectively. VEGFR2 was immunolocalized on tooth tissue sections. Smooth muscle cells were investigated by anti-alpha smooth muscle actin (αSMA) antibodies. VEGF showed developmentally regulated epithelial and mesenchymal mRNA expression domains including the enamel knot signaling centers that correlated with the growth and navigation of the blood vessels expressing Vegfr2 and VEGFR2 to the dental papilla and enamel organ. Developing blood vessels were present in the jaw mesenchyme including the presumptive dental mesenchyme before the appearance of the epithelial dental placode and dental neurites. Similarly, formation of a blood vessel plexus around the bud stage tooth germ and ingrowth of vessels into dental papilla at E14 preceded ingrowth of neurites. Subsequently, pioneer blood vessels in the dental papilla started to receive smooth muscle coverage at the early embryonic bell stage. Establishment and patterning of the blood vessels and nerves during tooth formation are developmentally regulated, stepwise processes that likely involve differential patterning mechanisms. Development of tooth vascular supply is proposed to be regulated by local, tooth-specific regulation by epithelial-mesenchymal tissue interactions and involving tooth target expressed VEGF signaling. Further investigations on tooth vascular development by local VEGF signaling, as well as how tooth innervation and development of blood vessels are integrated with advancing tooth organ formation by local signaling mechanisms, are warranted.
Collapse
Affiliation(s)
- Omnia Shadad
- Department of Biomedicine, Craniofacial Developmental Biology Group, University of Bergen, Bergen, Norway.,Centre for International Health, University of Bergen, Bergen, Norway
| | - Rajib Chaulagain
- Department of Biomedicine, Craniofacial Developmental Biology Group, University of Bergen, Bergen, Norway.,Centre for International Health, University of Bergen, Bergen, Norway
| | - Keijo Luukko
- Department of Biomedicine, Craniofacial Developmental Biology Group, University of Bergen, Bergen, Norway.,Section of Orthodontics, Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Paivi Kettunen
- Department of Biomedicine, Craniofacial Developmental Biology Group, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Kuchler-Bopp S, Bagnard D, Van-Der-Heyden M, Idoux-Gillet Y, Strub M, Gegout H, Lesot H, Benkirane-Jessel N, Keller L. Semaphorin 3A receptor inhibitor as a novel therapeutic to promote innervation of bioengineered teeth. J Tissue Eng Regen Med 2018; 12:e2151-e2161. [PMID: 29430872 DOI: 10.1002/term.2648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/15/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022]
Abstract
The sensory innervation of the dental pulp is essential for tooth function and protection. It is mediated by axons originating from the trigeminal ganglia and is spatio-temporally regulated. We have previously shown that the innervation of bioengineered teeth can be achieved only under immunosuppressive conditions. The aim of this study was to develop a model to determine the role of Semaphorin 3A (Sema3A) in the innervation of bioengineered teeth. We first analysed innervation of the dental pulp of mandibular first molars in newborn (postnatal day 0: PN0) mice deficient for Sema3A (Sema3A-/- ), a strong inhibitor of axon growth. While at PN0, axons detected by immunostaining for peripherin and NF200 were restricted to the peridental mesenchyme in Sema3A+/+ mice, they entered the dental pulp in Sema3A-/- mice. Then, we have implanted cultured teeth obtained from embryonic day-14 (E14) molar germs of Sema3A-/- mice together with trigeminal ganglia. The dental pulps of E14 cultured and implanted Sema3A-/- teeth were innervated, whereas the axons did not enter the pulp of E14 Sema3A+/+ cultured and implanted teeth. A "Membrane Targeting Peptide NRP1," suppressing the inhibitory effect of Sema3A, has been previously identified. The injection of this peptide at the site of implantation allowed the innervation of the dental pulp of bioengineered teeth obtained from E14 dental dissociated mesenchymal and epithelial cells reassociations of ICR mice. In conclusion, these data show that inhibition of only one axon repellent molecule, Sema3A, allows for pulp innervation of bioengineered teeth.
Collapse
Affiliation(s)
- Sabine Kuchler-Bopp
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000, Strasbourg
| | - Dominique Bagnard
- INSERM, UMR 1119-Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, Strasbourg, France
| | - Michael Van-Der-Heyden
- INSERM, UMR 1119-Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, Strasbourg, France
| | - Ysia Idoux-Gillet
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000, Strasbourg.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, 67000, Strasbourg, France
| | - Marion Strub
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000, Strasbourg.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, 67000, Strasbourg, France.,Hôpitaux universitaires de Strasbourg (HUS), Département de Pédodontie, 1 place de l'Hôpital, 67000, Strasbourg
| | - Hervé Gegout
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000, Strasbourg.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, 67000, Strasbourg, France
| | - Hervé Lesot
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000, Strasbourg
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000, Strasbourg.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, 67000, Strasbourg, France
| | - Laetitia Keller
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000, Strasbourg.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, 67000, Strasbourg, France
| |
Collapse
|
18
|
Lu X, Yu F, Liu J, Cai W, Zhao Y, Zhao S, Liu S. The epidemiology of supernumerary teeth and the associated molecular mechanism. Organogenesis 2017; 13:71-82. [PMID: 28598258 DOI: 10.1080/15476278.2017.1332554] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Supernumerary teeth are common clinical dental anomalies. Although various studies have provided abundant information regarding genes and signaling pathways involved in tooth morphogenesis, which include Wnt, FGF, BMP, and Shh, the molecular mechanism of tooth formation, especially for supernumerary teeth, is still unclear. In the population, some cases of supernumerary teeth are sporadic, while others are syndrome-related with familial hereditary. The prompt and accurate diagnosis of syndrome related supernumerary teeth is quite important for some distinctive disorders. Mice are the most commonly used model system for investigating supernumerary teeth. The upregulation of Wnt and Shh signaling in the dental epithelium results in the formation of multiple supernumerary teeth in mice. Understanding the molecular mechanism of supernumerary teeth is also a component of understanding tooth formation in general and provides clinical guidance for early diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Xi Lu
- a Department of Stomatology , Huashan Hospital, Fudan University , Shanghai , P.R. China
| | - Fang Yu
- b Department of Pediatric Dentistry , School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration , Shanghai , P. R. China
| | - Junjun Liu
- a Department of Stomatology , Huashan Hospital, Fudan University , Shanghai , P.R. China
| | - Wenping Cai
- a Department of Stomatology , Huashan Hospital, Fudan University , Shanghai , P.R. China
| | - Yumei Zhao
- b Department of Pediatric Dentistry , School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration , Shanghai , P. R. China
| | - Shouliang Zhao
- a Department of Stomatology , Huashan Hospital, Fudan University , Shanghai , P.R. China
| | - Shangfeng Liu
- a Department of Stomatology , Huashan Hospital, Fudan University , Shanghai , P.R. China
| |
Collapse
|
19
|
Dos Santos ÍGD, Jorge EC, Copola AGL, Bertassoli BM, Goes AMD, Silva GAB. FGF2, FGF3 and FGF4 expression pattern during molars odontogenesis in Didelphis albiventris. Acta Histochem 2017; 119:129-141. [PMID: 28012573 DOI: 10.1016/j.acthis.2016.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 12/12/2022]
Abstract
Odontogenesis is guided by a complex signaling cascade in which several molecules, including FGF2-4, ensure all dental groups development and specificity. Most of the data on odontogenesis derives from rodents, which does not have all dental groups. Didelphis albiventris is an opossum with the closest dentition to humans, and the main odontogenesis stages occur when the newborns are in the pouch. In this study, D. albiventris postnatals were used to characterize the main stages of their molars development; and also to establish FGF2, FGF3 and FGF4 expression pattern. D. albiventris postnatals were processed for histological and indirect immunoperoxidase analysis of the tooth germs. Our results revealed similar dental structures between D. albiventris and mice. However, FGF2, FGF3 and FGF4 expression patterns were observed in a larger number of dental structures, suggesting broader functions for these molecules in this opossum species. The knowledge of the signaling that determinates odontogenesis in an animal model with complete dentition may contribute to the development of therapies for the replacement of lost teeth in humans. This study may also contribute to the implementation of D. albiventris as model for Developmental Biology studies.
