1
|
Lu J, Peng B, Wang W, Zou Y. Epithelial-mesenchymal crosstalk: the scriptwriter of craniofacial morphogenesis. Front Cell Dev Biol 2024; 12:1497002. [PMID: 39583201 PMCID: PMC11582012 DOI: 10.3389/fcell.2024.1497002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Epithelial-mesenchymal interactions (EMI) are fundamental mechanisms in regulating development and organogenesis. Here we summarized the signaling mechanisms involved in EMI in the major developmental events during craniofacial morphogenesis, including neural crest cell induction, facial primordial growth as well as fusion processes. Regional specificity/polarity are demonstrated in the expression of most signaling molecules that usually act in a mutually synergistic/antagonistic manner. The underlying mechanisms of pathogenesis due to disrupted EMI was also discussed in this review.
Collapse
Affiliation(s)
- Junjie Lu
- School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Bo Peng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Wenyi Wang
- School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yi Zou
- School of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Chen Y, Petho A, Ganapathy A, George A. DPP an extracellular matrix molecule induces Wnt5a mediated signaling to promote the differentiation of adult stem cells into odontogenic lineage. Sci Rep 2024; 14:26187. [PMID: 39478025 PMCID: PMC11525562 DOI: 10.1038/s41598-024-76069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Dentin phosphophoryn (DPP) an extracellular matrix protein activates Wnt signaling in DPSCs (dental pulp stem cells). Wnt/β catenin signaling is essential for tooth development but the role of DPP-mediated Wnt5a signaling in odontogenesis is not well understood. Wnt5a is typically considered as a non-canonical Wnt ligand that elicits intracellular signals through association with a specific cohort of receptors and co-receptors in a cell and context-dependent manner. In this study, DPP facilitated the interaction of Wnt5a with Frizzled 5 and LRP6 to induce nuclear translocation of β-catenin. β-catenin has several nuclear binding partners that promote the activation of Wnt target genes responsible for odontogenic differentiation. Interestingly, steady increase in the expression of Vangl2 receptor suggest planar cell polarity signaling during odontogenic differentiation. In vitro observations were further strengthened by the low expression levels of Wnt5a and β-catenin in the teeth of DSPP KO mice which exhibit impaired odontoblast differentiation and defective dentin mineralization. Together, this study suggests that the DPP-mediated Wnt5a signaling could be exploited as a therapeutic approach for the differentiation of dental pulp stem cells into functional odontoblasts and dentin regeneration.
Collapse
Affiliation(s)
- Yinghua Chen
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Adrienn Petho
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Amudha Ganapathy
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Anne George
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, 60612, USA.
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina St, Chicago, IL, 60612, USA.
| |
Collapse
|
3
|
Lara LDS, Coletta RD, Assis Machado R, Querino Rocha de Oliveira L, Martelli Júnior H, de Almeida Reis SR, Scariot R, Evaristo Ricci Volpato L. Exploring the role of the WNT5A rs566926 polymorphism and its interactions in non-syndromic orofacial cleft: a multicenter study in Brazil. J Appl Oral Sci 2024; 32:e20230353. [PMID: 38359266 PMCID: PMC11018296 DOI: 10.1590/1678-7757-2023-0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Associations between the WNT5A rs566926 variant and non-syndromic orofacial cleft (NSOC) have been reported in different populations. OBJECTIVE This study aimed to investigate the role of the rs566926 single nucleotide polymorphism (SNP) in WNT5A and its interactions with SNPs in BMP4, FGFR1, GREM1, MMP2, and WNT3 in the occurrence of NSOC in a Brazilian population. METHODOLOGY A case-control genetic association study was carried out involving participants from four regions of Brazil, totaling 801 patients with non-syndromic cleft lip with or without cleft palate (NSCL±P), 273 patients with cleft palate only (NSCPO), and 881 health volunteers without any congenital condition (control). Applying TaqMan allelic discrimination assays, we evaluated WNT5A rs566926 in an ancestry-structured multiple logistic regression analysis, considering sex and genomic ancestry as covariates. Interactions between rs566926 and variants in genes involved in the WNT5A signaling pathway (BMP4, FGFR1, GREM1, MMP2, and WNT3) were also explored. RESULTS WNT5A rs566926 was significantly associated with an increased risk of NSCL±P, particularly due to a strong association with non-syndromic cleft lip only (NSCLO), in which the C allele increased the risk by 32% (OR: 1.32, 95% CI: 1.04-1.67, p=0.01). According to the proportions of European and African genomic ancestry, the association of rs566926 reached significant levels only in patients with European ancestry. Multiple interactions were detected between WNT5A rs566926 and BMP4 rs2071047, GREM1 rs16969681 and rs16969862, and FGFR1 rs7829058. CONCLUSION The WNT5A rs566926 polymorphism was associated with NSCL±P, particularly in individuals with NSCLO and high European ancestry. Epistatic interactions involving WNT5A rs566926 and variants in BMP4, GREM1, and FGFR1 may contribute to the risk of NSCL±P in the Brazilian population.
