1
|
Bukharina TA, Golubyatnikov VP, Furman DP. The central regulatory circuit in the gene network controlling the morphogenesis of Drosophila mechanoreceptors: an in silico analysis. Vavilovskii Zhurnal Genet Selektsii 2023; 27:746-754. [PMID: 38213705 PMCID: PMC10777295 DOI: 10.18699/vjgb-23-87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 01/13/2024] Open
Abstract
Identification of the mechanisms underlying the genetic control of spatial structure formation is among the relevant tasks of developmental biology. Both experimental and theoretical approaches and methods are used for this purpose, including gene network methodology, as well as mathematical and computer modeling. Reconstruction and analysis of the gene networks that provide the formation of traits allow us to integrate the existing experimental data and to identify the key links and intra-network connections that ensure the function of networks. Mathematical and computer modeling is used to obtain the dynamic characteristics of the studied systems and to predict their state and behavior. An example of the spatial morphological structure is the Drosophila bristle pattern with a strictly defined arrangement of its components - mechanoreceptors (external sensory organs) - on the head and body. The mechanoreceptor develops from a single sensory organ parental cell (SOPC), which is isolated from the ectoderm cells of the imaginal disk. It is distinguished from its surroundings by the highest content of proneural proteins (ASC), the products of the achaete-scute proneural gene complex (AS-C). The SOPC status is determined by the gene network we previously reconstructed and the AS-C is the key component of this network. AS-C activity is controlled by its subnetwork - the central regulatory circuit (CRC) comprising seven genes: AS-C, hairy, senseless (sens), charlatan (chn), scratch (scrt), phyllopod (phyl), and extramacrochaete (emc), as well as their respective proteins. In addition, the CRC includes the accessory proteins Daughterless (DA), Groucho (GRO), Ubiquitin (UB), and Seven-in-absentia (SINA). The paper describes the results of computer modeling of different CRC operation modes. As is shown, a cell is determined as an SOPC when the ASC content increases approximately 2.5-fold relative to the level in the surrounding cells. The hierarchy of the effects of mutations in the CRC genes on the dynamics of ASC protein accumulation is clarified. AS-C as the main CRC component is the most significant. The mutations that decrease the ASC content by more than 40 % lead to the prohibition of SOPC segregation.
Collapse
Affiliation(s)
- T A Bukharina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - V P Golubyatnikov
- Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D P Furman
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
2
|
Hsiao YL, Chen HW, Chen KH, Tan BCM, Chen CH, Pi H. Actin-related protein 6 facilitates proneural protein-induced gene activation for rapid neural differentiation. Development 2023; 150:297055. [PMID: 36897355 DOI: 10.1242/dev.201034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023]
Abstract
Neurogenesis is initiated by basic helix-loop-helix proneural proteins. Here, we show that Actin-related protein 6 (Arp6), a core component of the H2A.Z exchange complex SWR1, interacts with proneural proteins and is crucial for efficient onset of proneural protein target gene expression. Arp6 mutants exhibit reduced transcription in sensory organ precursors (SOPs) downstream of the proneural protein patterning event. This leads to retarded differentiation and division of SOPs and smaller sensory organs. These phenotypes are also observed in proneural gene hypomorphic mutants. Proneural protein expression is not reduced in Arp6 mutants. Enhanced proneural gene expression fails to rescue retarded differentiation in Arp6 mutants, suggesting that Arp6 acts downstream of or in parallel with proneural proteins. H2A.Z mutants display Arp6-like retardation in SOPs. Transcriptomic analyses demonstrate that loss of Arp6 and H2A.Z preferentially decreases expression of proneural protein-activated genes. H2A.Z enrichment in nucleosomes around the transcription start site before neurogenesis correlates highly with greater activation of proneural protein target genes by H2A.Z. We propose that upon proneural protein binding to E-box sites, H2A.Z incorporation around the transcription start site allows rapid and efficient activation of target genes, promoting rapid neural differentiation.