Collapse
Affiliation(s)
- Íria Gabriela Dias Dos Santos
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Morfologia, Avenida Presidente Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - Erika Cristina Jorge
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Morfologia, Avenida Presidente Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - Aline Gonçalves Lio Copola
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Morfologia, Avenida Presidente Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - Bruno Machado Bertassoli
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Morfologia, Avenida Presidente Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - Alfredo Miranda de Goes
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Morfologia, Avenida Presidente Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - Gerluza Aparecida Borges Silva
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Morfologia, Avenida Presidente Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
20
|
Bloomquist RF, Fowler TE, Sylvester JB, Miro RJ, Streelman JT. A compendium of developmental gene expression in Lake Malawi cichlid fishes. BMC DEVELOPMENTAL BIOLOGY 2017; 17:3. [PMID: 28158974 PMCID: PMC5291978 DOI: 10.1186/s12861-017-0146-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/26/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lake Malawi cichlids represent one of a growing number of vertebrate models used to uncover the genetic and developmental basis of trait diversity. Rapid evolutionary radiation has resulted in species that share similar genomes but differ markedly in phenotypes including brains and behavior, nuptial coloration and the craniofacial skeleton. Research has begun to identify the genes, as well as the molecular and developmental pathways that underlie trait divergence. RESULTS We assemble a compendium of gene expression for Lake Malawi cichlids, across pharyngula (the phylotypic stage) and larval stages of development, encompassing hundreds of gene transcripts. We chart patterns of expression in Bone morphogenetic protein (BMP), Fibroblast growth factor (FGF), Hedgehog (Hh), Notch and Wingless (Wnt) signaling pathways, as well as genes involved in neurogenesis, calcium and endocrine signaling, stem cell biology, and numerous homeobox (Hox) factors-in three planes using whole-mount in situ hybridization. Because of low sequence divergence across the Malawi cichlid assemblage, the probes we employ are broadly applicable in hundreds of species. We tabulate gene expression across general tissue domains, and highlight examples of unexpected expression patterns. CONCLUSIONS On the heels of recently published genomes, this compendium of developmental gene expression in Lake Malawi cichlids provides a valuable resource for those interested in the relationship between evolution and development.
Collapse
Affiliation(s)
- R F Bloomquist
- Georgia Institute of Technology, School of Biological Sciences and Institute for Bioengineering and Bioscience, Atlanta, GA, USA.,Medical College of Georgia, School of Dentistry, Augusta, GA, USA
| | - T E Fowler
- Georgia Institute of Technology, School of Biological Sciences and Institute for Bioengineering and Bioscience, Atlanta, GA, USA
| | - J B Sylvester
- Georgia Institute of Technology, School of Biological Sciences and Institute for Bioengineering and Bioscience, Atlanta, GA, USA
| | - R J Miro
- Georgia Institute of Technology, School of Biological Sciences and Institute for Bioengineering and Bioscience, Atlanta, GA, USA
| | - J T Streelman
- Georgia Institute of Technology, School of Biological Sciences and Institute for Bioengineering and Bioscience, Atlanta, GA, USA.
| |
Collapse
|
21
|
Luukko K, Kettunen P. Integration of tooth morphogenesis and innervation by local tissue interactions, signaling networks, and semaphorin 3A. Cell Adh Migr 2016; 10:618-626. [PMID: 27715429 DOI: 10.1080/19336918.2016.1216746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The tooth, like many other organs, develops from both epithelial and mesenchymal tissues, and has proven to be a valuable tool with which to investigate organ formation and peripheral innervation. Tooth formation is regulated by local epithelial-mesenchymal tissue interactions, and is closely integrated with stereotypic dental nerve navigation and patterning. Recent analyses of the function and regulation of semaphorin 3A (SEMA3A) have shed light on the regulatory mechanisms that coordinate organogenesis and innervation at the tissue and molecular levels. In the tooth, SEM3A acts as a developmentally regulated secretory chemo-repellent, that controls tooth innervation during embryonic and postnatal development. The tooth germ governs its own innervation by a combination of local tissue interactions and SEMA3A expression. SEMA3A signaling, in turn, is controlled by a number of conserved signaling effectors, including TGF-β superfamily members, FGF, and WNT; all function in embryo and organ development, and are essential for tooth histo-morphogenesis. Thus, SEMA3A driven axon guidance is integrated into key odontogenic signaling networks, establishing this protein as a critical molecular tether between 2 distinct developmental processes (morphogenesis and sensory innervation), both of which are required to obtain a functional tooth.
Collapse
Affiliation(s)
- Keijo Luukko
- a Section of Orthodontics, Department of Clinical Dentistry , University of Bergen , Bergen , Norway
| | - Päivi Kettunen
- b Craniofacial Developmental Biology Group, Department of Biomedicine , University of Bergen , Bergen , Norway
| |
Collapse
|
22
|
Yoshida S, Wada N, Hasegawa D, Miyaji H, Mitarai H, Tomokiyo A, Hamano S, Maeda H. Semaphorin 3A Induces Odontoblastic Phenotype in Dental Pulp Stem Cells. J Dent Res 2016; 95:1282-90. [DOI: 10.1177/0022034516653085] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In cases of pulp exposure due to deep dental caries or severe traumatic injuries, existing pulp-capping materials have a limited ability to reconstruct dentin-pulp complexes and can result in pulpectomy because of their low potentials to accelerate dental pulp cell activities, such as migration, proliferation, and differentiation. Therefore, the development of more effective therapeutic agents has been anticipated for direct pulp capping. Dental pulp tissues are enriched with dental pulp stem cells (DPSCs). Here, the authors investigated the effects of semaphorin 3A (Sema3A) on various functions of human DPSCs in vitro and reparative dentin formation in vivo in a rat dental pulp exposure model. Immunofluorescence staining revealed expression of Sema3A and its receptor Nrp1 (neuropilin 1) in rat dental pulp tissue and human DPSC clones. Sema3A induced cell migration, chemotaxis, proliferation, and odontoblastic differentiation of DPSC clones. In addition, Sema3A treatment of DPSC clones increased β-catenin nuclear accumulation, upregulated expression of the FARP2 gene (FERM, RhoGEF, and pleckstrin domain protein 2), and activated Rac1 in DPSC clones. Furthermore, in the rat dental pulp exposure model, Sema3A promoted reparative dentin formation with dentin tubules and a well-aligned odontoblast-like cell layer at the dental pulp exposure site and with novel reparative dentin almost completely covering pulp tissue at 4 wk after direct pulp capping. These findings suggest that Sema3A could play an important role in dentin regeneration via canonical Wnt/β-catenin signaling. Sema3A might be an alternative agent for direct pulp capping, which requires further study.
Collapse
Affiliation(s)
- S. Yoshida
- Division of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - N. Wada
- Division of General Dentistry, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - D. Hasegawa
- Division of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - H. Miyaji
- Department of Periodontology and Endodontology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - H. Mitarai
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - A. Tomokiyo
- Division of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - S. Hamano
- Division of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - H. Maeda
- Division of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
23
|
Yu P, Yang W, Han D, Wang X, Guo S, Li J, Li F, Zhang X, Wong SW, Bai B, Liu Y, Du J, Sun Z, Shi S, Feng H, Cai T. Mutations in WNT10B Are Identified in Individuals with Oligodontia. Am J Hum Genet 2016; 99:195-201. [PMID: 27321946 DOI: 10.1016/j.ajhg.2016.05.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023] Open
Abstract
Tooth agenesis is one of the most common developmental anomalies in humans. Oligodontia, a severe form of tooth agenesis, is genetically and phenotypically a heterogeneous condition. Although significant efforts have been made, the genetic etiology of dental agenesis remains largely unknown. In the present study, we performed whole-exome sequencing to identify the causative mutations in Chinese families in whom oligodontia segregates with dominant inheritance. We detected a heterozygous missense mutation (c.632G>A [p.Arg211Gln]) in WNT10B in all affected family members. By Sanger sequencing a cohort of 145 unrelated individuals with non-syndromic oligodontia, we identified three additional mutations (c.569C>G [p.Pro190Arg], c.786G>A [p.Trp262(∗)], and c.851T>G [p.Phe284Cys]). Interestingly, analysis of genotype-phenotype correlations revealed that mutations in WNT10B affect the development of permanent dentition, particularly the lateral incisors. Furthermore, a functional assay demonstrated that each of these mutants could not normally enhance the canonical Wnt signaling in HEPG2 epithelial cells, in which activity of the TOPFlash luciferase reporter was measured. Notably, these mutant WNT10B ligands could not efficiently induce endothelial differentiation of dental pulp stem cells. Our findings provide the identification of autosomal-dominant WNT10B mutations in individuals with oligodontia, which increases the spectrum of congenital tooth agenesis and suggests attenuated Wnt signaling in endothelial differentiation of dental pulp stem cells.
