1
|
Raja KKB, Yeung K, Li Y, Chen R, Mardon G. A single cell RNA sequence atlas of the early Drosophila larval eye. BMC Genomics 2024; 25:616. [PMID: 38890587 PMCID: PMC11186242 DOI: 10.1186/s12864-024-10423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
The Drosophila eye has been an important model to understand principles of differentiation, proliferation, apoptosis and tissue morphogenesis. However, a single cell RNA sequence resource that captures gene expression dynamics from the initiation of differentiation to the specification of different cell types in the larval eye disc is lacking. Here, we report transcriptomic data from 13,000 cells that cover six developmental stages of the larval eye. Our data show cell clusters that correspond to all major cell types present in the eye disc ranging from the initiation of the morphogenetic furrow to the differentiation of each photoreceptor cell type as well as early cone cells. We identify dozens of cell type-specific genes whose function in different aspects of eye development have not been reported. These single cell data will greatly aid research groups studying different aspects of early eye development and will facilitate a deeper understanding of the larval eye as a model system.
Collapse
Affiliation(s)
- Komal Kumar Bollepogu Raja
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kelvin Yeung
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Graeme Mardon
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Banerjee SJ, Curtiss J. Dachshund and C-terminal Binding Protein bind directly during Drosophila eye development. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001106. [PMID: 38528987 PMCID: PMC10961645 DOI: 10.17912/micropub.biology.001106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024]
Abstract
The transcription factor Dachshund (Dac) and the transcriptional co-regulator C-terminal Binding Protein (CtBP) were identified as the retinal determination factors during Drosophila eye development . A previous study established that Dac and CtBP interact genetically during eye development. Co-immunoprecipitation assays suggested that both molecules interact in the Drosophila larval eye-antennal disc. Our present study shows that Dac and CtBP bind each other directly, as determined by GST pull-down assays. Thus, our results demonstrate the molecular mechanism of Dac and CtBP interaction and suggest the direct binding of these two transcription regulators in the cells of the eye disc promotes the Drosophila eye specification.
Collapse
Affiliation(s)
| | - Jennifer Curtiss
- Biology, New Mexico State University, Las Cruces, New Mexico, United States
| |
Collapse
|
3
|
Bollepogu Raja KK, Yeung K, Shim YK, Li Y, Chen R, Mardon G. A single cell genomics atlas of the Drosophila larval eye reveals distinct photoreceptor developmental timelines. Nat Commun 2023; 14:7205. [PMID: 37938573 PMCID: PMC10632452 DOI: 10.1038/s41467-023-43037-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023] Open
Abstract
The Drosophila eye is a powerful model system to study the dynamics of cell differentiation, cell state transitions, cell maturation, and pattern formation. However, a high-resolution single cell genomics resource that accurately profiles all major cell types of the larval eye disc and their spatiotemporal relationships is lacking. Here, we report transcriptomic and chromatin accessibility data for all known cell types in the developing eye. Photoreceptors appear as strands of cells that represent their dynamic developmental timelines. As photoreceptor subtypes mature, they appear to assume a common transcriptomic profile that is dominated by genes involved in axon function. We identify cell type maturation genes, enhancers, and potential regulators, as well as genes with distinct R3 or R4 photoreceptor specific expression. Finally, we observe that the chromatin accessibility between cones and photoreceptors is distinct. These single cell genomics atlases will greatly enhance the power of the Drosophila eye as a model system.
Collapse
Affiliation(s)
- Komal Kumar Bollepogu Raja
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kelvin Yeung
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yoon-Kyung Shim
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Graeme Mardon
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Jean‐Guillaume CB, Kumar JP. Development of the ocellar visual system in Drosophila melanogaster. FEBS J 2022; 289:7411-7427. [PMID: 35490409 PMCID: PMC9805374 DOI: 10.1111/febs.16468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 01/14/2023]
Abstract
The adult visual system of the fruit fly, Drosophila melanogaster, contains seven eyes-two compound eyes, a pair of Hofbauer-Buchner eyelets, and three ocelli. Each of these eye types has a specialized and essential role to play in visual and/or circadian behavior. As such, understanding how each is specified, patterned, and wired is of primary importance to vision biologists. Since the fruit fly is amenable to manipulation by an enormous array of genetic and molecular tools, its development is one of the best and most studied model systems. After more than a century of experimental investigations, our understanding of how each eye type is specified and patterned is grossly uneven. The compound eye has been the subject of several thousand studies; thus, our knowledge of its development is the deepest. By comparison, very little is known about the specification and patterning of the other two visual systems. In this Viewpoint article, we will describe what is known about the function and development of the Drosophila ocelli.
Collapse
|
5
|
Weasner BP, Kumar JP. The early history of the eye-antennal disc of Drosophila melanogaster. Genetics 2022; 221:6573236. [PMID: 35460415 PMCID: PMC9071535 DOI: 10.1093/genetics/iyac041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
A pair of eye-antennal imaginal discs give rise to nearly all external structures of the adult Drosophila head including the compound eyes, ocelli, antennae, maxillary palps, head epidermis, and bristles. In the earliest days of Drosophila research, investigators would examine thousands of adult flies in search of viable mutants whose appearance deviated from the norm. The compound eyes are dispensable for viability and perturbations to their structure are easy to detect. As such, the adult compound eye and the developing eye-antennal disc emerged as focal points for studies of genetics and developmental biology. Since few tools were available at the time, early researchers put an enormous amount of thought into models that would explain their experimental observations-many of these hypotheses remain to be tested. However, these "ancient" studies have been lost to time and are no longer read or incorporated into today's literature despite the abundance of field-defining discoveries that are contained therein. In this FlyBook chapter, I will bring these forgotten classics together and draw connections between them and modern studies of tissue specification and patterning. In doing so, I hope to bring a larger appreciation of the contributions that the eye-antennal disc has made to our understanding of development as well as draw the readers' attention to the earliest studies of this important imaginal disc. Armed with the today's toolkit of sophisticated genetic and molecular methods and using the old papers as a guide, we can use the eye-antennal disc to unravel the mysteries of development.
Collapse
Affiliation(s)
- Brandon P Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA,Corresponding author: Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
6
|
Abstract
Shadow enhancers are seemingly redundant transcriptional cis-regulatory elements that regulate the same gene and drive overlapping expression patterns. Recent studies have shown that shadow enhancers are remarkably abundant and control most developmental gene expression in both invertebrates and vertebrates, including mammals. Shadow enhancers might provide an important mechanism for buffering gene expression against mutations in non-coding regulatory regions of genes implicated in human disease. Technological advances in genome editing and live imaging have shed light on how shadow enhancers establish precise gene expression patterns and confer phenotypic robustness. Shadow enhancers can interact in complex ways and may also help to drive the formation of transcriptional hubs within the nucleus. Despite their apparent redundancy, the prevalence and evolutionary conservation of shadow enhancers underscore their key role in emerging metazoan gene regulatory networks.
Collapse
|
7
|
Bravo González‐Blas C, Quan X, Duran‐Romaña R, Taskiran II, Koldere D, Davie K, Christiaens V, Makhzami S, Hulselmans G, de Waegeneer M, Mauduit D, Poovathingal S, Aibar S, Aerts S. Identification of genomic enhancers through spatial integration of single-cell transcriptomics and epigenomics. Mol Syst Biol 2020; 16:e9438. [PMID: 32431014 PMCID: PMC7237818 DOI: 10.15252/msb.20209438] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 01/02/2023] Open
Abstract
Single-cell technologies allow measuring chromatin accessibility and gene expression in each cell, but jointly utilizing both layers to map bona fide gene regulatory networks and enhancers remains challenging. Here, we generate independent single-cell RNA-seq and single-cell ATAC-seq atlases of the Drosophila eye-antennal disc and spatially integrate the data into a virtual latent space that mimics the organization of the 2D tissue using ScoMAP (Single-Cell Omics Mapping into spatial Axes using Pseudotime ordering). To validate spatially predicted enhancers, we use a large collection of enhancer-reporter lines and identify ~ 85% of enhancers in which chromatin accessibility and enhancer activity are coupled. Next, we infer enhancer-to-gene relationships in the virtual space, finding that genes are mostly regulated by multiple, often redundant, enhancers. Exploiting cell type-specific enhancers, we deconvolute cell type-specific effects of bulk-derived chromatin accessibility QTLs. Finally, we discover that Prospero drives neuronal differentiation through the binding of a GGG motif. In summary, we provide a comprehensive spatial characterization of gene regulation in a 2D tissue.