Collapse
Affiliation(s)
- Lorraynne Dos Santos Lara
- Universidade de Cuiabá, Programa de Pós-Graduação em Ciências Odontológicas Integradas, Faculdade de Odontologia de Cuiabá, Cuiabá, MT, Brasil
| | - Ricardo D Coletta
- Universidade Estadual de Campinas, Departamento de Diagnóstico Oral e Programa de Pós-Graduação em Biologia Buco-Dental, Faculdade de Odontologia de Piracicaba, Piracicaba, SP, Brasil
| | - Renato Assis Machado
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Programa de Pós-Graduação em Biologia Buco-Dental, Piracicaba, SP, Brasil
| | - Lilianny Querino Rocha de Oliveira
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Programa de Pós-Graduação em Biologia Buco-Dental, Piracicaba, SP, Brasil
| | - Hercílio Martelli Júnior
- Universidade Estadual de Montes Claros, Departamento de Odontologia, Clínica de Estomatologia, Montes Claros, MG, Brasil, e
| | | | - Rafaela Scariot
- Universidade Federal do Paraná, setor de Ciências da Saúde, Departamento de Estomatologia, Disciplina de Cirurgia Bucomaxilofacial, Curitiba, PR, Brasil
| | - Luiz Evaristo Ricci Volpato
- Universidade de Cuiabá, Programa de Pós-Graduação em Ciências Odontológicas Integradas, Faculdade de Odontologia de Cuiabá, Cuiabá, MT, Brasil
| |
Collapse
|
4
|
Endo M, Tanaka Y, Fukuoka M, Suzuki H, Minami Y. Wnt5a/Ror2 promotes Nrf2-mediated tissue protective function of astrocytes after brain injury. Glia 2024; 72:411-432. [PMID: 37904612 DOI: 10.1002/glia.24483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023]
Abstract
Astrocytes, a type of glial cells, play critical roles in promoting the protection and repair of damaged tissues after brain injury. Inflammatory cytokines and growth factors can affect gene expression in astrocytes in injured brains, but signaling pathways and transcriptional mechanisms that regulate tissue protective functions of astrocytes are still poorly understood. In this study, we investigated the molecular mechanisms regulating the function of reactive astrocytes induced in mouse models of stab wound (SW) brain injury and collagenase-induced intracerebral hemorrhage (ICH). We show that basic fibroblast growth factor (bFGF), whose expression is up-regulated in mouse brains after SW injury and ICH, acts synergistically with inflammatory cytokines to activate E2F1-mediated transcription of a gene encoding the Ror-family protein Ror2, a receptor for Wnt5a, in cultured astrocytes. We also found that subsequent activation of Wnt5a/Ror2 signaling in astrocytes results in nuclear accumulation of antioxidative transcription factor Nrf2 at least partly by increased expression of p62/Sqstm1, leading to promoted expression of several Nrf2 target genes, including heme oxygenase 1. Finally, we provide evidence demonstrating that enhanced activation of Wnt5a/Ror2 signaling in astrocytes reduces cellular damage caused by hemin, a degradation product of hemoglobin, and promotes repair of the damaged blood brain barrier after brain hemorrhage.