Collapse
Affiliation(s)
- Yun-Ling Hsiao
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hui-Wen Chen
- Gradulate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Kuan-Han Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Gradulate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chia-Hsiang Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| | - Haiwei Pi
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Gradulate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| |
Collapse
|
3
|
Furman DP, Bukharina TA. Genetic Regulation of Morphogenesis of Drosophila melanogaster Mechanoreceptors. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Burton J, Manning CS, Rattray M, Papalopulu N, Kursawe J. Inferring kinetic parameters of oscillatory gene regulation from single cell time-series data. J R Soc Interface 2021; 18:20210393. [PMID: 34583566 PMCID: PMC8479358 DOI: 10.1098/rsif.2021.0393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022] Open
Abstract
Gene expression dynamics, such as stochastic oscillations and aperiodic fluctuations, have been associated with cell fate changes in multiple contexts, including development and cancer. Single cell live imaging of protein expression with endogenous reporters is widely used to observe such gene expression dynamics. However, the experimental investigation of regulatory mechanisms underlying the observed dynamics is challenging, since these mechanisms include complex interactions of multiple processes, including transcription, translation and protein degradation. Here, we present a Bayesian method to infer kinetic parameters of oscillatory gene expression regulation using an auto-negative feedback motif with delay. Specifically, we use a delay-adapted nonlinear Kalman filter within a Metropolis-adjusted Langevin algorithm to identify posterior probability distributions. Our method can be applied to time-series data on gene expression from single cells and is able to infer multiple parameters simultaneously. We apply it to published data on murine neural progenitor cells and show that it outperforms alternative methods. We further analyse how parameter uncertainty depends on the duration and time resolution of an imaging experiment, to make experimental design recommendations. This work demonstrates the utility of parameter inference on time course data from single cells and enables new studies on cell fate changes and population heterogeneity.
Collapse
Affiliation(s)
- Joshua Burton
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Cerys S. Manning
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Magnus Rattray
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nancy Papalopulu
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Jochen Kursawe
- School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK
| |
Collapse
|
5
|
Bukharina TA, Golubyatnikov VP, Furman DP. Gene network controlling the morphogenesis of D. melanogaster macrochaetes: An expanded model of the central regulatory circuit. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416050040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Golubyatnikov VP, Bukharina TA, Furman DP. A model study of the morphogenesis of D. melanogaster mechanoreceptors: the central regulatory circuit. J Bioinform Comput Biol 2015; 13:1540006. [PMID: 25666652 DOI: 10.1142/s0219720015400065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Macrochaetes (large bristles) are sensor organs of the Drosophila peripheral nervous system with a function of mechanoreceptors. An adult mechanoreceptor comprises four specialized cells: shaft (trichogen), socket (tormogen), neuron, and glial cell (thecogen). All these cells originate from a single cell, the so-called sensor organ precursor (SOP) cell. Separation of the SOP cell from the encompassing cells of the imaginal disc initiates a multistage process of sensory organ development. A characteristic feature of the SOP cell is the highest amount of the proneural proteins AS-C as compared with the encompassing ectodermal cells. The accumulation of proneural proteins and maintenance of their amount in the SOP cell at a necessary level is provided by the gene network with the achaete-scute gene complex (AS-C) as its key component. The activity of this complex is controlled by the central regulatory circuit (CRC). The CRC comprises the genes hairy, senseless (sens), charlatan (chn), scratch (scrt), daughterless (da), extramacrochaete (emc), and groucho (gro), coding for the transcription factors involved in the system of direct links and feedbacks and implementation of activation-repression relationships between the CRC components. The gene phyllopod (phyl), involved in degradation of the AS-C proteins, is also associated with the CRC functioning. In this paper, we propose a mathematical model for the CRC functioning as a regulator of the amount of proneural AS-C proteins in the SOP cell taking into account their degradation. The modeling has demonstrated that a change in the amount of proneural proteins in the SOP cell is stepwise rather than strictly monotonic. This prediction can be tested experimentally.