Collapse
Affiliation(s)
| | - Xiao‐Jiang Quan
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | | | - Ibrahim Ihsan Taskiran
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - Duygu Koldere
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | | | - Valerie Christiaens
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - Samira Makhzami
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - Gert Hulselmans
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - Maxime de Waegeneer
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - David Mauduit
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | | | - Sara Aibar
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - Stein Aerts
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| |
Collapse
|
8
|
Chen YC, Desplan C. Gene regulatory networks during the development of the Drosophila visual system. Curr Top Dev Biol 2020; 139:89-125. [PMID: 32450970 DOI: 10.1016/bs.ctdb.2020.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Drosophila visual system integrates input from 800 ommatidia and extracts different features in stereotypically connected optic ganglia. The development of the Drosophila visual system is controlled by gene regulatory networks that control the number of precursor cells, generate neuronal diversity by integrating spatial and temporal information, coordinate the timing of retinal and optic lobe cell differentiation, and determine distinct synaptic targets of each cell type. In this chapter, we describe the known gene regulatory networks involved in the development of the different parts of the visual system and explore general components in these gene networks. Finally, we discuss the advantages of the fly visual system as a model for gene regulatory network discovery in the era of single-cell transcriptomics.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Department of Biology, New York University, New York, NY, United States
| | - Claude Desplan
- Department of Biology, New York University, New York, NY, United States.
| |
Collapse
|
9
|
Yeung K, Wang F, Li Y, Wang K, Mardon G, Chen R. Integrative genomic analysis reveals novel regulatory mechanisms of eyeless during Drosophila eye development. Nucleic Acids Res 2019; 46:11743-11758. [PMID: 30295802 PMCID: PMC6294497 DOI: 10.1093/nar/gky892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/02/2018] [Indexed: 01/22/2023] Open
Abstract
Eyeless (ey) is one of the most critical transcription factors for initiating the entire eye development in Drosophila. However, the molecular mechanisms through which Ey regulates target genes and pathways have not been characterized at the genomic level. Using ChIP-Seq, we generated an endogenous Ey-binding profile in Drosophila developing eyes. We found that Ey binding occurred more frequently at promoter compared to non-promoter regions. Ey promoter binding was correlated with the active transcription of genes involved in development and transcription regulation. An integrative analysis revealed that Ey directly regulated a broad and highly connected genetic network, including many essential patterning pathways, and known and novel eye genes. Interestingly, we observed that Ey could target multiple components of the same pathway, which might enhance its control of these pathways during eye development. In addition to protein-coding genes, we discovered Ey also targeted non-coding RNAs, which represents a new regulatory mechanism employed by Ey. These findings suggest that Ey could use multiple molecular mechanisms to regulate target gene expression and pathway function, which might enable Ey to exhibit a greater flexibility in controlling different processes during eye development.
Collapse
Affiliation(s)
- Kelvin Yeung
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Feng Wang
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Keqing Wang
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Graeme Mardon
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Rui Chen
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
10
|
Sánchez-Aragón M, Cantisán-Gómez J, Luque CM, Brás-Pereira C, Lopes CS, Lemos MC, Casares F. A Toggle-Switch and a Feed-Forward Loop Engage in the Control of the Drosophila Retinal Determination Gene Network. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
11
|
Gaspar P, Almudi I, Nunes MDS, McGregor AP. Human eye conditions: insights from the fly eye. Hum Genet 2018; 138:973-991. [PMID: 30386938 DOI: 10.1007/s00439-018-1948-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/20/2018] [Indexed: 12/22/2022]
Abstract
The fruit fly Drosophila melanogaster has served as an excellent model to study and understand the genetics of many human diseases from cancer to neurodegeneration. Studying the regulation of growth, determination and differentiation of the compound eyes of this fly, in particular, have provided key insights into a wide range of diseases. Here we review the regulation of the development of fly eyes in light of shared aspects with human eye development. We also show how understanding conserved regulatory pathways in eye development together with the application of tools for genetic screening and functional analyses makes Drosophila a powerful model to diagnose and characterize the genetics underlying many human eye conditions, such as aniridia and retinitis pigmentosa. This further emphasizes the importance and vast potential of basic research to underpin applied research including identifying and treating the genetic basis of human diseases.
Collapse
Affiliation(s)
- Pedro Gaspar
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Isabel Almudi
- Centro Andaluz de Biología del Desarrollo, CSIC/ Universidad Pablo de Olavide, Carretera de Utrera Km1, 41013, Sevilla, Spain
| | - Maria D S Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
12
|
Baker LR, Weasner BM, Nagel A, Neuman SD, Bashirullah A, Kumar JP. Eyeless/Pax6 initiates eye formation non-autonomously from the peripodial epithelium. Development 2018; 145:dev.163329. [PMID: 29980566 DOI: 10.1242/dev.163329] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023]
Abstract
The transcription factor Pax6 is considered the master control gene for eye formation because (1) it is present within the genomes and retina/lens of all animals with a visual system; (2) severe retinal defects accompany its loss; (3) Pax6 genes have the ability to substitute for one another across the animal kingdom; and (4) Pax6 genes are capable of inducing ectopic eye/lens in flies and mammals. Many roles of Pax6 were first elucidated in Drosophila through studies of the gene eyeless (ey), which controls both growth of the entire eye-antennal imaginal disc and fate specification of the eye. We show that Ey also plays a surprising role within cells of the peripodial epithelium to control pattern formation. It regulates the expression of decapentaplegic (dpp), which is required for initiation of the morphogenetic furrow in the eye itself. Loss of Ey within the peripodial epithelium leads to the loss of dpp expression within the eye, failure of the furrow to initiate, and abrogation of retinal development. These findings reveal an unexpected mechanism for how Pax6 controls eye development in Drosophila.
Collapse
Affiliation(s)
- Luke R Baker
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Bonnie M Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Athena Nagel
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Sarah D Neuman
- Department of Pharmaceutical Sciences, University of Wisconsin, Madison, WI 53705, USA
| | - Arash Bashirullah
- Department of Pharmaceutical Sciences, University of Wisconsin, Madison, WI 53705, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
13
|
Drosophila Pax6 promotes development of the entire eye-antennal disc, thereby ensuring proper adult head formation. Proc Natl Acad Sci U S A 2018; 114:5846-5853. [PMID: 28584125 DOI: 10.1073/pnas.1610614114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Paired box 6 (Pax6) is considered to be the master control gene for eye development in all seeing animals studied so far. In vertebrates, it is required not only for lens/retina formation but also for the development of the CNS, olfactory system, and pancreas. Although Pax6 plays important roles in cell differentiation, proliferation, and patterning during the development of these systems, the underlying mechanism remains poorly understood. In the fruit fly, Drosophila melanogaster, Pax6 also functions in a range of tissues, including the eye and brain. In this report, we describe the function of Pax6 in Drosophila eye-antennal disc development. Previous studies have suggested that the two fly Pax6 genes, eyeless (ey) and twin of eyeless (toy), initiate eye specification, whereas eyegone (eyg) and the Notch (N) pathway independently regulate cell proliferation. Here, we show that Pax6 controls eye progenitor cell survival and proliferation through the activation of teashirt (tsh) and eyg, thereby indicating that Pax6 initiates both eye specification and proliferation. Although simultaneous loss of ey and toy during early eye-antennal disc development disrupts the development of all head structures derived from the eye-antennal disc, overexpression of N or tsh in the absence of Pax6 rescues only antennal and head epidermis development. Furthermore, overexpression of tsh induces a homeotic transformation of the fly head into thoracic structures. Taking these data together, we demonstrate that Pax6 promotes development of the entire eye-antennal disc and that the retinal determination network works to repress alternative tissue fates, which ensures proper development of adult head structures.
Collapse
|
14
|
Davis TL, Rebay I. Pleiotropy in Drosophila organogenesis: Mechanistic insights from Combgap and the retinal determination gene network. Fly (Austin) 2018; 12:62-70. [PMID: 29125381 DOI: 10.1080/19336934.2017.1402994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Master regulatory transcription factors cooperate in networks to shepherd cells through organogenesis. In the Drosophila eye, a collection of master control proteins known as the retinal determination gene network (RDGN) switches the direction and targets of its output to choreograph developmental transitions, but the molecular partners that enable such regulatory flexibility are not known. We recently showed that two RDGN members, Eyes absent (Eya) and Sine oculis (So), promote exit from the terminal cell cycle known as the second mitotic wave (SMW) to permit differentiation. A search for co-factors identified the ubiquitously expressed Combgap (Cg) as a novel transcriptional partner that impedes cell cycle exit and interferes with Eya-So activity specifically in this context. Here, we argue that Cg acts as a flexible transcriptional platform that contributes to numerous gene expression outcomes by a variety of mechanisms. For example, Cg provides repressive activities that dampen Eya-So output, but not by recruiting Polycomb chromatin-remodeling complexes as it does in other contexts. We propose that master regulators depend on both specifically expressed co-factors that assemble the combinatorial code and broadly expressed partners like Cg that recruit the diverse molecular activities needed to appropriately regulate their target enhancers.