Collapse
Affiliation(s)
- Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yuki Tanaka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mayo Fukuoka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Hayata Suzuki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
5
|
Jokar J, Abdulabbas HT, Alipanah H, Ghasemian A, Ai J, Rahimian N, Mohammadisoleimani E, Najafipour S. Tissue engineering studies in male infertility disorder. HUM FERTIL 2023; 26:1617-1635. [PMID: 37791451 DOI: 10.1080/14647273.2023.2251678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/06/2023] [Indexed: 10/05/2023]
Abstract
Infertility is an important issue among couples worldwide which is caused by a variety of complex diseases. Male infertility is a problem in 7% of all men. In vitro spermatogenesis (IVS) is the experimental approach that has been developed for mimicking seminiferous tubules-like functional structures in vitro. Currently, various researchers are interested in finding and developing a microenvironmental condition or a bioartificial testis applied for fertility restoration via gamete production in vitro. The tissue engineering (TE) has developed new approaches to treat male fertility preservation through development of functional male germ cells. This makes TE a possible future strategy for restoration of male fertility. Although 3D culture systems supply the perception of the effect of cellular interactions in the process of spermatogenesis, formation of a native gradient of autocrine/paracrine factors in 3D culture systems have not been considered. These results collectively suggest that maintaining the microenvironment of testicular cells even in the form of a 3D-culture system is crucial in achieving spermatogenesis ex vivo. It is also possible to engineer the testicular structures using biomaterials to provide a supporting scaffold for somatic and stem cells. The insemination of these cells with GFs is possible for temporally and spatially adjusted release to mimic the microenvironment of the in situ seminiferous epithelium. This review focuses on recent studies and advances in the application of TE strategies to cell-tissue culture on synthetic or natural scaffolds supplemented with growth factors.
Collapse
Affiliation(s)
- Javad Jokar
- Department of Tissue Engineering, Faculty of Medicine, Fasa University of Medical Science, Fasa, Iran
| | | | - Hiva Alipanah
- Department of Physiology, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Rahimian
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Mohammadisoleimani
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sohrab Najafipour
- Department of Microbiology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
6
|
Ma YQ, Zhang XY, Zhao SW, Li D, Cai MQ, Yang H, Wang XM, Xue H. Retinoic acid delays murine palatal shelf elevation by inhibiting Wnt5a-mediated noncanonical Wnt signaling and downstream Cdc-42/F-actin remodeling in mesenchymal cells. Birth Defects Res 2023; 115:1658-1673. [PMID: 37675882 DOI: 10.1002/bdr2.2244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Mammalian palatal shelves erupted from maxillary prominences undergo vertical extention, transient elevation, and horizontal growth to fuse. Previous studies in mice reported that the retinoic acid (RA) contributed to cleft palate in high incidence by delaying the elevating procedure, but little was known about the underlying biological mechanisms. METHODS In this study, hematoxylin-eosin and immunofluorescence staining were employed to evaluate the phenotypes and the expression of related markers in the RA-treated mice model. In situ hybridization and RT-qPCR were used to detect the expression of genes involved in Wnt signaling pathway. The palatal mesenchymal cells were cultured in vitro, and stimulated with RA or CASIN, and co-treated with Foxy5. Wnt5a and Ccd42 expression were evaluated by immunofluorescence staining. Phalloidin was used to label the microfilament cytoskeleton (F-actin) in cultured cells. RESULTS We revealed that RA resulted in 100% incidence of cleft palate in mouse embryos, and the expression of genes responsible for Wnt5a-mediated noncanonical Wnt signal transduction were specifically downregulated in mesenchymal palatal shelves. The in vitro study of palatal mesenchymal cells indicated that RA treatment disrupted the organized remodeling of cytoskeleton, an indicative structure of cell migration regulated by the small Rho GTPase Cdc42. Moreover, we showed that the suppression of cytoskeleton and cell migration induced by RA was partially restored using the small molecule Foxy-5-mediated activation of Wnt5A, and this restoration was attenuated by CASIN (a selective GTPase Cdc42 inhibitor) again. CONCLUSIONS These data identified a crucial mechanism for Wnt5a-mediated noncanonical Wnt signaling in acting downstream of Rho GTPase Cdc42 to regulate cytoskeletal remodeling and cell migration during the process of palate elevation. Our study provided a new explanation for the cause of cleft palate induced by RA.