Collapse
Affiliation(s)
- Vladimir P Golubyatnikov
- Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, av. Akad. Koptyuga 4, Novosibirsk 630090, Russia , Novosibirsk State University, ul. Pirogova 2, Novosibirsk 630090, Russia
| | | | | |
Collapse
|
7
|
Kiparaki M, Zarifi I, Delidakis C. bHLH proteins involved in Drosophila neurogenesis are mutually regulated at the level of stability. Nucleic Acids Res 2015; 43:2543-59. [PMID: 25694512 PMCID: PMC4357701 DOI: 10.1093/nar/gkv083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proneural bHLH activators are expressed in all neuroectodermal regions prefiguring events of central and peripheral neurogenesis. Drosophila Sc is a prototypical proneural activator that heterodimerizes with the E-protein Daughterless (Da) and is antagonized by, among others, the E(spl) repressors. We determined parameters that regulate Sc stability in Drosophila S2 cells. We found that Sc is a very labile phosphoprotein and its turnover takes place via at least three proteasome-dependent mechanisms. (i) When Sc is in excess of Da, its degradation is promoted via its transactivation domain (TAD). (ii) In a DNA-bound Da/Sc heterodimer, Sc degradation is promoted via an SPTSS phosphorylation motif and the AD1 TAD of Da; Da is spared in the process. (iii) When E(spl)m7 is expressed, it complexes with Sc or Da/Sc and promotes their degradation in a manner that requires the corepressor Groucho and the Sc SPTSS motif. Da/Sc reciprocally promotes E(spl)m7 degradation. Since E(spl)m7 is a direct target of Notch, the mutual destabilization of Sc and E(spl) may contribute in part to the highly conserved anti-neural activity of Notch. Sc variants lacking the SPTSS motif are dramatically stabilized and are hyperactive in transgenic flies. Our results propose a novel mechanism of regulation of neurogenesis, involving the stability of key players in the process.
Collapse
Affiliation(s)
- Marianthi Kiparaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, and Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Ioanna Zarifi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, and Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, and Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| |
Collapse
|
8
|
Saritas-Yildirim B, Silva EM. The role of targeted protein degradation in early neural development. Genesis 2014; 52:287-99. [PMID: 24623518 DOI: 10.1002/dvg.22771] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 11/08/2022]
Abstract
As neural stem cells differentiate into neurons during neurogenesis, the proteome of the cells is restructured by de novo expression and selective removal of regulatory proteins. The control of neurogenesis at the level of gene regulation is well documented and the regulation of protein abundance through protein degradation via the Ubiquitin/26S proteasome pathway is a rapidly developing field. This review describes our current understanding of the role of the proteasome pathway in neurogenesis. Collectively, the studies show that targeted protein degradation is an important regulatory mechanism in the generation of new neurons.
Collapse
|
9
|
Hsiao YL, Chen YJ, Chang YJ, Yeh HF, Huang YC, Pi H. Proneural proteins Achaete and Scute associate with nuclear actin to promote formation of external sensory organs. J Cell Sci 2013; 127:182-90. [PMID: 24190881 DOI: 10.1242/jcs.134718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Basic helix-loop-helix (bHLH) proneural proteins promote neurogenesis through transcriptional regulation. Although much is known about the tissue-specific regulation of proneural gene expression, how proneural proteins interact with transcriptional machinery to activate downstream target genes is less clear. Drosophila proneural proteins Achaete (Ac) and Scute (Sc) induce external sensory organ formation by activating neural precursor gene expression. Through co-immunoprecipitation and mass spectrometric analyses, we found that nuclear but not cytoplasmic actin associated with the Ac and Sc proteins in Drosophila S2 cells. Daughterless (Da), the common heterodimeric partner of Drosophila bHLH proteins, was observed to associate with nuclear actin through proneural proteins. A yeast two-hybrid assay revealed that the binding specificity between actin and Ac or Sc was conserved in yeast nuclei without the presence of additional Drosophila factors. We further show that actin is required in external sensory organ formation. Reduction in actin gene activity impaired proneural-protein-dependent expression of the neural precursor genes, as well as formation of neural precursors. Furthermore, increased nuclear actin levels, obtained by expression of nucleus-localized actin, elevated Ac-Da-dependent gene transcription as well as Ac-mediated external sensory organ formation. Taken together, our in vivo and in vitro observations suggest a novel link for actin in proneural-protein-mediated transcriptional activation and neural precursor differentiation.