Collapse
Affiliation(s)
- Trevor L Davis
- a Committee on Development, Regeneration, and Stem Cell Biology , University of Chicago , Chicago , IL , USA
| | - Ilaria Rebay
- a Committee on Development, Regeneration, and Stem Cell Biology , University of Chicago , Chicago , IL , USA.,b Ben May Department for Cancer Research , University of Chicago , Chicago , IL , USA
| |
Collapse
|
15
|
Mutations that impair Eyes absent tyrosine phosphatase activity in vitro reduce robustness of retinal determination gene network output in Drosophila. PLoS One 2017; 12:e0187546. [PMID: 29108015 PMCID: PMC5673202 DOI: 10.1371/journal.pone.0187546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/20/2017] [Indexed: 12/01/2022] Open
Abstract
A limited collection of signaling networks and transcriptional effectors directs the full spectrum of cellular behaviors that comprise development. One mechanism to diversify regulatory potential is to combine multiple biochemical activities into the same protein. Exemplifying this principle of modularity, Eyes absent (Eya), originally identified as a transcriptional co-activator within the retinal determination gene network (RDGN), also harbors tyrosine and threonine phosphatase activities. Although mounting evidence argues for the importance of Eya’s phosphatase activities to mammalian biology, genetic rescue experiments in Drosophila have shown that the tyrosine phosphatase function is dispensable for normal development. In this study, we repeated these rescue experiments in genetically sensitized backgrounds in which the dose of one or more RDGN factor was reduced. Heterozygosity for sine oculis or dachshund, both core RDGN members, compromised the ability of phosphatase-dead eya, but not of the control wild type eya transgene, to rescue the retinal defects and reduced viability associated with eya loss. We speculate that Eya’s tyrosine phosphatase activity, although non-essential, confers robustness to RDGN output.
Collapse
|
16
|
Majot AT, Bidwai AP. Analysis of transient hypermorphic activity of E(spl)D during R8 specification. PLoS One 2017; 12:e0186439. [PMID: 29036187 PMCID: PMC5643056 DOI: 10.1371/journal.pone.0186439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/02/2017] [Indexed: 11/23/2022] Open
Abstract
Drosophila atonal (ato) is required for the specification of founding R8 photoreceptors during retinal development. ato is regulated via dual eye-specific enhancers; ato-3’ is subject to initial induction whereas 5’-ato facilitates Notch-mediated autoregulation. Notch is further utilized to induce bHLH repressors of the E(spl) locus to restrict Ato from its initial broad expression to individual cells. Although Notch operates in two, distinct phases, it has remained unclear how the two phases maintain independence from one another. The difference in these two phases has attributed to the hypothesized delayed expression of E(spl). However, immunofluorescence data indicate that E(spl) are expressed during early Ato patterning, suggesting a more sophisticated underlying mechanism. To probe this mechanism, we provide evidence that although E(spl) exert no influence on ato-3’, E(spl) repress 5’-ato and deletion of the E(spl) locus elicits precocious 5’-ato activity. Thus, E(spl) imposes a delay to the timing in which Ato initiates autoregulation. We next sought to understand this finding in the context of E(spl)D, which encodes a dysregulated variant of E(spl)M8 that perturbs R8 patterning, though, as previously reported, only in conjunction with the mutant receptor Nspl. We established a genetic interaction between E(spl)D and roughened eye (roe), a known modulator of Notch signaling in retinogenesis. This link further suggests a dosage-dependence between E(spl) and the proneural activators Ato and Sens, as indicated via interaction assays in which E(spl)D renders aberrant R8 patterning in conjunction with reduced proneural dosage. In total, the biphasicity of Notch signaling relies, to some degree, on the post-translational regulation of individual E(spl) members and, importantly, that post-translational regulation is likely necessary to modulate the level of E(spl) activity throughout the progression of Ato expression.
Collapse
Affiliation(s)
- Adam T. Majot
- Department of Biology, West Virginia University, Morgantown, West Virginia, United States of America
| | - Ashok P. Bidwai
- Department of Biology, West Virginia University, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
17
|
Noncanonical Decapentaplegic Signaling Activates Matrix Metalloproteinase 1 To Restrict Hedgehog Activity and Limit Ectopic Eye Differentiation in Drosophila. Genetics 2017; 207:197-213. [PMID: 28696218 DOI: 10.1534/genetics.117.201053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/29/2017] [Indexed: 12/25/2022] Open
Abstract
One of the pertinent issues associated with cellular plasticity is to understand how the delicate balance between the determined state of cells and the extent to which they can transdetermine is maintained. Employing the well-established model of generating ectopic eyes in developing wing discs of Drosophila by ectopic eyeless expression, we provide evidence for the genetic basis of this mechanism. By both loss-of-function and gain-of-function genetic analyses, we demonstrate that Matrix metalloproteinase 1 (Mmp1) plays an important role in regulating the extent of ectopic ommatidial differentiation. Transcriptional activation of ectopic Mmp1 by the morphogen Decapentaplegic (Dpp) is not triggered by its canonical signaling pathway which involves Mad. Rather, Dpp activates an alternate cascade involving dTak1 and JNK, to induce ectopic Mmp1 expression. Mutational analyses reveal that Mmp1 negatively regulates ectopic eye differentiation by restricting the rate of proliferation and the levels of expression of retinal-determining genes dachshund and eyes absent This is primarily achieved by restricting the range of Hedgehog (Hh) signaling. Importantly, the increase in proliferation and upregulation of target retinal-determining genes, as observed upon attenuating Mmp1 activity, gets significantly rescued when ectopic eyes are generated in wing discs of hh heterozygous mutants. In conjunction with the previously established instructive and permissive roles of Dpp in facilitating ectopic eye differentiation in wing discs, the outcome of this study sheds light on a mechanism by which Dpp plays a dual role in modulating the delicate balance between the determined state of cells and the extent they can transdetermine.
Collapse
|
18
|
Davis TL, Rebay I. Antagonistic regulation of the second mitotic wave by Eyes absent-Sine oculis and Combgap coordinates proliferation and specification in the Drosophila retina. Development 2017; 144:2640-2651. [PMID: 28619818 DOI: 10.1242/dev.147231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/08/2017] [Indexed: 12/12/2022]
Abstract
The transition from proliferation to specification is fundamental to the development of appropriately patterned tissues. In the developing Drosophila eye, Eyes absent (Eya) and Sine oculis (So) orchestrate the progression of progenitor cells from asynchronous cell division to G1 arrest and neuronal specification at the morphogenetic furrow. Here, we uncover a novel role for Eya and So in promoting cell cycle exit in the second mitotic wave (SMW), a synchronized, terminal cell division that occurs several hours after passage of the furrow. We show that Combgap (Cg), a zinc-finger transcription factor, antagonizes Eya-So function in the SMW. Based on the ability of Cg to attenuate Eya-So transcriptional output in vivo and in cultured cells and on meta analysis of their chromatin occupancy profiles, we speculate that Cg limits Eya-So activation of select target genes posterior to the furrow to ensure properly timed mitotic exit. Our work supports a model in which context-specific modulation of transcriptional activity enables Eya and So to promote both entry into and exit from the cell cycle in a distinct spatiotemporal sequence.
Collapse
Affiliation(s)
- Trevor L Davis
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA .,Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
19
|
Davis TL, Rebay I. Master regulators in development: Views from the Drosophila retinal determination and mammalian pluripotency gene networks. Dev Biol 2016; 421:93-107. [PMID: 27979656 DOI: 10.1016/j.ydbio.2016.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/03/2016] [Accepted: 12/03/2016] [Indexed: 02/07/2023]
Abstract
Among the mechanisms that steer cells to their correct fate during development, master regulatory networks are unique in their sufficiency to trigger a developmental program outside of its normal context. In this review we discuss the key features that underlie master regulatory potency during normal and ectopic development, focusing on two examples, the retinal determination gene network (RDGN) that directs eye development in the fruit fly and the pluripotency gene network (PGN) that maintains cell fate competency in the early mammalian embryo. In addition to the hierarchical transcriptional activation, extensive positive transcriptional feedback, and cooperative protein-protein interactions that enable master regulators to override competing cellular programs, recent evidence suggests that network topology must also be dynamic, with extensive rewiring of the interactions and feedback loops required to navigate the correct sequence of developmental transitions to reach a final fate. By synthesizing the in vivo evidence provided by the RDGN with the extensive mechanistic insight gleaned from the PGN, we highlight the unique regulatory capabilities that continual reorganization into new hierarchies confers on master control networks. We suggest that deeper understanding of such dynamics should be a priority, as accurate spatiotemporal remodeling of network topology will undoubtedly be essential for successful stem cell based therapeutic efforts.
Collapse
Affiliation(s)
- Trevor L Davis
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA; Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
20
|
The morphogen Decapentaplegic employs a two-tier mechanism to activate target retinal determining genes during ectopic eye formation in Drosophila. Sci Rep 2016; 6:27270. [PMID: 27270790 PMCID: PMC4895176 DOI: 10.1038/srep27270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/13/2016] [Indexed: 11/18/2022] Open
Abstract
Understanding the role of morphogen in activating its target genes, otherwise epigenetically repressed, during change in cell fate specification is a very fascinating yet relatively unexplored domain. Our in vivo loss-of-function genetic analyses reveal that specifically during ectopic eye formation, the morphogen Decapentaplegic (Dpp), in conjunction with the canonical signaling responsible for transcriptional activation of retinal determining (RD) genes, triggers another signaling cascade. Involving dTak1 and JNK, this pathway down-regulates the expression of polycomb group of genes to do away with their repressive role on RD genes. Upon genetic inactivation of members of this newly identified pathway, the canonical Dpp signaling fails to trigger RD gene expression beyond a threshold, critical for ectopic photoreceptor differentiation. Moreover, the drop in ectopic RD gene expression and subsequent reduction in ectopic photoreceptor differentiation resulting from inactivation of dTak1 can be rescued by down-regulating the expression of polycomb group of genes. Our results unravel an otherwise unknown role of morphogen in coordinating simultaneous transcriptional activation and de-repression of target genes implicating its importance in cellular plasticity.