Collapse
|
24
|
Micro-CT assessment of changes in the morphology and position of the immature mandibular canal during early growth. Surg Radiol Anat 2016; 39:185-194. [PMID: 27177907 DOI: 10.1007/s00276-016-1694-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE The mandibular canal contributes to the development and growth of the mandible, as it acts as a conduit for the growing inferior alveolar neurovascular structures. A clear understanding of the canal's pathway is, therefore, important in interpreting the growth pattern of the inferior alveolar neurovascular bundle. This study investigated the position of the mandibular canal within the body of the mandible and its general dimensions within a pediatric collection of mandibles. METHODS The sample included 45 mandibles and was subdivided into three: group 1 (30 gestational weeks to birth), group 2 (birth to 12 months), and group 3 (1 to 4 years). Mandibles were scanned using a Nikon XTH 225L micro-CT unit. Scanning conditions ranged between 85 kV/83 µA and 100 kV/100 µA. Measurements included: the maximum width and height of the mandibular canal and distances between the mandibular canal and the relevant surfaces of the mandible. Data analysis included an ANOVA, MANOVA, and principal component analysis. RESULTS The mandibular canal increased significantly in size from 30 gestational weeks to 12 months relative to the deciduous molar crypts. Postnatally, the mandibular canal increased significantly in height at the level of the second deciduous molar crypt. The canal lies closer to the buccal surface in the region of the first and second deciduous molar teeth. CONCLUSION The consistency in the positioning of the mandibular canal within the body of the mandible may assist in predicting the occurrence of aberrant growth patterns, particularly during the initial stages of growth.
Collapse
|
25
|
Tamura M, Nemoto E. Role of the Wnt signaling molecules in the tooth. JAPANESE DENTAL SCIENCE REVIEW 2016; 52:75-83. [PMID: 28408959 PMCID: PMC5390339 DOI: 10.1016/j.jdsr.2016.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling plays a central role in many processes during embryonic development and adult homeostasis. At least 19 types of Wnt ligands, receptors, transducers, transcription factors, and antagonists have been identified in mammals. Two distinct Wnt signaling pathways, the canonical signaling pathway and the noncanonical signaling pathway, have been described. Some Wnt signaling pathway components are expressed in the dental epithelium and mesenchyme during tooth development in humans and mice. Functional studies and experimental analysis of relevant animal models confirm the effects of Wnt signaling pathway on the regulation of developing tooth formation and adult tooth homeostasis. Mutations in some Wnt signaling pathway components have been identified in syndromic and non-syndromic tooth agenesis. This review provides an overview of progress in elucidating the role of Wnt signaling pathway components in the tooth and the resulting possibilities for therapeutic development.
Collapse
Affiliation(s)
- Masato Tamura
- Department of Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, N13, W7, Sapporo, Japan
| | - Eiji Nemoto
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Japan
| |
Collapse
|
26
|
Sang C, Zhang Y, Chen F, Huang P, Qi J, Wang P, Zhou Q, Kang H, Cao X, Guo L. Tumor necrosis factor alpha suppresses osteogenic differentiation of MSCs by inhibiting semaphorin 3B via Wnt/β-catenin signaling in estrogen-deficiency induced osteoporosis. Bone 2016; 84:78-87. [PMID: 26723579 DOI: 10.1016/j.bone.2015.12.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/14/2015] [Accepted: 12/20/2015] [Indexed: 12/18/2022]
Abstract
The proinflammatory cytokines, especially tumor necrosis factor alpha (TNF-α), have been shown to inhibit osteogenic differentiation of mesenchymal stem cells (MSCs) and bone formation in estrogen-deficiency-induced osteoporosis, but the mechanisms of TNF-α impaired bone formation remain poorly understood. Semaphorins have been shown to regulate cell growth, cell migration, and cell differentiation in a variety of tissues, including bone tissue. Here, we identified a novel mechanism whereby TNF-α, suppressing Semaphorin3B expression contributes to estrogen-deficiency-induced osteoporosis. In this study, we found that TNF-α could decrease Semaphorin3B expression in osteogenic differentiation of MSCs. Overexpression of Semaphorin3B in MSCs attenuated the inhibitory effects of TNF-α on MSCs proliferation and osteoblastic differentiation. Mechanistically, activation of the Wnt/β-catenin signaling markedly rescued TNF-α-inhibited Semaphorin3B expression, suggesting that Wnt/β-catenin signaling was involved in the regulation of Semaphorin3B expression by TNF-α. Taken together, our results revealed a novel function for Semaphorin3B and suggested that suppressed Semaphorin3B may contribute to impaired bone formation by elevated TNF-α in estrogen-deficiency-induced osteoporosis. This study may indicate a therapeutic target gene of Semaphorin3B for osteoporosis.
Collapse
Affiliation(s)
- Chenglin Sang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Orthopaedics, Second Military Medical University's Jinan Clinical Medicine College, Jinan, China; Department of Orthaopedics, General Hospital of Jinan Military Command, Jinan 250031, Shandong, China
| | - Yongxian Zhang
- Department of Orthopaedics, Second Military Medical University's Jinan Clinical Medicine College, Jinan, China; Department of Orthaopedics, General Hospital of Jinan Military Command, Jinan 250031, Shandong, China
| | - Fangjing Chen
- Department of Orthopaedics, Second Military Medical University's Jinan Clinical Medicine College, Jinan, China; Department of Orthaopedics, General Hospital of Jinan Military Command, Jinan 250031, Shandong, China
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jin Qi
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pingshan Wang
- Department of Orthopaedics, Second Military Medical University's Jinan Clinical Medicine College, Jinan, China; Department of Orthaopedics, General Hospital of Jinan Military Command, Jinan 250031, Shandong, China
| | - Qi Zhou
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Kang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuecheng Cao
- Department of Orthopaedics, Second Military Medical University's Jinan Clinical Medicine College, Jinan, China; Department of Orthaopedics, General Hospital of Jinan Military Command, Jinan 250031, Shandong, China.
| | - Lei Guo
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Pagella P, Miran S, Mitsiadis T. Analysis of Developing Tooth Germ Innervation Using Microfluidic Co-culture Devices. J Vis Exp 2015:e53114. [PMID: 26327218 DOI: 10.3791/53114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Innervation plays a key role in the development, homeostasis and regeneration of organs and tissues. However, the mechanisms underlying these phenomena are not well understood yet. In particular, the role of innervation in tooth development and regeneration is neglected. Several in vivo studies have provided important information about the patterns of innervation of dental tissues during development and repair processes of various animal models. However, most of these approaches are not optimal to highlight the molecular basis of the interactions between nerve fibres and target organs and tissues. Co-cultures constitute a valuable method to investigate and manipulate the interactions between nerve fibres and teeth in a controlled and isolated environment. In the last decades, conventional co-cultures using the same culture medium have been performed for very short periods (e.g., two days) to investigate the attractive or repulsive effects of developing oral and dental tissues on sensory nerve fibres. However, extension of the culture period is required to investigate the effects of innervation on tooth morphogenesis and cytodifferentiation. Microfluidics systems allow co-cultures of neurons and different cell types in their appropriate culture media. We have recently demonstrated that trigeminal ganglia (TG) and teeth are able to survive for a long period of time when co-cultured in microfluidic devices, and that they maintain in these conditions the same innervation pattern that they show in vivo. On this basis, we describe how to isolate and co-culture developing trigeminal ganglia and tooth germs in a microfluidic co-culture system.This protocol describes a simple and flexible way to co-culture ganglia/nerves and target tissues and to study the roles of specific molecules on such interactions in a controlled and isolated environment.