Collapse
Affiliation(s)
- Yun-Ling Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan
| | | | | | | | | | | |
Collapse
|
10
|
Molnar C, Casado M, López-Varea A, Cruz C, de Celis JF. Genetic annotation of gain-of-function screens using RNA interference and in situ hybridization of candidate genes in the Drosophila wing. Genetics 2012; 192:741-52. [PMID: 22798488 PMCID: PMC3454894 DOI: 10.1534/genetics.112.143537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/07/2012] [Indexed: 11/18/2022] Open
Abstract
Gain-of-function screens in Drosophila are an effective method with which to identify genes that affect the development of particular structures or cell types. It has been found that a fraction of 2-10% of the genes tested, depending on the particularities of the screen, results in a discernible phenotype when overexpressed. However, it is not clear to what extent a gain-of-function phenotype generated by overexpression is informative about the normal function of the gene. Thus, very few reports attempt to correlate the loss- and overexpression phenotype for collections of genes identified in gain-of-function screens. In this work we use RNA interference and in situ hybridization to annotate a collection of 123 P-GS insertions that in combination with different Gal4 drivers affect the size and/or patterning of the wing. We identify the gene causing the overexpression phenotype by expressing, in a background of overexpression, RNA interference for the genes affected by each P-GS insertion. Then, we compare the loss and gain-of-function phenotypes obtained for each gene and relate them to its expression pattern in the wing disc. We find that 52% of genes identified by their overexpression phenotype are required during normal development. However, only in 9% of the cases analyzed was there some complementarity between the gain- and loss-of-function phenotype, suggesting that, in general, the overexpression phenotypes would not be indicative of the normal requirements of the gene.
Collapse
Affiliation(s)
- Cristina Molnar
- Centro de Biología Molecular “Severo Ochoa,” Universidad Autónoma de Madrid and CSIC, Madrid 28049, Spain
| | - Mar Casado
- Centro de Biología Molecular “Severo Ochoa,” Universidad Autónoma de Madrid and CSIC, Madrid 28049, Spain
| | - Ana López-Varea
- Centro de Biología Molecular “Severo Ochoa,” Universidad Autónoma de Madrid and CSIC, Madrid 28049, Spain
| | | | - Jose F. de Celis
- Centro de Biología Molecular “Severo Ochoa,” Universidad Autónoma de Madrid and CSIC, Madrid 28049, Spain
| |
Collapse
|
11
|
F3/Contactin acts as a modulator of neurogenesis during cerebral cortex development. Dev Biol 2012; 365:133-51. [PMID: 22360968 DOI: 10.1016/j.ydbio.2012.02.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/13/2012] [Accepted: 02/10/2012] [Indexed: 12/18/2022]
Abstract
The expression of the cell recognition molecule F3/Contactin (CNTN1) is generally associated with the functions of post-mitotic neurons. In the embryonic cortex, however, we find it expressed by proliferating ventricular zone (VZ) precursors. In contrast to previous findings in the developing cerebellum, F3/Contactin transgenic overexpression in the early cortical VZ promotes proliferation and expands the precursor pool at the expense of neurogenesis. At later stages, when F3/Contactin levels subside, however, neurogenesis resumes, suggesting that F3/Contactin expression in the VZ is inversely related to neurogenesis and plays a role in a feedback control mechanism, regulating the orderly progression of cortical development. The modified F3/Contactin profile therefore results in delayed corticogenesis, as judged by downregulation in upper and lower layer marker expression and by BrdU birth dating, indicating that, in this transgenic model, increased F3/Contactin levels counteract neuronal precursor commitment. These effects also occur in primary cultures and are reproduced by addition of an F3/Fc fusion protein to wild type cultures. Together, these data indicate a completely novel function for F3/Contactin. Parallel changes in the generation of the Notch Intracellular Domain and in the expression of the Hes-1 transcription factor indicate that activation of the Notch pathway plays a role in this phenotype, consistent with previous in vitro reports that F3/Contactin is a Notch1 ligand.