Collapse
|
21
|
Lopes CS, Casares F. Eye selector logic for a coordinated cell cycle exit. PLoS Genet 2015; 11:e1004981. [PMID: 25695251 PMCID: PMC4335009 DOI: 10.1371/journal.pgen.1004981] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 01/05/2015] [Indexed: 12/15/2022] Open
Abstract
Organ-selector transcription factors control simultaneously cell differentiation and proliferation, ensuring the development of functional organs and their homeostasis. How this is achieved at the molecular level is still unclear. Here we have investigated how the transcriptional pulse of string/cdc25 (stg), the universal mitotic trigger, is regulated during Drosophila retina development as an example of coordinated deployment of differentiation and proliferation programs. We identify the eye specific stg enhancer, stg-FMW, and show that Pax6 selector genes, in cooperation with Eya and So, two members of the retinal determination network, activate stg-FMW, establishing a positive feed-forward loop. This loop is negatively modulated by the Meis1 protein, Hth. This regulatory logic is reminiscent of that controlling the expression of differentiation transcription factors. Our work shows that subjecting transcription factors and key cell cycle regulators to the same regulatory logic ensures the coupling between differentiation and proliferation programs during organ development. Organs develop from groups of undifferentiated cells that proliferate and differentiate into specific cell types. During development, the coupling between proliferation and differentiation programs ensures that enough cells of the different cell types are generated. This is critical for proper organ formation and function. Here, we use the developing Drosophila eye to examine how the coupling between these two programs is achieved. During eye development, progenitors are amplified before they exit the cell cycle and enter the differentiation program. This amplification step depends on an expression burst of the mitotic trigger string/cdc25, which, by forcing cells into mitosis, synchronizes cells in G1 just before differentiation onset. Thus string regulation acts as a hub where differentiation and proliferation programs are integrated. We identify a DNA element that controls the burst of string expression prior to differentiation, and show that it is regulated by the same gene network that triggers eye development. The transcription factor Pax6/Eyeless is a key regulator in this network. Eyeless acts cooperatively with Sine oculis and Eyes absent to regulate string, through a positive feed-forward loop. This loop is negatively modulated by the progenitor-specific transcription factor Homothorax/Meis1. This work shows that transcription factors that instruct cells to acquire an eye fate also control their proliferation regime, thus guaranteeing the coupling between proliferation and differentiation.
Collapse
Affiliation(s)
- Carla S. Lopes
- CABD (Andalusian Centre for Developmental Biology), C.S.I.C.-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
- * E-mail: (FC); (CSL)
| | - Fernando Casares
- CABD (Andalusian Centre for Developmental Biology), C.S.I.C.-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
- * E-mail: (FC); (CSL)
| |
Collapse
|
22
|
Jusiak B, Wang F, Karandikar UC, Kwak SJ, Wang H, Chen R, Mardon G. Genome-wide DNA binding pattern of the homeodomain transcription factor Sine oculis (So) in the developing eye of Drosophila melanogaster.. GENOMICS DATA 2014; 2:153-155. [PMID: 25126519 PMCID: PMC4128500 DOI: 10.1016/j.gdata.2014.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The eye of the fruit fly Drosophila melanogaster provides a highly tractable genetic model system for the study of animal development, and many genes that regulate Drosophila eye formation have homologs implicated in human development and disease. Among these is the homeobox gene sine oculis (so), which encodes a homeodomain transcription factor (TF) that is both necessary for eye development and sufficient to reprogram a subset of cells outside the normal eye field toward an eye fate. We have performed a genome-wide analysis of So binding to DNA prepared from developing Drosophila eye tissue in order to identify candidate direct targets of So-mediated transcriptional regulation, as described in our recent article [20]. The data are available from NCBI Gene Expression Omnibus (GEO) with the accession number GSE52943. Here we describe the methods, data analysis, and quality control of our So ChIP-seq dataset.
Collapse
Affiliation(s)
- Barbara Jusiak
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Feng Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America ; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Umesh C Karandikar
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Su-Jin Kwak
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hui Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America ; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rui Chen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America ; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America ; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Graeme Mardon
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America ; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America ; Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America ; Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America ; Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America ; Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
23
|
Drosophila eyes absent is required for normal cone and pigment cell development. PLoS One 2014; 9:e102143. [PMID: 25057928 PMCID: PMC4109927 DOI: 10.1371/journal.pone.0102143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/14/2014] [Indexed: 11/19/2022] Open
Abstract
In Drosophila, development of the compound eye is orchestrated by a network of highly conserved transcriptional regulators known as the retinal determination (RD) network. The retinal determination gene eyes absent (eya) is expressed in most cells within the developing eye field, from undifferentiated retinal progenitors to photoreceptor cells whose differentiation begins at the morphogenetic furrow (MF). Loss of eya expression leads to an early block in retinal development, making it impossible to study the role of eya expression during later steps of retinal differentiation. We have identified two new regulatory regions that control eya expression during retinal development. These two enhancers are necessary to maintain eya expression anterior to the MF (eya-IAM) and in photoreceptors (eya-PSE), respectively. We find that deleting these enhancers affects developmental events anterior to the MF as well as retinal differentiation posterior to the MF. In line with previous results, we find that reducing eya expression anterior to the MF affects several early steps during early retinal differentiation, including cell cycle arrest and expression of the proneural gene ato. Consistent with previous observations that suggest a role for eya in cell proliferation during early development we find that deletion of eya-IAM leads to a marked reduction in the size of the adult retinal field. On the other hand, deletion of eya-PSE leads to defects in cone and pigment cell development. In addition we find that eya expression is necessary to activate expression of the cone cell marker Cut and to regulate levels of the Hedgehog pathway effector Ci. In summary, our study uncovers novel aspects of eya-mediated regulation of eye development. The genetic tools generated in this study will allow for a detailed study of how the RD network regulates key steps in eye formation.
Collapse
|
24
|
Piñeiro C, Lopes CS, Casares F. A conserved transcriptional network regulates lamina development in the Drosophila visual system. Development 2014; 141:2838-47. [PMID: 24924198 DOI: 10.1242/dev.108670] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The visual system of insects is a multilayered structure composed externally by the compound eye and internally by the three ganglia of the optic lobe: lamina, medulla and the lobula complex. The differentiation of lamina neurons depends heavily on Hedgehog (Hh) signaling, which is delivered by the incoming photoreceptor axons, and occurs in a wave-like fashion. Despite the primary role of lamina neurons in visual perception, it is still unclear how these neurons are specified from neuroepithelial (NE) progenitors. Here we show that a homothorax (hth)-eyes absent (eya)-sine oculis (so)-dachshund (dac) gene regulatory cassette is involved in this specification. Lamina neurons differentiate from NE progenitors that express hth, eya and so. One of the first events in the differentiation of lamina neurons is the upregulation of dac expression in response to Hh signaling. We show that this dac upregulation, which marks the transition from NE progenitors into lamina precursors, also requires Eya/So, the expression of which is locked in by mutual feedback. dac expression is crucial for lamina differentiation because it ensures repression of hth, a negative regulator of single-minded, and thus dac allows further lamina neuron differentiation. Therefore, the specification of lamina neurons is controlled by coupling the cell-autonomous hth-eya-so-dac regulatory cassette to Hh signaling.
Collapse
Affiliation(s)
- Cristina Piñeiro
- CABD (Andalusian Centre for Developmental Biology), CSIC-UPO-JA, Seville 41013, Spain
| | - Carla S Lopes
- CABD (Andalusian Centre for Developmental Biology), CSIC-UPO-JA, Seville 41013, Spain
| | - Fernando Casares
- CABD (Andalusian Centre for Developmental Biology), CSIC-UPO-JA, Seville 41013, Spain
| |
Collapse
|
25
|
Anderson AM, Weasner BP, Weasner BM, Kumar JP. The Drosophila Wilms׳ Tumor 1-Associating Protein (WTAP) homolog is required for eye development. Dev Biol 2014; 390:170-80. [PMID: 24690230 DOI: 10.1016/j.ydbio.2014.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 03/04/2014] [Accepted: 03/19/2014] [Indexed: 11/17/2022]
Abstract
Sine Oculis (So), the founding member of the SIX family of homeobox transcription factors, binds to sequence specific DNA elements and regulates transcription of downstream target genes. It does so, in part, through the formation of distinct biochemical complexes with Eyes Absent (Eya) and Groucho (Gro). While these complexes play significant roles during development, they do not account for all So-dependent activities in Drosophila. It is thought that additional So-containing complexes make important contributions as well. This contention is supported by the identification of nearly two-dozen additional proteins that complex with So. However, very little is known about the roles that these additional complexes play in development. In this report we have used yeast two-hybrid screens and co-immunoprecipitation assays from Kc167 cells to identify a biochemical complex consisting of So and Fl(2)d, the Drosophila homolog of human Wilms׳ Tumor 1-Associating Protein (WTAP). We show that Fl(2)d protein is distributed throughout the entire eye-antennal imaginal disc and that loss-of-function mutations lead to perturbations in retinal development. The eye defects are manifested behind the morphogenetic furrow and result in part from increased levels of the pan-neuronal RNA binding protein Embryonic Lethal Abnormal Vision (Elav) and the RUNX class transcription factor Lozenge (Lz). We also provide evidence that So and Fl(2)d interact genetically in the developing eye. Wilms׳ tumor-1 (WT1), a binding partner of WTAP, is required for normal eye formation in mammals and loss-of-function mutations are associated with some versions of retinoblastoma. In contrast, WTAP and its homologs have not been implicated in eye development. To our knowledge, the results presented in this report are the first description of a role for WTAP in the retina of any seeing animal.