Collapse
Affiliation(s)
- Pierfrancesco Pagella
- Institute of Oral Biology, Unit of Orofacial Development and Regeneration, University of Zurich
| | - Shayee Miran
- Institute of Oral Biology, Unit of Orofacial Development and Regeneration, University of Zurich
| | - Tim Mitsiadis
- Institute of Oral Biology, Unit of Orofacial Development and Regeneration, University of Zurich;
| |
Collapse
|
28
|
Giacobini P. Shaping the Reproductive System: Role of Semaphorins in Gonadotropin-Releasing Hormone Development and Function. Neuroendocrinology 2015; 102:200-15. [PMID: 25967979 DOI: 10.1159/000431021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/28/2015] [Indexed: 11/19/2022]
Abstract
The semaphorin proteins, which contribute to the morphogenesis and homeostasis of a wide range of systems, are among the best-studied families of guidance cues. Much recent research has focused on the role of semaphorins in the development and adult activity of hormone systems and, reciprocally, how circulating reproductive hormones regulate their expression and function. Specifically, several reports have focused on the molecular mechanisms underlying the effects of semaphorins on the migration, survival and structural and functional plasticity of neurons that secrete gonadotropin-releasing hormone (GnRH), essential for the acquisition and maintenance of reproductive competence in mammals. Alterations in the development of this neuroendocrine system lead to anomalous or absent GnRH secretion, resulting in heterogeneous reproductive disorders such as congenital hypogonadotropic hypogonadism (CHH) or other conditions characterized by infertility or subfertility. This review summarizes current knowledge of the role of semaphorins and their receptors on the development, differentiation and plasticity of the GnRH system. In addition, the involvement of genetic deficits in semaphorin signaling in some forms of CHH in humans is discussed.
Collapse
Affiliation(s)
- Paolo Giacobini
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, School of Medicine, University of Lille, and Institut de Médecine Prédictive et de Recherche Thérapeutique, IFR114, Lille, France
| |
Collapse
|
29
|
Nasarre P, Gemmill RM, Drabkin HA. The emerging role of class-3 semaphorins and their neuropilin receptors in oncology. Onco Targets Ther 2014; 7:1663-87. [PMID: 25285016 PMCID: PMC4181631 DOI: 10.2147/ott.s37744] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The semaphorins, discovered over 20 years ago, are a large family of secreted or transmembrane and glycophosphatidylinositol -anchored proteins initially identified as axon guidance molecules crucial for the development of the nervous system. It has now been established that they also play important roles in organ development and function, especially involving the immune, respiratory, and cardiovascular systems, and in pathological disorders, including cancer. During tumor progression, semaphorins can have both pro- and anti-tumor functions, and this has created complexities in our understanding of these systems. Semaphorins may affect tumor growth and metastases by directly targeting tumor cells, as well as indirectly by interacting with and influencing cells from the micro-environment and vasculature. Mechanistically, semaphorins, through binding to their receptors, neuropilins and plexins, affect pathways involved in cell adhesion, migration, invasion, proliferation, and survival. Importantly, neuropilins also act as co-receptors for several growth factors and enhance their signaling activities, while class 3 semaphorins may interfere with this. In this review, we focus on the secreted class 3 semaphorins and their neuropilin co-receptors in cancer, including aspects of their signaling that may be clinically relevant.
Collapse
Affiliation(s)
- Patrick Nasarre
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Robert M Gemmill
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Harry A Drabkin
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
30
|
Pagella P, Neto E, Jiménez-Rojo L, Lamghari M, Mitsiadis TA. Microfluidics co-culture systems for studying tooth innervation. Front Physiol 2014; 5:326. [PMID: 25202282 PMCID: PMC4142415 DOI: 10.3389/fphys.2014.00326] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/06/2014] [Indexed: 01/01/2023] Open
Abstract
Innervation plays a key role in the development and homeostasis of organs and tissues of the orofacial complex. Among these structures, teeth are peculiar organs as they are not innervated until later stages of development. Furthermore, the implication of neurons in tooth initiation, morphogenesis and differentiation is still controversial. Co-cultures constitute a valuable method to investigate and manipulate the interactions of nerve fibers with their target organs in a controlled and isolated environment. Conventional co-cultures between neurons and their target tissues have already been performed, but these cultures do not offer optimal conditions that are closely mimicking the in vivo situation. Indeed, specific cell populations require different culture media in order to preserve their physiological properties. In this study we evaluate the usefulness of a microfluidics system for co-culturing mouse trigeminal ganglia and developing teeth. This device allows the application of specific media for the appropriate development of both neuronal and dental tissues. The results show that mouse trigeminal ganglia and teeth survive for long culture periods in this microfluidics system, and that teeth maintain the attractive or repulsive effect on trigeminal neurites that has been observed in vivo. Neurites are repealed when co-cultured with embryonic tooth germs, while postnatal teeth exert an attractive effect to trigeminal ganglia-derived neurons. In conclusion, microfluidics system devices provide a valuable tool for studying the behavior of neurons during the development of orofacial tissues and organs, faithfully imitating the in vivo situation.
Collapse
Affiliation(s)
- Pierfrancesco Pagella
- Department of Orofacial Development and Regeneration, Faculty of Medicine, Centre for Dental Medicine, Institute of Oral Biology, University of Zurich Zurich, Switzerland
| | - Estrela Neto
- NEW Therapies Group, INEB - Instituto de Engenharia Biomédica, Universidade do Porto Porto, Portugal ; Faculdade de Medicina da Universidade do Porto Porto, Portugal
| | - Lucia Jiménez-Rojo
- Department of Orofacial Development and Regeneration, Faculty of Medicine, Centre for Dental Medicine, Institute of Oral Biology, University of Zurich Zurich, Switzerland
| | - Meriem Lamghari
- NEW Therapies Group, INEB - Instituto de Engenharia Biomédica, Universidade do Porto Porto, Portugal ; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Porto, Portugal
| | - Thimios A Mitsiadis
- Department of Orofacial Development and Regeneration, Faculty of Medicine, Centre for Dental Medicine, Institute of Oral Biology, University of Zurich Zurich, Switzerland
| |
Collapse
|
31
|
Pagella P, Jiménez-Rojo L, Mitsiadis TA. Roles of innervation in developing and regenerating orofacial tissues. Cell Mol Life Sci 2014; 71:2241-51. [PMID: 24395053 PMCID: PMC11113802 DOI: 10.1007/s00018-013-1549-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/16/2013] [Accepted: 12/19/2013] [Indexed: 01/01/2023]
Abstract
The head is innervated by 12 cranial nerves (I-XII) that regulate its sensory and motor functions. Cranial nerves are composed of sensory, motor, or mixed neuronal populations. Sensory neurons perceive generally somatic sensations such as pressure, pain, and temperature. These neurons are also involved in smell, vision, taste, and hearing. Motor neurons ensure the motility of all muscles and glands. Innervation plays an essential role in the development of the various orofacial structures during embryogenesis. Hypoplastic cranial nerves often lead to abnormal development of their target organs and tissues. For example, Möbius syndrome is a congenital disease characterized by defective innervation (i.e., abducens (VI) and facial (VII) nerves), deafness, tooth anomalies, and cleft palate. Hence, it is obvious that the peripheral nervous system is needed for both development and function of orofacial structures. Nerves have a limited capacity to regenerate. However, neural stem cells, which could be used as sources for neural tissue maintenance and repair, have been found in adult neuronal tissues. Similarly, various adult stem cell populations have been isolated from almost all organs of the human body. Stem cells are tightly regulated by their microenvironment, the stem cell niche. Deregulation of adult stem cell behavior results in the development of pathologies such as tumor formation or early tissue senescence. It is thus essential to understand the factors that regulate the functions and maintenance of stem cells. Yet, the potential importance of innervation in the regulation of stem cells and/or their niches in most organs and tissues is largely unexplored. This review focuses on the potential role of innervation in the development and homeostasis of orofacial structures and discusses its possible association with stem cell populations during tissue repair.