Collapse
|
12
|
Bukharina TA, Golubyatnikov VP, Golubyatnikov IV, Furman DP. Model investigation of central regulatory contour of gene net of D. melanogaster macrochaete morphogenesis. Russ J Dev Biol 2012. [DOI: 10.1134/s106236041201002x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Bukharina TA, Furman DP. Asymmetric cell division in the morphogenesis of Drosophila melanogaster macrochaetae. Russ J Dev Biol 2011. [DOI: 10.1134/s1062360411010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Witt LM, Gutzwiller LM, Gresser AL, Li-Kroeger D, Cook TA, Gebelein B. Atonal, Senseless, and Abdominal-A regulate rhomboid enhancer activity in abdominal sensory organ precursors. Dev Biol 2010; 344:1060-70. [PMID: 20478292 DOI: 10.1016/j.ydbio.2010.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/07/2010] [Accepted: 05/09/2010] [Indexed: 11/19/2022]
Abstract
The atonal (ato) proneural gene specifies different numbers of sensory organ precursor (SOP) cells within distinct regions of the Drosophila embryo in an epidermal growth factor-dependent manner through the activation of the rhomboid (rho) protease. How ato activates rho, and why it does so in only a limited number of sensory cells remains unclear. We previously identified a rho enhancer (RhoBAD) that is active within a subset of abdominal SOP cells to induce larval oenocytes and showed that RhoBAD is regulated by an Abdominal-A (Abd-A) Hox complex and the Senseless (Sens) transcription factor. Here, we show that ato is also required for proper RhoBAD activity and oenocyte formation. Transgenic reporter assays reveal RhoBAD contains two conserved regions that drive SOP gene expression: RhoD mediates low levels of expression in both thoracic and abdominal SOP cells, whereas RhoA drives strong expression within abdominal SOP cells. Ato indirectly stimulates both elements and enhances RhoA reporter activity by interfering with the ability of the Sens repressor to bind DNA. As RhoA is also directly regulated by Abd-A, we propose a model for how the Ato and Sens proneural factors are integrated with an abdominal Hox factor to regulate region-specific SOP gene expression.
Collapse
Affiliation(s)
- Lorraine M Witt
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
15
|
The function and regulation of the bHLH gene, cato, in Drosophila neurogenesis. BMC DEVELOPMENTAL BIOLOGY 2010; 10:34. [PMID: 20346138 PMCID: PMC2851588 DOI: 10.1186/1471-213x-10-34] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 03/26/2010] [Indexed: 01/17/2023]
Abstract
Background bHLH transcription factors play many roles in neural development. cousin of atonal (cato) encodes one such factor that is expressed widely in the developing sensory nervous system of Drosophila. However, nothing definitive was known of its function owing to the lack of specific mutations. Results We characterised the expression pattern of cato in detail using newly raised antibodies and GFP reporter gene constructs. Expression is predominantly in sensory lineages that depend on the atonal and amos proneural genes. In lineages that depend on the scute proneural gene, cato is expressed later and seems to be particularly associated with the type II neurons. Consistent with this, we find evidence that cato is a direct target gene of Atonal and Amos, but not of Scute. We generated two specific mutations of cato. Mutant embryos show several defects in chordotonal sensory lineages, most notably the duplication of the sensory neuron, which appears to be caused by an extra cell division. In addition, we show that cato is required to form the single chordotonal organ that persists in atonal mutant embryos. Conclusions We conclude that although widely expressed in the developing PNS, cato is expressed and regulated very differently in different sensory lineages. Mutant phenotypes correlate with cato's major expression in the chordotonal sensory lineage. In these cells, we propose that it plays roles in sense organ precursor maintenance and/or identity, and in controlling the number of cell divisions in the neuronal branch of the lineage arising from these precursors.