Collapse
Affiliation(s)
- Abigail M Anderson
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Brandon P Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Bonnie M Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, United States.
| |
Collapse
|
26
|
Jusiak B, Karandikar UC, Kwak SJ, Wang F, Wang H, Chen R, Mardon G. Regulation of Drosophila eye development by the transcription factor Sine oculis. PLoS One 2014; 9:e89695. [PMID: 24586968 PMCID: PMC3934907 DOI: 10.1371/journal.pone.0089695] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/21/2014] [Indexed: 11/18/2022] Open
Abstract
Homeodomain transcription factors of the Sine oculis (SIX) family direct multiple regulatory processes throughout the metazoans. Sine oculis (So) was first characterized in the fruit fly Drosophila melanogaster, where it is both necessary and sufficient for eye development, regulating cell survival, proliferation, and differentiation. Despite its key role in development, only a few direct targets of So have been described previously. In the current study, we aim to expand our knowledge of So-mediated transcriptional regulation in the developing Drosophila eye using ChIP-seq to map So binding regions throughout the genome. We find 7,566 So enriched regions (peaks), estimated to map to 5,952 genes. Using overlap between the So ChIP-seq peak set and genes that are differentially regulated in response to loss or gain of so, we identify putative direct targets of So. We find So binding enrichment in genes not previously known to be regulated by So, including genes that encode cell junction proteins and signaling pathway components. In addition, we analyze a subset of So-bound novel genes in the eye, and find eight genes that have previously uncharacterized eye phenotypes and may be novel direct targets of So. Our study presents a greatly expanded list of candidate So targets and serves as basis for future studies of So-mediated gene regulation in the eye.
Collapse
Affiliation(s)
- Barbara Jusiak
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Umesh C. Karandikar
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Su-Jin Kwak
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Feng Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hui Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rui Chen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Graeme Mardon
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
27
|
Onset of atonal expression in Drosophila retinal progenitors involves redundant and synergistic contributions of Ey/Pax6 and So binding sites within two distant enhancers. Dev Biol 2013; 386:152-64. [PMID: 24247006 DOI: 10.1016/j.ydbio.2013.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/06/2013] [Accepted: 11/09/2013] [Indexed: 11/23/2022]
Abstract
Proneural transcription factors drive the generation of specialized neurons during nervous system development, and their dynamic expression pattern is critical to their function. The activation of the proneural gene atonal (ato) in the Drosophila eye disc epithelium represents a critical step in the transition from retinal progenitor cell to developing photoreceptor neuron. We show here that the onset of ato transcription depends on two distant enhancers that function differently in subsets of retinal progenitor cells. A detailed analysis of the crosstalk between these enhancers identifies a critical role for three binding sites for the Retinal Determination factors Eyeless (Ey) and Sine oculis (So). We show how these sites interact to induce ato expression in distinct regions of the eye field and confirm them to be occupied by endogenous Ey and So proteins in vivo. Our study suggests that Ey and So operate differently through the same 3' cis-regulatory sites in distinct populations of retinal progenitors.
Collapse
|
28
|
Atkins M, Jiang Y, Sansores-Garcia L, Jusiak B, Halder G, Mardon G. Dynamic rewiring of the Drosophila retinal determination network switches its function from selector to differentiation. PLoS Genet 2013; 9:e1003731. [PMID: 24009524 PMCID: PMC3757064 DOI: 10.1371/journal.pgen.1003731] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/05/2013] [Indexed: 01/15/2023] Open
Abstract
Organ development is directed by selector gene networks. Eye development in the fruit fly Drosophila melanogaster is driven by the highly conserved selector gene network referred to as the “retinal determination gene network,” composed of approximately 20 factors, whose core comprises twin of eyeless (toy), eyeless (ey), sine oculis (so), dachshund (dac), and eyes absent (eya). These genes encode transcriptional regulators that are each necessary for normal eye development, and sufficient to direct ectopic eye development when misexpressed. While it is well documented that the downstream genes so, eya, and dac are necessary not only during early growth and determination stages but also during the differentiation phase of retinal development, it remains unknown how the retinal determination gene network terminates its functions in determination and begins to promote differentiation. Here, we identify a switch in the regulation of ey by the downstream retinal determination genes, which is essential for the transition from determination to differentiation. We found that central to the transition is a switch from positive regulation of ey transcription to negative regulation and that both types of regulation require so. Our results suggest a model in which the retinal determination gene network is rewired to end the growth and determination stage of eye development and trigger terminal differentiation. We conclude that changes in the regulatory relationships among members of the retinal determination gene network are a driving force for key transitions in retinal development. Animals develop by using different combinations of simple instructions. The highly conserved retinal determination (RD) network is an ancient set of instructions that evolved when multicellular animals first developed primitive eyes. Evidence suggests that this network is re-used throughout evolution to direct the development of organs that communicate with the brain, providing information about our internal and external world. This includes our eyes, ears, kidneys, and pancreas. An upstream member of the network named eyeless must be activated early to initiate eye development. Eyeless then activates the expression of downstream genes that maintain eyeless expression and define the eye field. Here, we show that eyeless must also be turned off for final steps of eye development. We investigated the mechanism by which eyeless is turned off and we find that feedback regulation by the downstream RD genes changes to repress Eyeless expression during late stages of development. This study shows that tight regulation of eyeless is important for normal development and provides a mechanism for its repression.
Collapse
Affiliation(s)
- Mardelle Atkins
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- VIB Center for the Biology of Disease, KU Leuven Center for Human Genetics, University of Leuven, Leuven Belgium
| | - Yuwei Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Leticia Sansores-Garcia
- VIB Center for the Biology of Disease, KU Leuven Center for Human Genetics, University of Leuven, Leuven Belgium
| | - Barbara Jusiak
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Georg Halder
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- VIB Center for the Biology of Disease, KU Leuven Center for Human Genetics, University of Leuven, Leuven Belgium
| | - Graeme Mardon
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pathology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
29
|
Jusiak B, Abulimiti A, Haelterman N, Chen R, Mardon G. MAPK target sites of eyes absent are not required for eye development or survival in Drosophila. PLoS One 2012; 7:e50776. [PMID: 23251383 PMCID: PMC3520925 DOI: 10.1371/journal.pone.0050776] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/24/2012] [Indexed: 11/18/2022] Open
Abstract
Eyes absent (Eya) is a highly conserved transcription cofactor and protein phosphatase that plays an essential role in eye development and survival in Drosophila. Ectopic eye induction assays using cDNA transgenes have suggested that mitogen activated protein kinase (MAPK) activates Eya by phosphorylating it on two consensus target sites, S402 and S407, and that this activation potentiates the ability of Eya to drive eye formation. However, this mechanism has never been tested in normal eye development. In the current study, we generated a series of genomic rescue transgenes to investigate how loss- and gain-of-function mutations at these two MAPK target sites within Eya affect Drosophila survival and normal eye formation: eya+GR, the wild-type control; eyaSAGR, which lacks phosphorylation at the two target residues; and eyaSDEGR, which contains phosphomimetic amino acids at the same two residues. Contrary to the previous studies in ectopic eye development, all eya genomic transgenes tested rescue both eye formation and survival equally effectively. We conclude that, in contrast to ectopic eye formation, MAPK-mediated phosphorylation of Eya on S402 and S407 does not play a role in normal development. This is the first study in Drosophila to evaluate the difference in outcomes between genomic rescue and ectopic cDNA-based overexpression of the same gene. These findings indicate similar genomic rescue strategies may prove useful for re-evaluating other long-standing Drosophila developmental models.