Collapse
Affiliation(s)
- Yan-Qing Ma
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (No: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
- Department of Orthodontics, School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
| | - Xin-Yu Zhang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (No: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
- Department of Orthodontics, School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
| | - Shi-Wei Zhao
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (No: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
- Department of Orthodontics, School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
| | - Dou Li
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (No: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
- Department of Orthodontics, School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
| | - Min-Qin Cai
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (No: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
- Department of Orthodontics, School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
| | - Hui Yang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (No: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
- Department of Orthodontics, School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
| | - Xiao-Ming Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (No: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
- Department of Orthodontics, School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
| | - Hui Xue
- Department of Stomatology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
7
|
Won HJ, Kim JW, Won HS, Shin JO. Gene Regulatory Networks and Signaling Pathways in Palatogenesis and Cleft Palate: A Comprehensive Review. Cells 2023; 12:1954. [PMID: 37566033 PMCID: PMC10416829 DOI: 10.3390/cells12151954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Palatogenesis is a complex and intricate process involving the formation of the palate through various morphogenetic events highly dependent on the surrounding context. These events comprise outgrowth of palatal shelves from embryonic maxillary prominences, their elevation from a vertical to a horizontal position above the tongue, and their subsequent adhesion and fusion at the midline to separate oral and nasal cavities. Disruptions in any of these processes can result in cleft palate, a common congenital abnormality that significantly affects patient's quality of life, despite surgical intervention. Although many genes involved in palatogenesis have been identified through studies on genetically modified mice and human genetics, the precise roles of these genes and their products in signaling networks that regulate palatogenesis remain elusive. Recent investigations have revealed that palatal shelf growth, patterning, adhesion, and fusion are intricately regulated by numerous transcription factors and signaling pathways, including Sonic hedgehog (Shh), bone morphogenetic protein (Bmp), fibroblast growth factor (Fgf), transforming growth factor beta (Tgf-β), Wnt signaling, and others. These studies have also identified a significant number of genes that are essential for palate development. Integrated information from these studies offers novel insights into gene regulatory networks and dynamic cellular processes underlying palatal shelf elevation, contact, and fusion, deepening our understanding of palatogenesis, and facilitating the development of more efficacious treatments for cleft palate.
Collapse
Affiliation(s)
- Hyung-Jin Won
- Department of Anatomy, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
- BIT Medical Convergence Graduate Program, Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jin-Woo Kim
- Graduate School of Clinical Dentistry, Ewha Womans University, Seoul 03760, Republic of Korea
- Department of Oral and Maxillofacial Surgery, School of Medicine, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyung-Sun Won
- Department of Anatomy, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
- Jesaeng-Euise Clinical Anatomy Center, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Jeong-Oh Shin
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea
- BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea
| |
Collapse
|
8
|
Won HJ, Won HS, Shin JO. Increased miR-200c levels disrupt palatal fusion by affecting apoptosis, cell proliferation, and cell migration. Biochem Biophys Res Commun 2023; 664:43-49. [PMID: 37137222 DOI: 10.1016/j.bbrc.2023.04.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
The mammalian palate separates the oral and nasal cavities, facilitating proper feeding, respiration, and speech. Palatal shelves, composed of neural crest-derived mesenchyme and surrounding epithelium, are a pair of maxillary prominences contributing to this structure. Palatogenesis reaches completion upon the fusion of the midline epithelial seam (MES) following contact between medial edge epithelium (MEE) cells in the palatal shelves. This process entails numerous cellular and molecular occurrences, including apoptosis, cell proliferation, cell migration, and epithelial-mesenchymal transition (EMT). MicroRNAs (miRs) are small, endogenous, non-coding RNAs derived from double-stranded hairpin precursors that regulate gene expression by binding to target mRNA sequences. Although miR-200c is a positive regulator of E-cadherin, its role in palatogenesis remains unclear. This study aims to explore the role of miR-200c in palate development. Before contact with palatal shelves, mir-200c was expressed in the MEE along with E-cadherin. After palatal shelf contact, miR-200c was present in the palatal epithelial lining and epithelial islands surrounding the fusion region but absent in the mesenchyme. The function of miR-200c was investigated by utilizing a lentiviral vector to facilitate overexpression. Ectopic expression of miR-200c resulted in E-cadherin upregulation, impaired dissolution of the MES, and reduced cell migration for palatal fusion. The findings imply that miR-200c is essential in palatal fusion as it governs E-cadherin expression, cell death, and cell migration, acting as a non-coding RNA. This study may contribute to clarifying the underlying molecular mechanisms in palate formation and provides insights into potential gene therapies for cleft palate.
Collapse
Affiliation(s)
- Hyung-Jin Won
- Department of Anatomy, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea; BIT Medical Convergence Graduate Program and Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Hyung-Sun Won
- Department of Anatomy and Jesaeng-Euise Clinical Anatomy Center, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Jeong-Oh Shin
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan, 33151, Republic of Korea; BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.