Collapse
Affiliation(s)
- Pierfrancesco Pagella
- Faculty of Medicine, Institute of Oral Biology, ZZM, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Lucia Jiménez-Rojo
- Faculty of Medicine, Institute of Oral Biology, ZZM, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Thimios A. Mitsiadis
- Faculty of Medicine, Institute of Oral Biology, ZZM, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| |
Collapse
|
32
|
Sema3A chemorepellant regulates the timing and patterning of dental nerves during development of incisor tooth germ. Cell Tissue Res 2014; 357:15-29. [DOI: 10.1007/s00441-014-1839-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 01/31/2014] [Indexed: 12/22/2022]
|
33
|
Expression patterns of WNT/β-CATENIN signaling molecules during human tooth development. J Mol Histol 2014; 45:487-96. [DOI: 10.1007/s10735-014-9572-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/13/2014] [Indexed: 01/07/2023]
|
34
|
Giacobini P, Parkash J, Campagne C, Messina A, Casoni F, Vanacker C, Langlet F, Hobo B, Cagnoni G, Gallet S, Hanchate NK, Mazur D, Taniguchi M, Mazzone M, Verhaagen J, Ciofi P, Bouret SG, Tamagnone L, Prevot V. Brain endothelial cells control fertility through ovarian-steroid-dependent release of semaphorin 3A. PLoS Biol 2014; 12:e1001808. [PMID: 24618750 PMCID: PMC3949669 DOI: 10.1371/journal.pbio.1001808] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/30/2014] [Indexed: 11/25/2022] Open
Abstract
Endothelial-cell–derived Sema3A promotes axonal outgrowth and plasticity and thereby regulates neurohormone release in the adult rodent brain in response to the ovarian cycle. Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3aloxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction. In the developing embryo, endothelial cells release chemotropic signals such as Semaphorin 3A (Sema3A) that, upon activation of its receptor Neuropilin-1 (Nrp1), regulate neuronal migration and axon guidance. However, whether endothelial cells in the adult brain retain the ability to secrete molecules that influence neuronal function is unknown. Here we show in the adult brain of rodents that vascular endothelial cells release Sema3A and that the amount released is regulated by the ovulatory cycle. Sema3A, in turn, promotes the outgrowth of axons of hypothalamic neurons that express Neuropilin-1 towards the endothelial wall of portal blood vessels. These neurons release there the neuropeptide that controls reproduction: gonadotropin-releasing hormone (GnRH). Notably, this endothelial-cell-mediated sprouting of GnRH axons regulates neuropeptide release at a key stage of the estrous cycle, the proestrus, when the surge of GnRH triggers ovulation. Thus, by promoting GnRH axonal growth in the adult brain, Sema3A/Neuropilin-1 plays a pivotal role in orchestrating the central control of reproduction. Our results suggest a model in which vascular endothelial cells are dynamic signaling components that relay peripheral information to the brain to control key physiological functions, including species survival.
Collapse
Affiliation(s)
- Paolo Giacobini
- INSERM, Jean-Pierre Aubert Research Center, U837, Development and Plasticity of the Postnatal Brain, Lille, France
- UDSL, School of Medicine, Place de Verdun, Lille, France
- Institut de Médecine Prédictive et de Recherche Thérapeutique, IFR114, Lille, France
| | - Jyoti Parkash
- INSERM, Jean-Pierre Aubert Research Center, U837, Development and Plasticity of the Postnatal Brain, Lille, France
- UDSL, School of Medicine, Place de Verdun, Lille, France
- Institut de Médecine Prédictive et de Recherche Thérapeutique, IFR114, Lille, France
| | - Céline Campagne
- INSERM, Jean-Pierre Aubert Research Center, U837, Development and Plasticity of the Postnatal Brain, Lille, France
- UDSL, School of Medicine, Place de Verdun, Lille, France
- Institut de Médecine Prédictive et de Recherche Thérapeutique, IFR114, Lille, France
| | - Andrea Messina
- INSERM, Jean-Pierre Aubert Research Center, U837, Development and Plasticity of the Postnatal Brain, Lille, France
- UDSL, School of Medicine, Place de Verdun, Lille, France
- Institut de Médecine Prédictive et de Recherche Thérapeutique, IFR114, Lille, France
| | - Filippo Casoni
- INSERM, Jean-Pierre Aubert Research Center, U837, Development and Plasticity of the Postnatal Brain, Lille, France
- UDSL, School of Medicine, Place de Verdun, Lille, France
- Institut de Médecine Prédictive et de Recherche Thérapeutique, IFR114, Lille, France
| | - Charlotte Vanacker
- INSERM, Jean-Pierre Aubert Research Center, U837, Development and Plasticity of the Postnatal Brain, Lille, France
- UDSL, School of Medicine, Place de Verdun, Lille, France
- Institut de Médecine Prédictive et de Recherche Thérapeutique, IFR114, Lille, France
| | - Fanny Langlet
- INSERM, Jean-Pierre Aubert Research Center, U837, Development and Plasticity of the Postnatal Brain, Lille, France
- UDSL, School of Medicine, Place de Verdun, Lille, France
- Institut de Médecine Prédictive et de Recherche Thérapeutique, IFR114, Lille, France
| | - Barbara Hobo
- Netherlands institute for Neuroscience, Amsterdam, The Netherlands
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gabriella Cagnoni
- Candiolo Cancer Institute - FPO (IRCCS) and University of Torino, Department of Oncology, Candiolo, Italy
| | - Sarah Gallet
- INSERM, Jean-Pierre Aubert Research Center, U837, Development and Plasticity of the Postnatal Brain, Lille, France
- UDSL, School of Medicine, Place de Verdun, Lille, France
- Institut de Médecine Prédictive et de Recherche Thérapeutique, IFR114, Lille, France
| | - Naresh Kumar Hanchate
- INSERM, Jean-Pierre Aubert Research Center, U837, Development and Plasticity of the Postnatal Brain, Lille, France
- UDSL, School of Medicine, Place de Verdun, Lille, France
- Institut de Médecine Prédictive et de Recherche Thérapeutique, IFR114, Lille, France
| | - Danièle Mazur
- INSERM, Jean-Pierre Aubert Research Center, U837, Development and Plasticity of the Postnatal Brain, Lille, France
- UDSL, School of Medicine, Place de Verdun, Lille, France
- Institut de Médecine Prédictive et de Recherche Thérapeutique, IFR114, Lille, France
| | - Masahiko Taniguchi
- Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Massimiliano Mazzone
- Versalius Research Center, VIB, Laboratory of Molecular Oncology and Angiogenesis, Leuven, Belgium
- KU Keuven, Versalius Research Center, Leuven, Belgium
| | - Joost Verhaagen
- Netherlands institute for Neuroscience, Amsterdam, The Netherlands
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Philippe Ciofi
- INSERM, Neurocentre Magendie, U862, Université de Bordeaux, Bordeaux, France
| | - Sébastien G. Bouret
- INSERM, Jean-Pierre Aubert Research Center, U837, Development and Plasticity of the Postnatal Brain, Lille, France
- UDSL, School of Medicine, Place de Verdun, Lille, France
- Institut de Médecine Prédictive et de Recherche Thérapeutique, IFR114, Lille, France
- The Saban Research Institute, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, California, United States of America
| | - Luca Tamagnone
- Candiolo Cancer Institute - FPO (IRCCS) and University of Torino, Department of Oncology, Candiolo, Italy
| | - Vincent Prevot
- INSERM, Jean-Pierre Aubert Research Center, U837, Development and Plasticity of the Postnatal Brain, Lille, France
- UDSL, School of Medicine, Place de Verdun, Lille, France
- Institut de Médecine Prédictive et de Recherche Thérapeutique, IFR114, Lille, France
- * E-mail:
| |
Collapse
|
35
|
Luukko K, Kettunen P. Coordination of tooth morphogenesis and neuronal development through tissue interactions: lessons from mouse models. Exp Cell Res 2014; 325:72-7. [PMID: 24631295 DOI: 10.1016/j.yexcr.2014.02.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/23/2014] [Accepted: 02/27/2014] [Indexed: 11/17/2022]
Abstract
In addition to being an advantageous model to investigate general molecular mechanisms of organ formation, the tooth is a distinct target organ for peripheral nerve innervation. These nerves are required for the function and protection of the teeth and, as shown in fish, also for their regeneration. This review focuses on recent findings of the local tissue interactions and molecular signaling mechanisms that regulate the early nerve arrival and patterning of mouse mandibular molar tooth sensory innervation. Dental sensory nerve growth and patterning is a stepwise process that is intimately linked to advancing tooth morphogenesis. In particular, nerve growth factor and semaphorin 3A serve as essential functions during and are iteratively used at different stages of tooth innervation. The tooth germ controls development of its own nerve supply, and similar to the development of the tooth organ proper, tissue interactions between dental epithelial and mesenchymal tissues control the establishment of tooth innervation. Tgf-β, Wnt, and Fgf signaling, which regulate tooth formation, are implicated to mediate these interactions. Therefore, tissue interactions mediated by conserved signal families may constitute key mechanism for the integration of tooth organogenesis and development of its peripheral nerve supply.