Collapse
Affiliation(s)
- Barbara Jusiak
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Abuduaini Abulimiti
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nele Haelterman
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rui Chen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Graeme Mardon
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pathology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
30
|
Treisman JE. Retinal differentiation in Drosophila. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:545-57. [PMID: 24014422 DOI: 10.1002/wdev.100] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drosophila eye development has been extensively studied, due to the ease of genetic screens for mutations disrupting this process. The eye imaginal disc is specified during embryonic and larval development by the Pax6 homolog Eyeless and a network of downstream transcription factors. Expression of these factors is regulated by signaling molecules and also indirectly by growth of the eye disc. Differentiation of photoreceptor clusters initiates in the third larval instar at the posterior of the eye disc and progresses anteriorly, driven by the secreted protein Hedgehog. Within each cluster, the combined activities of Hedgehog signaling and Notch-mediated lateral inhibition induce and refine the expression of the transcription factor Atonal, which specifies the founding R8 photoreceptor of each ommatidium. Seven additional photoreceptors, followed by cone and pigment cells, are successively recruited by the signaling molecules Spitz, Delta, and Bride of sevenless. Combinations of these signals and of intrinsic transcription factors give each ommatidial cell its specific identity. During the pupal stages, rhodopsins are expressed, and the photoreceptors and accessory cells take on their final positions and morphologies to form the adult retina. Over the past few decades, the genetic analysis of this small number of cell types arranged in a repetitive structure has allowed a remarkably detailed understanding of the basic mechanisms controlling cell differentiation and morphological rearrangement.
Collapse
Affiliation(s)
- Jessica E Treisman
- Department of Cell Biology and Kimmel Center for Biology and Medicine of the Skirball Institute, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
31
|
Nfonsam LE, Cano C, Mudge J, Schilkey FD, Curtiss J. Analysis of the transcriptomes downstream of Eyeless and the Hedgehog, Decapentaplegic and Notch signaling pathways in Drosophila melanogaster. PLoS One 2012; 7:e44583. [PMID: 22952997 PMCID: PMC3432130 DOI: 10.1371/journal.pone.0044583] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 08/09/2012] [Indexed: 01/22/2023] Open
Abstract
Tissue-specific transcription factors are thought to cooperate with signaling pathways to promote patterned tissue specification, in part by co-regulating transcription. The Drosophila melanogaster Pax6 homolog Eyeless forms a complex, incompletely understood regulatory network with the Hedgehog, Decapentaplegic and Notch signaling pathways to control eye-specific gene expression. We report a combinatorial approach, including mRNAseq and microarray analyses, to identify targets co-regulated by Eyeless and Hedgehog, Decapentaplegic or Notch. Multiple analyses suggest that the transcriptomes resulting from co-misexpression of Eyeless+signaling factors provide a more complete picture of eye development compared to previous efforts involving Eyeless alone: (1) Principal components analysis and two-way hierarchical clustering revealed that the Eyeless+signaling factor transcriptomes are closer to the eye control transcriptome than when Eyeless is misexpressed alone; (2) more genes are upregulated at least three-fold in response to Eyeless+signaling factors compared to Eyeless alone; (3) based on gene ontology analysis, the genes upregulated in response to Eyeless+signaling factors had a greater diversity of functions compared to Eyeless alone. Through a secondary screen that utilized RNA interference, we show that the predicted gene CG4721 has a role in eye development. CG4721 encodes a neprilysin family metalloprotease that is highly up-regulated in response to Eyeless+Notch, confirming the validity of our approach. Given the similarity between D. melanogaster and vertebrate eye development, the large number of novel genes identified as potential targets of Ey+signaling factors will provide novel insights to our understanding of eye development in D. melanogaster and humans.
Collapse
Affiliation(s)
- Landry E. Nfonsam
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Carlos Cano
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Joann Mudge
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Faye D. Schilkey
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Jennifer Curtiss
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| |
Collapse
|
32
|
Anderson AM, Weasner BM, Weasner BP, Kumar JP. Dual transcriptional activities of SIX proteins define their roles in normal and ectopic eye development. Development 2012; 139:991-1000. [PMID: 22318629 DOI: 10.1242/dev.077255] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The SIX family of homeodomain-containing DNA-binding proteins play crucial roles in both Drosophila and vertebrate retinal specification. In flies, three such family members exist, but only two, Sine oculis (So) and Optix, are expressed and function within the eye. In vertebrates, the homologs of Optix (Six3 and Six6) and probably So (Six1 and Six2) are also required for proper eye formation. Depending upon the individual SIX protein and the specific developmental context, transcription of target genes can either be activated or repressed. These activities are thought to occur through physical interactions with the Eyes absent (Eya) co-activator and the Groucho (Gro) co-repressor, but the relative contribution that each complex makes to overall eye development is not well understood. Here, we attempt to address this issue by investigating the role that each complex plays in the induction of ectopic eyes in Drosophila. We fused the VP16 activation and Engrailed repressor domains to both So and Optix, and attempted to generate ectopic eyes with these chimeric proteins. Surprisingly, we find that So and Optix must initially function as transcriptional repressors to trigger the formation of ectopic eyes. Both factors appear to be required to repress the expression of non-retinal selector genes. We propose that during early phases of eye development, SIX proteins function, in part, to repress the transcription of non-retinal selector genes, thereby allowing induction of the retina to proceed. This model of repression-mediated induction of developmental programs could have implications beyond the eye and might be applicable to other systems.
Collapse
|
33
|
Abstract
The compound eye of the fruit fly, Drosophila melanogaster, has for decades been used extensively to study a number of critical developmental processes including tissue development, pattern formation, cell fate specification, and planar cell polarity. To a lesser degree it has been used to examine the cell cycle and tissue proliferation. Discovering the mechanisms that balance tissue growth and cell death in developing epithelia has traditionally been the realm of those using the wing disc. However, over the last decade a series of observations has demonstrated that the eye is a suitable and maybe even preferable tissue for studying tissue growth. This review will focus on how growth of the retina is controlled by the genes and pathways that govern the specification of tissue fate, the division of the epithelium into dorsal-ventral compartments, the initiation, and progression of the morphogenetic furrow and the second mitotic wave.
Collapse
Affiliation(s)
- Justin P Kumar
- Department of Biology, Indiana University, Bloomington, USA.
| |
Collapse
|
34
|
Morillo SA, Braid LR, Verheyen EM, Rebay I. Nemo phosphorylates Eyes absent and enhances output from the Eya-Sine oculis transcriptional complex during Drosophila retinal determination. Dev Biol 2012; 365:267-76. [PMID: 22394486 DOI: 10.1016/j.ydbio.2012.02.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 02/07/2012] [Accepted: 02/21/2012] [Indexed: 02/02/2023]
Abstract
The retinal determination gene network comprises a collection of transcription factors that respond to multiple signaling inputs to direct Drosophila eye development. Previous genetic studies have shown that nemo (nmo), a gene encoding a proline-directed serine/threonine kinase, can promote retinal specification through interactions with the retinal determination gene network, although the molecular point of cross-talk was not defined. Here, we report that the Nemo kinase positively and directly regulates Eyes absent (Eya). Genetic assays show that Nmo catalytic activity enhances Eya-mediated ectopic eye formation and potentiates induction of the Eya-Sine oculis (So) transcriptional targets dachshund and lozenge. Biochemical analyses demonstrate that Nmo forms a complex with and phosphorylates Eya at two consensus mitogen-activated protein kinase (MAPK) phosphorylation sites. These same sites appear crucial for Nmo-mediated activation of Eya function in vivo. Thus, we propose that Nmo phosphorylation of Eya potentiates its transactivation function to enhance transcription of Eya-So target genes during eye specification and development.
Collapse
Affiliation(s)
- Santiago A Morillo
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
35
|
Barolo S. Shadow enhancers: frequently asked questions about distributed cis-regulatory information and enhancer redundancy. Bioessays 2012; 34:135-41. [PMID: 22083793 PMCID: PMC3517143 DOI: 10.1002/bies.201100121] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper, in the form of a frequently asked questions page (FAQ), addresses outstanding questions about "shadow enhancers", quasi-redundant cis-regulatory elements, and their proposed roles in transcriptional control. Questions include: What exactly are shadow enhancers? How many genes have shadow/redundant/distributed enhancers? How redundant are these elements? What is the function of distributed enhancers? How modular are enhancers? Is it useful to study a single enhancer in isolation? In addition, a revised definition of "shadow enhancers" is proposed, and possible mechanisms of shadow enhancer function and evolution are discussed.
Collapse
Affiliation(s)
- Scott Barolo
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
36
|
Conserved role for the Dachshund protein with Drosophila Pax6 homolog Eyeless in insulin expression. Proc Natl Acad Sci U S A 2012; 109:2406-11. [PMID: 22308399 DOI: 10.1073/pnas.1116050109] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Members of the insulin family peptides have conserved roles in the regulation of growth and metabolism in a wide variety of metazoans. The Drosophila genome encodes seven insulin-like peptide genes, dilp1-7, and the most prominent dilps (dilp2, dilp3, and dilp5) are expressed in brain neurosecretory cells known as "insulin-producing cells" (IPCs). Although these dilps are expressed in the same cells, the expression of each dilp is regulated independently. However, the molecular mechanisms that regulate the expression of individual dilps in the IPCs remain largely unknown. Here, we show that Dachshund (Dac), which is a highly conserved nuclear protein, is a critical transcription factor that specifically regulates dilp5 expression. Dac was strongly expressed in IPCs throughout development. dac loss-of-function analyses revealed a severely reduced dilp5 expression level in young larvae. Dac interacted physically with the Drosophila Pax6 homolog Eyeless (Ey), and these proteins synergistically promoted dilp5 expression. In addition, the mammalian homolog of Dac, Dach1/2, facilitated the promoting action of Pax6 on the expression of islet hormone genes in cultured mammalian cells. These observations indicate the conserved role of Dac/Dach in controlling insulin expression in conjunction with Ey/Pax6.