| |
Collapse
|
9
|
Konopelski Snavely SE, Srinivasan S, Dreyer CA, Tan J, Carraway KL, Ho HYH. Non-canonical WNT5A-ROR signaling: New perspectives on an ancient developmental pathway. Curr Top Dev Biol 2023; 153:195-227. [PMID: 36967195 PMCID: PMC11042798 DOI: 10.1016/bs.ctdb.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Deciphering non-canonical WNT signaling has proven to be both fascinating and challenging. Discovered almost 30 years ago, non-canonical WNT ligands signal independently of the transcriptional co-activator β-catenin to regulate a wide range of morphogenetic processes during development. The molecular and cellular mechanisms that underlie non-canonical WNT function, however, remain nebulous. Recent results from various model systems have converged to define a core non-canonical WNT pathway consisting of the prototypic non-canonical WNT ligand, WNT5A, the receptor tyrosine kinase ROR, the seven transmembrane receptor Frizzled and the cytoplasmic scaffold protein Dishevelled. Importantly, mutations in each of these signaling components cause Robinow syndrome, a congenital disorder characterized by profound tissue morphogenetic abnormalities. Moreover, dysregulation of the pathway has also been linked to cancer metastasis. As new knowledge concerning the WNT5A-ROR pathway continues to grow, modeling these mutations will likely provide crucial insights into both the physiological regulation of the pathway and the etiology of WNT5A-ROR-driven diseases.
Collapse
Affiliation(s)
- Sara E Konopelski Snavely
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Srisathya Srinivasan
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, CA, United States
| | - Jia Tan
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, CA, United States
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States.
| |
Collapse
|
10
|
WNT5A-ROR2 axis mediates VEGF dependence of BRAF mutant melanoma. Cell Oncol 2022; 46:391-407. [PMID: 36539575 PMCID: PMC10060292 DOI: 10.1007/s13402-022-00757-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Purpose
Despite recent advances, approximately 50% of patient with metastatic melanoma eventually succumb to the disease. Patients with melanomas harboring a BRAF mutation (BRAFMut) have a worse prognosis than those with wildtype (BRAFWT) tumors. Unexpectedly, interim AVAST-M Phase III trial data reported benefit from adjuvant anti-VEGF bevacizumab only in the BRAFMut group. We sought to find mechanisms underpinning this sensitivity.
Methods
We investigated this finding in vitro and in vivo using melanoma cell lines and clones generated by BRAFV600E knock-in on a BRAFWT background.
Results
Compared with BRAFWT cells, isogenic BRAFV600E clones secreted more VEGF and exhibited accelerated growth rates as spheroids and xenografts, which were more vascular and proliferative. Recapitulating AVAST-M findings, bevacizumab affected only BRAFV600E xenografts, inducing significant tumor growth delay, reduced vascularity and increased necrosis. We identified 814 differentially expressed genes in isogenic BRAFV600E/BRAFWT clones. Of 61 genes concordantly deregulated in clinical melanomas ROR2 was one of the most upregulated by BRAFV600E. ROR2 was shown to be RAF-MEK regulated in BRAFV600E cells and its depletion suppressed VEGF secretion down to BRAFWT levels. The ROR2 ligand WNT5A was also overexpressed in BRAFMut melanomas, and in ROR2-overexpressing BRAFV600E cells MEK inhibition downregulated WNT5A and VEGF secretion.
Conclusions
These data implicate WNT5A-ROR2 in VEGF secretion, vascularity, adverse outcomes and bevacizumab sensitivity of BRAFMut melanomas, suggesting that this axis has potential therapeutic relevance.
Collapse
|
11
|
Liu W, Lu Y, Shi B, Li C. Transcriptome sequencing analysis of the role of β-catenin in F-actin reorganization in embryonic palatal mesenchymal cells. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1332. [PMID: 36660634 PMCID: PMC9843408 DOI: 10.21037/atm-22-5772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022]
Abstract
Background Palatogenesis is a highly regulated and coordinated developmental process that is coordinated by multiple transcription factors and signaling pathways. Our previous studies identified that defective palatal shelf reorientation due to aberrant mesenchymal β-catenin signaling is associated with Filamentous actin (F-actin) dysregulation. Herein, the underlying mechanism of mesenchymal β-catenin in regulating F-actin cytoskeleton reorganization is further investigated. Methods Firstly, β-catenin silenced and overexpressed mouse embryonic palatal mesenchymal (MEPM) cells were established by adenovirus-mediated transduction. Subsequently, we compared transcriptomes of negative control (NC) group, β-catenin knockdown (KD) group, or β-catenin overexpression group respectively using RNA-sequencing (RNA-seq), and differentially expressed genes (DEGs) screened were further identified by quantitative real-time polymerase chain reaction (qRT-PCR). Finally, in vivo experiments further verified the expression change of critical molecules. Results We discovered 184 and 522 DEGs in the knockdown and overexpression groups compared to the NC group, respectively (adjusted P<0.05; |fold change| >2.0). Among these, 106 DEGs were altered in both groups. Gene Ontology (GO) enrichment analysis relating to biological functions identified cytokine-cytokine receptor interaction, and positive modulation of cellular migration. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment assessment indicated that these DEGs were chiefly linked by the regulation of signaling receptor activity and chemokine signaling pathways. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed that the similar expression trend of serum amyloid A3 (Saa3) and CXC-chemokine ligand 5 (Cxcl5) possibly involved in cytoskeletal rearrangement with RNA-seq data. Experiments in vivo displayed that no significant expression change of Saa3 and Cxcl5 was observed in β-catenin knockout and overexpressed mouse models. Conclusions Our study provides an expression landscape of DEGs in β-catenin silenced and overexpressed MEPM cells, which emphasizes the important role of processes such as chemotactic factor and cell migration. Our data gain deeper insight into genes associated with F-actin reorganization that is regulated by β-catenin either directly or by another route, which will contribute to further investigation of the exact mechanism of mesenchymal β-catenin/F-actin in palatal shelf reorientation.