Collapse
Affiliation(s)
- Keijo Luukko
- Section of Orthodontics, Department of Clinical Dentistry, University of Bergen, ˚rstadveien 17, 5009 Bergen, Norway.
| | - Päivi Kettunen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| |
Collapse
|
36
|
Wada N, Maeda H, Hasegawa D, Gronthos S, Bartold PM, Menicanin D, Fujii S, Yoshida S, Tomokiyo A, Monnouchi S, Akamine A. Semaphorin 3A induces mesenchymal-stem-like properties in human periodontal ligament cells. Stem Cells Dev 2014; 23:2225-36. [PMID: 24380401 DOI: 10.1089/scd.2013.0405] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Periodontal ligament stem cells (PDLSCs) have recently been proposed as a novel option in periodontal regenerative therapy. However, one of the issues is the difficulty of stably generating PDLSCs because of the variation of stem cell potential between donors. Here, we show that Semaphorin 3A (Sema3A) can induce mesenchymal-stem-like properties in human periodontal ligament (PDL) cells. Sema3A expression was specifically observed in the dental follicle during tooth development and in parts of mature PDL tissue in rodent tooth and periodontal tissue. Sema3A expression levels were found to be higher in multipotential human PDL cell clones compared with low-differentiation potential clones. Sema3A-overexpressing PDL cells exhibited an enhanced capacity to differentiate into both functional osteoblasts and adipocytes. Moreover, PDL cells treated with Sema3A only at the initiation of culture stimulated osteogenesis, while Sema3A treatment throughout the culture had no effect on osteogenic differentiation. Finally, Sema3A-overexpressing PDL cells upregulated the expression of embryonic stem cell markers (NANOG, OCT4, and E-cadherin) and mesenchymal stem cell markers (CD73, CD90, CD105, CD146, and CD166), and Sema3A promoted cell division activity of PDL cells. These results suggest that Sema3A may possess the function to convert PDL cells into mesenchymal-stem-like cells.
Collapse
Affiliation(s)
- Naohisa Wada
- 1 Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lesot H, Hovorakova M, Peterka M, Peterkova R. Three-dimensional analysis of molar development in the mouse from the cap to bell stage. Aust Dent J 2014; 59 Suppl 1:81-100. [DOI: 10.1111/adj.12132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- H Lesot
- Institut National de la Santé et de la Recherche Médicale; UMR 1109, Team ‘Osteoarticular and Dental Regenerative NanoMedicine’; Strasbourg France
- Université de Strasbourg; Faculté de Chirurgie Dentaire; Strasbourg France
| | - M Hovorakova
- Department of Teratology; Institute of Experimental Medicine, Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - M Peterka
- Department of Teratology; Institute of Experimental Medicine, Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - R Peterkova
- Department of Teratology; Institute of Experimental Medicine, Academy of Sciences of the Czech Republic; Prague Czech Republic
| |
Collapse
|
38
|
Kökten T, Bécavin T, Keller L, Weickert JL, Kuchler-Bopp S, Lesot H. Immunomodulation stimulates the innervation of engineered tooth organ. PLoS One 2014; 9:e86011. [PMID: 24465840 PMCID: PMC3899083 DOI: 10.1371/journal.pone.0086011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/04/2013] [Indexed: 01/24/2023] Open
Abstract
The sensory innervation of the dental mesenchyme is essential for tooth function and protection. Sensory innervation of the dental pulp is mediated by axons originating from the trigeminal ganglia and is strictly regulated in time. Teeth can develop from cultured re-associations between dissociated dental epithelial and mesenchymal cells from Embryonic Day 14 mouse molars, after implantation under the skin of adult ICR mice. In these conditions however, the innervation of the dental mesenchyme did not occur spontaneously. In order to go further with this question, complementary experimental approaches were designed. Cultured cell re-associations were implanted together with trigeminal ganglia for one or two weeks. Although axonal growth was regularly observed extending from the trigeminal ganglia to all around the forming teeth, the presence of axons in the dental mesenchyme was detected in less than 2.5% of samples after two weeks, demonstrating a specific impairment of their entering the dental mesenchyme. In clinical context, immunosuppressive therapy using cyclosporin A was found to accelerate the innervation of transplanted tissues. Indeed, when cultured cell re-associations and trigeminal ganglia were co-implanted in cyclosporin A-treated ICR mice, nerve fibers were detected in the dental pulp, even reaching odontoblasts after one week. However, cyclosporin A shows multiple effects, including direct ones on nerve growth. To test whether there may be a direct functional relationship between immunomodulation and innervation, cell re-associations and trigeminal ganglia were co-implanted in immunocompromised Nude mice. In these conditions as well, the innervation of the dental mesenchyme was observed already after one week of implantation, but axons reached the odontoblast layer after two weeks only. This study demonstrated that immunodepression per se does stimulate the innervation of the dental mesenchyme.
Collapse
Affiliation(s)
- Tunay Kökten
- Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1109, team “Osteoarticular and Dental Regenerative NanoMedicine”, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Thibault Bécavin
- Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1109, team “Osteoarticular and Dental Regenerative NanoMedicine”, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Laetitia Keller
- Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1109, team “Osteoarticular and Dental Regenerative NanoMedicine”, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Weickert
- Service de Microscopie Electronique, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM Unité (U)964, Centre National de la Recherche Scientifique (CNRS) UMR1704, Université de Strasbourg, Illkirch, France
| | - Sabine Kuchler-Bopp
- Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1109, team “Osteoarticular and Dental Regenerative NanoMedicine”, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Hervé Lesot
- Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1109, team “Osteoarticular and Dental Regenerative NanoMedicine”, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
39
|
Zhu X, Zhao P, Liu Y, Zhang X, Fu J, Ivy Yu HM, Qiu M, Chen Y, Hsu W, Zhang Z. Intra-epithelial requirement of canonical Wnt signaling for tooth morphogenesis. J Biol Chem 2013; 288:12080-9. [PMID: 23525146 DOI: 10.1074/jbc.m113.462473] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple Wnt ligands are expressed in the developing tooth and play important and redundant functions during odontogenesis. However, the source of Wnt ligands and their targeting cells and action mechanism in tooth organogenesis remain largely elusive. Here we show that epithelial inactivation of Gpr177, the mouse Wntless (Wls) whose product regulates Wnt sorting and secretion, leads to arrest of tooth development at the early cap stage and abrogates tooth-forming capability of the dental epithelium. Gpr177 in the epithelium is necessary for the activation of canonical Wnt signaling in the dental epithelium and formation of a functional enamel knot. Epithelial deletion of Gpr177 results in defective gene expression and cellular behavior in the dental epithelium but does not alter odontogenic program in the mesenchyme. Furthermore, deletion of Axin2, a negative intracellular regulator of canonical Wnt signaling, rescues the tooth defects in mice carrying Gpr177 mutation in the dental epithelium. Together with the fact that active Wnt canonical signaling is present predominantly in the dental epithelium during tooth development, our results demonstrate that Gpr177-mediated Wnt ligands in the dental epithelium act primarily in an intra-epithelial context to regulate enamel knot formation and subsequent tooth development.
Collapse
Affiliation(s)
- XiaoJing Zhu
- From the Institute of Developmental and Regenerative Biology College of Life and Environmental Science, Hangzhou Normal University, 16 Xuelin Street, Hangzhou 310036, Zhejiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Semaphorin 3A controls timing and patterning of the dental pulp innervation. Differentiation 2012; 84:371-9. [DOI: 10.1016/j.diff.2012.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/12/2012] [Accepted: 09/17/2012] [Indexed: 01/07/2023]
|
41
|
Landin MADSS, Shabestari M, Babaie E, Reseland JE, Osmundsen H. Gene Expression Profiling during Murine Tooth Development. Front Genet 2012; 3:139. [PMID: 22866057 PMCID: PMC3408794 DOI: 10.3389/fgene.2012.00139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/11/2012] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to describe the expression of genes, including ameloblastin (Ambn), amelogenin X chromosome (Amelx), and enamelin (Enam) during early (pre-secretory) tooth development. The expression of these genes has predominantly been studied at post-secretory stages. Deoxyoligonucleotide microarrays were used to study gene expression during development of the murine first molar tooth germ at 24 h intervals, starting at the 11th embryonic day (E11.5), and up to the 7th day after birth (P7). The profile search function of Spotfire software was used to select genes with similar expression profile as the enamel genes (Ambn, Amelx, and Enam). Microarray results where validated using real-time reverse transcription-polymerase chain reaction (real-time RT-PCR), and translated proteins identified by Western-blotting. In situ localization of the Ambn, Amelx, and Enam mRNAs were monitored from E12.5 to E17.5 using deoxyoligonucleotide probes. Bioinformatics analysis was used to associate biological functions with differentially expressed (DE; p ≤ 0.05) genes. Microarray results showed a total of 4362 genes including Ambn, Amelx, and Enam to be significant DE throughout the time-course. The expression of the three enamel genes was low at pre-natal stages (E11.5–P0) increasing after birth (P1–P7). Profile search lead to isolation of 87 genes with significantly similar expression to the three enamel proteins. These mRNAs were expressed in dental epithelium and epithelium derived cells. Although expression of Ambn, Amelx, and Enam were lower during early tooth development compared to secretory stages enamel proteins were detectable by Western-blotting. Bioinformatic analysis associated the 87 genes with multiple biological functions. Around 35 genes were associated with 15 transcription factors.