Collapse
|
37
|
Estella C, Voutev R, Mann RS. A dynamic network of morphogens and transcription factors patterns the fly leg. Curr Top Dev Biol 2012; 98:173-98. [PMID: 22305163 DOI: 10.1016/b978-0-12-386499-4.00007-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Animal appendages require a proximodistal (PD) axis, which forms orthogonally from the two main body axes, anteroposterior and dorsoventral. In this review, we discuss recent advances that begin to provide insights into the molecular mechanisms controlling PD axis formation in the Drosophila leg. In this case, two morphogens, Wingless (Wg) and Decapentaplegic (Dpp), initiate a genetic cascade that, together with growth of the leg imaginal disc, establishes the PD axis. The analysis of cis-regulatory modules (CRMs) that control the expression of genes at different positions along the PD axis has been particularly valuable in dissecting this complex process. From these experiments, it appears that only one concentration of Wg and Dpp are required to initiate PD axis formation by inducing the expression of Distal-less (Dll), a homeodomain-encoding gene that is required for leg development. Once Dll is turned on, it activates the medially expressed gene dachshund (dac). Cross-regulation between Dll and dac, together with cell proliferation in the growing leg imaginal disc, results in the formation of a rudimentary PD axis. Wg and Dpp also initiate the expression of ligands for the EGFR pathway, which in turn induces the expression of a series of target genes that pattern the distal-most portion of the leg.
Collapse
Affiliation(s)
- Carlos Estella
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA
| | | | | |
Collapse
|
38
|
Tsachaki M, Sprecher SG. Genetic and developmental mechanisms underlying the formation of theDrosophilacompound eye. Dev Dyn 2011; 241:40-56. [DOI: 10.1002/dvdy.22738] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2011] [Indexed: 01/15/2023] Open
|
39
|
Giorgianni MW, Mann RS. Establishment of medial fates along the proximodistal axis of the Drosophila leg through direct activation of dachshund by Distalless. Dev Cell 2011; 20:455-68. [PMID: 21497759 DOI: 10.1016/j.devcel.2011.03.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/21/2011] [Accepted: 03/24/2011] [Indexed: 01/28/2023]
Abstract
The proximodistal (PD) axis of the Drosophila leg is thought to be established by the combined gradients of two secreted morphogens, Wingless (Wg) and Decapentaplegic (Dpp). According to this model, high [Wg+Dpp] activates Distalless (Dll) and represses dachshund (dac) in the distal cells of the leg disc, while intermediate [Wg+Dpp] activates dac in medial tissue. To test this model we identified and characterized a dac cis-regulatory element (dac RE) that recapitulates dac's medial expression domain during leg development. Counter to the gradient model, we find that Wg and Dpp do not act in a graded manner to activate RE. Instead, dac RE is activated directly by Dll and repressed distally by a combination of factors, including the homeodomain protein Bar. Thus, medial leg fates are established via a regulatory cascade in which Wg+Dpp activate Dll and then Dll directly activates dac, with Wg+Dpp as less critical, permissive inputs.
Collapse
Affiliation(s)
- Matt W Giorgianni
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
40
|
Abstract
The road to producing an eye begins with the decision to commit a population of cells to adopting an eye tissue fate, the process of retinal determination. Over the past decade and a half, a network of transcription factors has been found to mediate this process in all seeing animals. This retinal determination network is known to regulate not only tissue fate but also cell proliferation, pattern formation, compartment boundary establishment, and even retinal cell specification. The compound eye of the fruit fly, Drosophila melanogaster, has proven to be an excellent experimental system to study the mechanisms by which this network regulates organogenesis and tissue patterning. In fact the founding members of most of the gene families that make up this network were first isolated in Drosophila based on loss-of-function phenotypes that affect the eye. This chapter will highlight the history of discovery of the retinal determination network and will draw attention to the molecular and biochemical mechanisms that underlie our understanding of how the fate of the retina is determined.
Collapse
Affiliation(s)
- Justin P Kumar
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
41
|
Kalay G, Wittkopp PJ. Nomadic enhancers: tissue-specific cis-regulatory elements of yellow have divergent genomic positions among Drosophila species. PLoS Genet 2010; 6:e1001222. [PMID: 21151964 PMCID: PMC2996884 DOI: 10.1371/journal.pgen.1001222] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 10/26/2010] [Indexed: 12/16/2022] Open
Abstract
cis-regulatory DNA sequences known as enhancers control gene expression in space and time. They are central to metazoan development and are often responsible for changes in gene regulation that contribute to phenotypic evolution. Here, we examine the sequence, function, and genomic location of enhancers controlling tissue- and cell-type specific expression of the yellow gene in six Drosophila species. yellow is required for the production of dark pigment, and its expression has evolved largely in concert with divergent pigment patterns. Using Drosophila melanogaster as a transgenic host, we examined the expression of reporter genes in which either 5' intergenic or intronic sequences of yellow from each species controlled the expression of Green Fluorescent Protein. Surprisingly, we found that sequences controlling expression in the wing veins, as well as sequences controlling expression in epidermal cells of the abdomen, thorax, and wing, were located in different genomic regions in different species. By contrast, sequences controlling expression in bristle-associated cells were located in the intron of all species. Differences in the precise pattern of spatial expression within the developing epidermis of D. melanogaster transformants usually correlated with adult pigmentation in the species from which the cis-regulatory sequences were derived, which is consistent with cis-regulatory evolution affecting yellow expression playing a central role in Drosophila pigmentation divergence. Sequence comparisons among species favored a model in which sequential nucleotide substitutions were responsible for the observed changes in cis-regulatory architecture. Taken together, these data demonstrate frequent changes in yellow cis-regulatory architecture among Drosophila species. Similar analyses of other genes, combining in vivo functional tests of enhancer activity with in silico comparative genomics, are needed to determine whether the pattern of regulatory evolution we observed for yellow is characteristic of genes with rapidly evolving expression patterns.
Collapse
Affiliation(s)
- Gizem Kalay
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Patricia J. Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
42
|
Sato S, Ikeda K, Shioi G, Ochi H, Ogino H, Yajima H, Kawakami K. Conserved expression of mouse Six1 in the pre-placodal region (PPR) and identification of an enhancer for the rostral PPR. Dev Biol 2010; 344:158-71. [PMID: 20471971 DOI: 10.1016/j.ydbio.2010.04.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 04/24/2010] [Accepted: 04/26/2010] [Indexed: 10/19/2022]
Abstract
All cranial sensory organs and sensory neurons of vertebrates develop from cranial placodes. In chick, amphibians and zebrafish, all placodes originate from a common precursor domain, the pre-placodal region (PPR), marked by the expression of Six1/4 and Eya1/2. However, the PPR has never been described in mammals and the mechanism involved in the formation of PPR is poorly defined. Here, we report the expression of Six1 in the horseshoe-shaped mouse ectoderm surrounding the anterior neural plate in a pattern broadly similar to that of non-mammalian vertebrates. To elucidate the identity of Six1-positive mouse ectoderm, we searched for enhancers responsible for Six1 expression by in vivo enhancer assays. One conserved non-coding sequence, Six1-14, showed specific enhancer activity in the rostral PPR of chick and Xenopus and in the mouse ectoderm. These results strongly suggest the presence of PPR in mouse and that it is conserved in vertebrates. Moreover, we show the importance of the homeodomain protein-binding sites of Six1-14, the Six1 rostral PPR enhancer, for enhancer activity, and that Dlx5, Msx1 and Pax7 are candidate binding factors that regulate the level and area of Six1 expression, and thereby the location of the PPR. Our findings provide critical information and tools to elucidate the molecular mechanism of early sensory development and have implications for the development of sensory precursor/stem cells.
Collapse
Affiliation(s)
- Shigeru Sato
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Roignant JY, Legent K, Janody F, Treisman JE. The transcriptional co-factor Chip acts with LIM-homeodomain proteins to set the boundary of the eye field in Drosophila. Development 2010; 137:273-81. [PMID: 20040493 DOI: 10.1242/dev.041244] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Development involves the establishment of boundaries between fields specified to differentiate into distinct tissues. The Drosophila larval eye-antennal imaginal disc must be subdivided into regions that differentiate into the adult eye, antenna and head cuticle. We have found that the transcriptional co-factor Chip is required for cells at the ventral eye-antennal disc border to take on a head cuticle fate; clones of Chip mutant cells in this region instead form outgrowths that differentiate into ectopic eye tissue. Chip acts independently of the transcription factor Homothorax, which was previously shown to promote head cuticle development in the same region. Chip and its vertebrate CLIM homologues have been shown to form complexes with LIM-homeodomain transcription factors, and the domain of Chip that mediates these interactions is required for its ability to suppress the eye fate. We show that two LIM-homeodomain proteins, Arrowhead and Lim1, are expressed in the region of the eye-antennal disc affected in Chip mutants, and that both require Chip for their ability to suppress photoreceptor differentiation when misexpressed in the eye field. Loss-of-function studies support the model that Arrowhead and Lim1 act redundantly, using Chip as a co-factor, to prevent retinal differentiation in regions of the eye disc destined to become ventral head tissue.