Collapse
|
16
|
Shyu LF, Sun J, Chung HM, Huang YC, Deng WM. Notch signaling and developmental cell-cycle arrest in Drosophila polar follicle cells. Mol Biol Cell 2010; 20:5064-73. [PMID: 19846665 DOI: 10.1091/mbc.e09-01-0004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Temporal and spatial regulation of cell division is critical for proper development of multicellular organisms. An important aspect of this regulation is cell-cycle arrest, which in many cell types is coupled with differentiated status. Here we report that the polar cells--a group of follicle cells differentiated early during Drosophila oogenesis--are arrested at G2 phase and can serve as a model cell type for investigation of developmental regulation of cell-cycle arrest. On examining the effects of String, a mitosis-promoting phosphatase Cdc25 homolog, and Notch signaling in polar cells, we found that misexpression of String can trigger mitosis in existing polar cells to induce extra polar cells. Normally, differentiation of the polar cells requires Notch signaling. We found that the Notch-induced extra polar cells arise through recruitment of the neighboring cells rather than promotion of proliferation, and they are also arrested at G2 phase. Notch signaling is probably involved in down-regulating String in polar cells, thus inducing the G2 cell-cycle arrest.
Collapse
Affiliation(s)
- Li-Fang Shyu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | | | | | | | | |
Collapse
|
17
|
Dimitrova YN, Li J, Lee YT, Rios-Esteves J, Friedman DB, Choi HJ, Weis WI, Wang CY, Chazin WJ. Direct ubiquitination of beta-catenin by Siah-1 and regulation by the exchange factor TBL1. J Biol Chem 2010; 285:13507-16. [PMID: 20181957 DOI: 10.1074/jbc.m109.049411] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Beta-catenin is a key component of the Wnt signaling pathway that functions as a transcriptional co-activator of Wnt target genes. Upon UV-induced DNA damage, beta-catenin is recruited for polyubiquitination and subsequent proteasomal degradation by a unique, p53-induced SCF-like complex (SCF(TBL1)), comprised of Siah-1, Siah-1-interacting protein (SIP), Skp1, transducin beta-like 1 (TBL1), and adenomatous polyposis coli (APC). Given the complexity of the various factors involved and the novelty of ubiquitination of the non-phosphorylated beta-catenin substrate, we have investigated Siah-1-mediated ubiquitination of beta-catenin in vitro and in cells. Overexpression and purification protocols were developed for each of the SCF(TBL1) proteins, enabling a systematic analysis of beta-catenin ubiquitination using an in vitro ubiquitination assay. This study revealed that Siah-1 alone was able to polyubiquitinate beta-catenin. In addition, TBL1 was shown to play a role in protecting beta-catenin from Siah-1 ubiquitination in vitro and from Siah-1-targeted proteasomal degradation in cells. Siah-1 and TBL1 were found to bind to the same armadillo repeat domain of beta-catenin, suggesting that polyubiquitination of beta-catenin is regulated by competition between Siah-1 and TBL1 during Wnt signaling.
Collapse
Affiliation(s)
- Yoana N Dimitrova
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
The complex tale of the achaete-scute complex: a paradigmatic case in the analysis of gene organization and function during development. Genetics 2009; 182:631-9. [PMID: 19622761 DOI: 10.1534/genetics.109.104083] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The achaete-scute gene complex (AS-C) contains four genes encoding transcription factors of the bHLH family, achaete, scute, lethal of scute, and asense located in 40 kb of DNA containing multiple cis-regulatory position-specific enhancers. These genes play a key role in the commitment of epidermal cells toward a neural fate, promoting the formation of both sensory organs in the peripheral nervous system (bristles) of the adult and of neuroblasts in the central nervous system of the embryo. The analysis of the AS-C initially focused on the variations in positional specificity of effects of achaete (ac) and scute (sc) alleles on macrochaete bristle pattern in the Drosophila adult epidermis, and from there it evolved as a key entry point into understanding the molecular bases of pattern formation and cell commitment. In this perspective, we describe how the study of the AS-C has contributed to the understanding of eukaryotic gene organization and the dissection of the developmental mechanisms underlying pattern formation.
Collapse
|