Collapse
|
42
|
Nicotinic receptor Alpha7 expression during tooth morphogenesis reveals functional pleiotropy. PLoS One 2012; 7:e36467. [PMID: 22666322 PMCID: PMC3364260 DOI: 10.1371/journal.pone.0036467] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 04/06/2012] [Indexed: 01/16/2023] Open
Abstract
The expression of nicotinic acetylcholine receptor (nAChR) subtype, alpha7, was investigated in the developing teeth of mice that were modified through homologous recombination to express a bi-cistronic IRES-driven tau-enhanced green fluorescent protein (GFP); alpha7GFP) or IRES-Cre (alpha7Cre). The expression of alpha7GFP was detected first in cells of the condensing mesenchyme at embryonic (E) day E13.5 where it intensifies through E14.5. This expression ends abruptly at E15.5, but was again observed in ameloblasts of incisors at E16.5 or molar ameloblasts by E17.5–E18.5. This expression remains detectable until molar enamel deposition is completed or throughout life as in the constantly erupting mouse incisors. The expression of alpha7GFP also identifies all stages of innervation of the tooth organ. Ablation of the alpha7-cell lineage using a conditional alpha7Cre×ROSA26-LoxP(diphtheria toxin A) strategy substantially reduced the mesenchyme and this corresponded with excessive epithelium overgrowth consistent with an instructive role by these cells during ectoderm patterning. However, alpha7knock-out (KO) mice exhibited normal tooth size and shape indicating that under normal conditions alpha7 expression is dispensable to this process. The function of ameloblasts in alpha7KO mice is altered relative to controls. High resolution micro-computed tomography analysis of adult mandibular incisors revealed enamel volume of the alpha7KO was significantly reduced and the organization of enamel rods was altered relative to controls. These results demonstrate distinct and varied spatiotemporal expression of alpha7 during tooth development, and they suggest that dysfunction of this receptor would have diverse impacts upon the adult organ.
Collapse
|
43
|
Moe K, Shrestha A, Kvinnsland IH, Luukko K, Kettunen P. Developmentally regulated expression of Sema3A chemorepellant in the developing mouse incisor. Acta Odontol Scand 2012; 70:184-9. [PMID: 21793640 DOI: 10.3109/00016357.2011.600717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Semaphorin 3A (Sema3A) is an essential chemorepellant controlling peripheral axon pathfinding and patterning, but also serves non-neuronal cellular functions. Incisors of rodent are distinctive from molars as they erupt continuously, have only one root and enamel is present only on the labial side. The aim of this study is to address putative regulatory roles of Sema3A chemorepellant in the development of incisor innervation and formation. MATERIALS AND METHODS This study analyzed expression of Sema3A mRNAs during embryonic and early post-natal stages of mouse mandibular incisor using sectional radioactive in situ hybridization. RESULTS Although Sema3A mRNAs were observed in condensed dental mesenchyme during the early bud stage, they were absent in dental papilla or pulp at later stages. Sema3A mRNAs were observed in the dental epithelium including the cervical loops and a prominent expression was also seen in alveolar bone. Interestingly, transcripts were absent from the mesenchymal dental follicle target area (future periodontal ligament) throughout the studied stages. CONCLUSION The expression patterns of Sema3A indicate that it may control the timing and patterning of the incisor innervation. In particular, Sema3A appears to regulate innervation of the periodontal ligament, while nerve penetration into the incisor dental pulp appears not to be dependent on Sema3A. Moreover, Sema3A may regulate the functions of cervical loops and the development of alveolar bone. Future study with Sema3A deficient mice will help to elucidate the putative neuronal and non-neuronal functions of Sema3A in incisor tooth development.
Collapse
Affiliation(s)
- Kyaw Moe
- Department of Biomedicine, University of Bergen, Norway
| | | | | | | | | |
Collapse
|
44
|
Sun JX, Horst OV, Bumgarner R, Lakely B, Somerman MJ, Zhang H. Laser capture microdissection enables cellular and molecular studies of tooth root development. Int J Oral Sci 2012; 4:7-13. [PMID: 22422086 PMCID: PMC3412663 DOI: 10.1038/ijos.2012.15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epithelial-mesenchymal interactions (EMIs) are critical for tooth development. Molecular mechanisms mediating these interactions in root formation is not well understood. Laser capture microdissection (LCM) and subsequent microarray analyses enable large scale in situ molecular and cellular studies of root formation but to date have been hindered by technical challenges of gaining intact histological sections of non-decalcified mineralized teeth or jaws with well-preserved RNA. Here,we describe a new method to overcome this obstacle that permits LCM of dental epithelia,adjacent mesenchyme,odontoblasts and cementoblasts from mouse incisors and molars during root development. Using this method,we obtained RNA samples of high quality and successfully performed microarray analyses. Robust differences in gene expression,as well as genes not previously associated with root formation,were identified. Comparison of gene expression data from microarray with real-time reverse transcriptase polymerase chain reaction (RT-PCR) supported our findings. These genes include known markers of dental epithelia,mesenchyme,cementoblasts and odontoblasts,as well as novel genes such as those in the fibulin family. In conclusion,our new approach in tissue preparation enables LCM collection of intact cells with well-preserved RNA allowing subsequent gene expression analyses using microarray and RT-PCR to define key regulators of tooth root development.
Collapse
|
45
|
Sijaona A, Luukko K, Kvinnsland IH, Kettunen P. Expression patterns of Sema3F, PlexinA4, -A3, Neuropilin1 and -2 in the postnatal mouse molar suggest roles in tooth innervation and organogenesis. Acta Odontol Scand 2012; 70:140-8. [PMID: 21815834 DOI: 10.3109/00016357.2011.600708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Semaphorins form a family of axon wiring molecules but still little is known about their role in tooth formation. A class 3 semaphorin, Semaphorin3F (Sema3F), besides acting as a chemorepellant for different types of axons, controls a variety of non-neuronal developmental processes. MATERIALS AND METHODS Cellular mRNA expression patterns of Sema3F as well as neuropilin 1 (Npn1), neuropilin 2 (Npn2), plexinA3 and plexinA4 receptors were analyzed by sectional in situ hybridization in the mouse molar tooth during postnatal days 0-7. The expression of the receptors was studied in PN5 trigeminal ganglia. RESULTS Sema3F, Npn1, -2 and plexinA4 exhibited distinct, spatiotemporally changing expression patterns, whereas plexinA3 was not observed in the tooth germs. Besides being expressed in the base of the dental mesenchyme Sema3F, like plexinA4, Npn1 and -2, was present in the ameloblast cell lineage. Npn1 and Npn2 were additionally seen in the pulp horns and endothelial cells and like PlexinA4 in the developing alveolar bone. Npn1, plexinA3 and -A4 were observed in trigeminal ganglion neurons. CONCLUSIONS Sema3F may act as a tooth target-derived axonal chemorepellant controlling establishment of the tooth nerve supply. Furthermore, Sema3F, like Npn1, -2 and plexinA4 may serve non-neuronal functions by controlling the development of the ameloblast cell lineage. Moreover, Npn1 and Npn2 may regulate dental vasculogenesis and, together with PlexinA4, alveolar bone formation. Further analyses such as investigation of transgenic mouse models will be required to elucidate in vivo signaling functions of Sema3F and the receptors in odontogenesis.