Collapse
Affiliation(s)
- Jean-Yves Roignant
- Kimmel Center for Biology and Medicine of the Skirball Institute, NYU School of Medicine, Department of Cell Biology, 540 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|
44
|
Schlosser G. Making senses development of vertebrate cranial placodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:129-234. [PMID: 20801420 DOI: 10.1016/s1937-6448(10)83004-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cranial placodes (which include the adenohypophyseal, olfactory, lens, otic, lateral line, profundal/trigeminal, and epibranchial placodes) give rise to many sense organs and ganglia of the vertebrate head. Recent evidence suggests that all cranial placodes may be developmentally related structures, which originate from a common panplacodal primordium at neural plate stages and use similar regulatory mechanisms to control developmental processes shared between different placodes such as neurogenesis and morphogenetic movements. After providing a brief overview of placodal diversity, the present review summarizes current evidence for the existence of a panplacodal primordium and discusses the central role of transcription factors Six1 and Eya1 in the regulation of processes shared between different placodes. Upstream signaling events and transcription factors involved in early embryonic induction and specification of the panplacodal primordium are discussed next. I then review how individual placodes arise from the panplacodal primordium and present a model of multistep placode induction. Finally, I briefly summarize recent advances concerning how placodal neurons and sensory cells are specified, and how morphogenesis of placodes (including delamination and migration of placode-derived cells and invagination) is controlled.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Zoology, School of Natural Sciences & Martin Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
45
|
The retinal determination gene eyes absent is regulated by the EGF receptor pathway throughout development in Drosophila. Genetics 2009; 184:185-97. [PMID: 19884307 DOI: 10.1534/genetics.109.110122] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the Eyes absent (Eya) protein family play important roles in tissue specification and patterning by serving as both transcriptional activators and protein tyrosine phosphatases. These activities are often carried out in the context of complexes containing members of the Six and/or Dach families of DNA binding proteins. eyes absent, the founding member of the Eya family is expressed dynamically within several embryonic, larval, and adult tissues of the fruit fly, Drosophila melanogaster. Loss-of-function mutations are known to result in disruptions of the embryonic head and central nervous system as well as the adult brain and visual system, including the compound eyes. In an effort to understand how eya is regulated during development, we have carried out a genetic screen designed to identify genes that lie upstream of eya and govern its expression. We have identified a large number of putative regulators, including members of several signaling pathways. Of particular interest is the identification of both yan/anterior open and pointed, two members of the EGF Receptor (EGFR) signaling cascade. The EGFR pathway is known to regulate the activity of Eya through phosphorylation via MAPK. Our findings suggest that this pathway is also used to influence eya transcriptional levels. Together these mechanisms provide a route for greater precision in regulating a factor that is critical for the formation of a wide range of diverse tissues.
Collapse
|
46
|
Yang X, Weber M, ZarinKamar N, Posnien N, Friedrich F, Wigand B, Beutel R, Damen WG, Bucher G, Klingler M, Friedrich M. Probing the Drosophila retinal determination gene network in Tribolium (II): The Pax6 genes eyeless and twin of eyeless. Dev Biol 2009; 333:215-27. [DOI: 10.1016/j.ydbio.2009.06.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/18/2009] [Accepted: 06/07/2009] [Indexed: 11/15/2022]
|
47
|
Transcriptional activities of the Pax6 gene eyeless regulate tissue specificity of ectopic eye formation in Drosophila. Dev Biol 2009; 334:492-502. [PMID: 19406113 DOI: 10.1016/j.ydbio.2009.04.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 04/17/2009] [Accepted: 04/22/2009] [Indexed: 11/24/2022]
Abstract
Pax genes encode DNA binding proteins that play pivotal roles in the determination of complex tissues. Members of one subclass, Pax6, function as selector genes and play key roles in the retinal development of all seeing animals. Mutations within the Pax6 homologs including fly eyeless, mouse Small eye and human Pax6 lead to severe retinal defects in their respective systems. In Drosophila eyeless and twin of eyeless, play non-redundant roles in the developing retina. One particularly interesting characteristic of these genes is that, although expression of either gene can induce ectopic eye formation in non-retinal tissues, there are differences in the location and frequencies at which the eyes develop. eyeless induces much larger ectopic eyes, at higher frequencies, and in a broader range of tissues than twin of eyeless. In this report we describe a series of experiments conducted in both yeast and flies that has identified protein modules that are responsible for the differences in tissue transformation. These domains appear to contain transcriptional activator and repressor activity of distinct strengths. We propose a model in which the selective presence of these activities and their relative strengths accounts, in part, for the disparity to which ectopic eyes are induced in response to the forced expression of eyeless and twin of eyeless. The identification of both transcriptional activator and repressor activity within the Pax6 protein furthers our understanding of how this gene family regulates tissue determination.
Collapse
|
48
|
Kumar JP. The molecular circuitry governing retinal determination. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:306-14. [PMID: 19013263 PMCID: PMC2700058 DOI: 10.1016/j.bbagrm.2008.10.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 10/06/2008] [Accepted: 10/14/2008] [Indexed: 10/21/2022]
Abstract
The developing eye of the fruit fly, Drosophila melanogaster, has become a premier model system for studying the genetic and molecular mechanisms that govern tissue determination. Over the last fifteen years a regulatory circuit consisting of the members of the Pax, Six, Eya and Dach gene families has been identified and shown to govern the specification of a wide range of tissues including the retina of both insects and mammals. These genes are not organized in a simple developmental pathway or cascade in which there is a unidirectional flow of information. Rather, there are multiple feedback loops built into the system rendering its appearance and functionality more in line with the workings of a network. In this review I will attempt to describe the genetic, molecular and biochemical interactions that govern the specification of the Drosophila compound eye. In particular, the primary focus will be on the interactions that have been experimentally verified at the molecular and biochemical levels. During the course of this description I will also attempt to place each discovery in its own historical context. While a number of signaling pathways play significant roles in early eye development this review will focus on the network of nuclear factors that promote retinal determination.
Collapse
Affiliation(s)
- Justin P Kumar
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
49
|
Firth LC, Baker NE. Retinal determination genes as targets and possible effectors of extracellular signals. Dev Biol 2008; 327:366-75. [PMID: 19135045 DOI: 10.1016/j.ydbio.2008.12.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 12/15/2008] [Accepted: 12/16/2008] [Indexed: 01/01/2023]
Abstract
Retinal determination genes are sufficient to specify eyes in ectopic locations, raising the question of how these master regulatory genes define an eye developmental field. Genetic mosaic studies establish that expression of the retinal determination genes eyeless, teashirt, homothorax, eyes absent, sine oculis, and dachshund are each regulated by combinations of Dpp, Hh, N, Wg, and Ras signals in Drosophila. Dpp and Hh control eyeless, teashirt, sine oculis, and dachshund expression, Dpp and Ras control homothorax, and all the signaling pathways affect eyes absent expression. These results suggest that eye-specific development uses retinal determination gene expression to relay positional information to eye target genes, because the distinct, overlapping patterns of retinal determination gene expression reflect the activities of the extracellular signaling pathways.
Collapse
Affiliation(s)
- Lucy C Firth
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
50
|
Salzer CL, Kumar JP. Position dependent responses to discontinuities in the retinal determination network. Dev Biol 2008; 326:121-30. [PMID: 19061881 DOI: 10.1016/j.ydbio.2008.10.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 10/05/2008] [Accepted: 10/28/2008] [Indexed: 11/17/2022]
Abstract
The development of any cell and/or tissue is dependent upon interconnections between several signaling pathways and myriad transcription factors. It is becoming more apparent that these inputs are best studied, not as individual components, but rather as elements of a gene regulatory network. Over the last decade several networks governing the specification of single cells, individual organs and entire stages of development have been described. The current incarnations of these networks are the products of the continual addition of newly discovered genetic, molecular and biochemical interactions. However, as currently envisaged, network diagrams may not sufficiently describe the spatial and temporal dynamics that underlie developmental processes. We have conducted a developmental analysis of a sub circuit of the Drosophila retinal determination network. This sub circuit is comprised of three genes, two (sine oculis and dachshund) of which code for DNA binding proteins and one (eyes absent) that encodes a transcriptional co-activator. We demonstrate here that the nature of the regulatory relationships that exist between these three genes changes as retinal development progresses. We also demonstrate that the response of the tissue to the loss of any of these three RD genes is dependent upon the position of the mutant cells within the eye field. Depending upon its location, mutant tissue will either overproliferate itself or will signal to surrounding cells instructing them to propagate and compensate for the eventual loss through apoptosis of the mutant clone. Taken together these results suggest that the complexities of development are best appreciated when spatial and temporal information is incorporated when describing gene regulatory networks.
Collapse
Affiliation(s)
- Claire L Salzer
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|