Collapse
|
46
|
Hughes A, Kleine-Albers J, Helfrich MH, Ralston SH, Rogers MJ. A class III semaphorin (Sema3e) inhibits mouse osteoblast migration and decreases osteoclast formation in vitro. Calcif Tissue Int 2012; 90:151-62. [PMID: 22227882 PMCID: PMC3271215 DOI: 10.1007/s00223-011-9560-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/04/2011] [Indexed: 12/11/2022]
Abstract
Originally identified as axonal guidance cues, semaphorins are expressed throughout many different tissues and regulate numerous non-neuronal processes. We demonstrate that most class III semaphorins are expressed in mouse osteoblasts and are differentially regulated by cell growth and differentiation: Sema3d expression is increased and Sema3e expression decreased during proliferation in culture, while expression of Sema3a is unaffected by cell density but increases in cultures of mineralizing osteoblasts. Expression of Sema3a, -3e, and -3d is also differentially regulated by osteogenic stimuli; inhibition of GSK3β decreased expression of Sema3a and -3e, while 1,25-(OH)(2)D(3) increased expression of Sema3e. Parathyroid hormone had no effect on expression of Sema3a, -3b, or -3d. Osteoblasts, macrophages, and osteoclasts express the Sema3e receptor PlexinD1, suggesting an autocrine and paracrine role for Sema3e. No effects of recombinant Sema3e on osteoblast proliferation, differentiation, or mineralization were observed; but Sema3e did inhibit the migration of osteoblasts in a wound-healing assay. The formation of multinucleated, tartrate-resistant acid phosphatase-positive osteoclasts was decreased by 81% in cultures of mouse bone marrow macrophages incubated with 200 ng/mL Sema3e. Correspondingly, decreased expression of osteoclast markers (Itgb3, Acp5, Cd51, Nfatc1, CalcR, and Ctsk) was observed by qPCR in macrophage cultures differentiated in the presence of Sema3e. Our results demonstrate that class III semaphorins are expressed by osteoblasts and differentially regulated by differentiation, mineralization, and osteogenic stimuli. Sema3e is a novel inhibitor of osteoclast formation in vitro and may play a role in maintaining local bone homeostasis, potentially acting as a coupling factor between osteoclasts and osteoblasts.
Collapse
Affiliation(s)
- Alun Hughes
- Musculoskeletal Research Programme, School of Medicine & Dentistry, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB252ZD UK
| | - Jennifer Kleine-Albers
- Musculoskeletal Research Programme, School of Medicine & Dentistry, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB252ZD UK
| | - Miep H. Helfrich
- Musculoskeletal Research Programme, School of Medicine & Dentistry, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB252ZD UK
| | - Stuart H. Ralston
- Molecular Medicine Centre, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh, EH42XU UK
| | - Michael J. Rogers
- Musculoskeletal Research Programme, School of Medicine & Dentistry, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB252ZD UK
| |
Collapse
|
47
|
Shelly M, Cancedda L, Lim BK, Popescu AT, Cheng PL, Gao H, Poo MM. Semaphorin3A regulates neuronal polarization by suppressing axon formation and promoting dendrite growth. Neuron 2011; 71:433-46. [PMID: 21835341 DOI: 10.1016/j.neuron.2011.06.041] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2011] [Indexed: 12/13/2022]
Abstract
Semaphorin 3A (Sema3A) is a secreted factor known to guide axon/dendrite growth and neuronal migration. We found that it also acts as a polarizing factor for axon/dendrite development in cultured hippocampal neurons. Exposure of the undifferentiated neurite to localized Sema3A suppressed its differentiation into axon and promoted dendrite formation, resulting in axon formation away from the Sema3A source, and bath application of Sema3A to polarized neurons promoted dendrite growth but suppressed axon growth. Fluorescence resonance energy transfer (FRET) imaging showed that Sema3A elevated the cGMP but reduced cAMP and protein kinase A (PKA) activity, and its axon suppression is attributed to the downregulation of PKA-dependent phosphorylation of axon determinants LKB1 and GSK-3β. Downregulating Sema3A signaling in rat embryonic cortical progenitors via in utero electroporation of siRNAs against the Sema3A receptor neuropilin-1 also resulted in polarization defects in vivo. Thus, Sema3A regulates the earliest step of neuronal morphogenesis by polarizing axon/dendrite formation.
Collapse
Affiliation(s)
- Maya Shelly
- Department of Neurobiology and Behavior, State University of New York, Stony Brook 11794-5230, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Developmental guidance of embryonic corneal innervation: roles of Semaphorin3A and Slit2. Dev Biol 2010; 344:172-84. [PMID: 20471970 DOI: 10.1016/j.ydbio.2010.04.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 04/26/2010] [Accepted: 04/27/2010] [Indexed: 11/23/2022]
Abstract
The cornea is one of the most densely innervated structures of the body. In the developing chicken embryo, nerves from the ophthalmic trigeminal ganglion (OTG) innervate the cornea in a series of spatially and temporally regulated events. However, little is known concerning the signals that regulate these events. Here we have examined the involvement of the axon guidance molecules Semaphorin3A and Slit2, and their respective receptors, Neuropilin-1 and Robo2. Expression analyses of early corneas suggest an involvement of both Semaphorin3A and Slit2 in preventing nerves from entering the corneal stroma until the proper time (i.e., they serve as negative regulators), and analyses of their receptors support this conclusion. At later stages of development the expression of Semaphorin3A is again consistent with its serving as a negative regulator-this time for nerves entering the corneal epithelium. However, expression analyses of Robo2 at this stage raised the possibility that Slit2 had switched from a negative regulator to a positive regulator. In support of such a switch, functional analyses-by addition of recombinant Slit2 protein or immunoneutralization with a Slit2 antibody-showed that at an early stage Slit2 negatively regulates the outgrowth of nerves from the OTG, whereas at the later stage it positively regulated the growth of nerves by increasing nerve branching within the corneal epithelium.
Collapse
|
49
|
Liu F, Millar S. Wnt/beta-catenin signaling in oral tissue development and disease. J Dent Res 2010; 89:318-30. [PMID: 20200414 PMCID: PMC3140915 DOI: 10.1177/0022034510363373] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 01/08/2010] [Accepted: 01/12/2010] [Indexed: 11/16/2022] Open
Abstract
The Wnt/beta-catenin signaling pathway is one of several key conserved intercellular signaling pathways in animals, and plays fundamental roles in the proliferation, regeneration, differentiation, and function of many cell and tissue types. This pathway is activated in a dynamic manner during the morphogenesis of oral organs, including teeth, taste papillae, and taste buds, and is essential for these processes to occur normally. Conversely, forced activation of Wnt/beta-catenin signaling promotes the formation of ectopic teeth and taste papillae. In this review, we discuss our current understanding of the roles of Wnt/beta-catenin signaling in oral tissue development and in related human diseases, and the potential of manipulating this pathway for therapeutic purposes.
Collapse
Affiliation(s)
- F. Liu
- Institute for Regenerative Medicine at Scott & White Hospital, Texas A&M Health Science Center, Temple, TX 76502, USA
| | - S.E. Millar
- Departments of Dermatology and Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
50
|
Kettunen P, Kivimäe S, Keshari P, Klein OD, Cheyette BNR, Luukko K. Dact1-3 mRNAs exhibit distinct expression domains during tooth development. Gene Expr Patterns 2010; 10:140-3. [PMID: 20170752 DOI: 10.1016/j.gep.2010.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 02/07/2010] [Accepted: 02/10/2010] [Indexed: 11/20/2022]
Abstract
Wnt signaling is essential for tooth formation and Dact proteins modulate Wnt signaling by binding to the intracellular protein Dishevelled (Dvl). Comparison of the three known mouse Dact genes, Dact1-3, from the morphological initiation of mandibular first molar development through the onset of root formation using section in situ hybridization showed distinct, complementary and overlapping expression patterns for these genes. Whereas Dact2 expression was restricted to the dental epithelium, including the enamel knot signaling centers and pre-ameloblasts, Dact1 and Dact3 showed developmentally regulated expression in the dental mesenchyme. Both Dact1 and Dact3 mRNAs were first detected in the presumptive dental mesenchyme. After being downregulated from the condensing dental mesenchyme of the bud stage tooth germ, Dact1 was upregulated in the dental follicle mesenchyme at the cap stage and subsequently also in the dental papilla at the bell stage, where the expression persisted to the postnatal stages. In contrast, Dact3 transcripts persisted throughout the dental mesenchyme, including the preodontoblasts, during embryogenesis before transcripts were largely downregulated from the tooth germ postnatally. Collectively, these results suggest that Dact1 and -3 may contribute to early tooth formation by modulation of Wnt signaling pathways in the mesenchyme, including preodontoblasts, whereas Dact2 may play important signal-modulating roles in the adjacent epithelial cells including the enamel knot signaling centers and pre-ameloblasts. Future loss-of-function studies will help elucidate whether any of these functions are redundant, particularly for Dact1 and Dact3.
Collapse
Affiliation(s)
- Päivi Kettunen
- Section of Anatomy and Cell Biology, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| | | | | | | | | | | |
Collapse
|