Collapse
Affiliation(s)
- Weilong Liu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yong Lu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chenghao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Zhang W, Yu J, Fu G, Li J, Huang H, Liu J, Yu D, Qiu M, Li F. ISL1/SHH/CXCL12 signaling regulates myogenic cell migration during mouse tongue development. Development 2022; 149:277065. [DOI: 10.1242/dev.200788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022]
Abstract
ABSTRACT
Migration of myoblasts derived from the occipital somites is essential for tongue morphogenesis. However, the molecular mechanisms of myoblast migration remain elusive. In this study, we report that deletion of Isl1 in the mouse mandibular epithelium leads to aglossia due to myoblast migration defects. Isl1 regulates the expression pattern of chemokine ligand 12 (Cxcl12) in the first branchial arch through the Shh/Wnt5a cascade. Cxcl12+ mesenchymal cells in Isl1ShhCre embryos were unable to migrate to the distal region, but instead clustered in a relatively small proximal domain of the mandible. CXCL12 serves as a bidirectional cue for myoblasts expressing its receptor CXCR4 in a concentration-dependent manner, attracting Cxcr4+ myoblast invasion at low concentrations but repelling at high concentrations. The accumulation of Cxcl12+ mesenchymal cells resulted in high local concentrations of CXCL12, which prevented Cxcr4+ myoblast invasion. Furthermore, transgenic activation of Ihh alleviated defects in tongue development and rescued myoblast migration, confirming the functional involvement of Hedgehog signaling in tongue development. In summary, this study provides the first line of genetic evidence that the ISL1/SHH/CXCL12 axis regulates myoblast migration during tongue development.
Collapse
Affiliation(s)
- Wei Zhang
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Jiaojiao Yu
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Guoquan Fu
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Jianying Li
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Huarong Huang
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Department of Environmental Sciences, College of Environmental and Resource Sciences, Zhejiang University 2 , Hangzhou 310058 , People's Republic of China
| | - Dongliang Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University 3 , Hangzhou 310018 , People's Republic of China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Feixue Li
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| |
Collapse
|
13
|
Liang C, Liang Q, Xu X, Liu X, Gao X, Li M, Yang J, Xing X, Huang H, Tang Q, Liao L, Tian W. Bone morphogenetic protein 7 mediates stem cells migration and angiogenesis: therapeutic potential for endogenous pulp regeneration. Int J Oral Sci 2022; 14:38. [PMID: 35858911 PMCID: PMC9300630 DOI: 10.1038/s41368-022-00188-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 02/05/2023] Open
Abstract
Pulp loss is accompanied by the functional impairment of defense, sensory, and nutrition supply. The approach based on endogenous stem cells is a potential strategy for pulp regeneration. However, endogenous stem cell sources, exogenous regenerative signals, and neovascularization are major difficulties for pulp regeneration based on endogenous stem cells. Therefore, the purpose of our research is to seek an effective cytokines delivery strategy and bioactive materials to reestablish an ideal regenerative microenvironment for pulp regeneration. In in vitro study, we investigated the effects of Wnt3a, transforming growth factor-beta 1, and bone morphogenetic protein 7 (BMP7) on human dental pulp stem cells (h-DPSCs) and human umbilical vein endothelial cells. 2D and 3D culture systems based on collagen gel, matrigel, and gelatin methacryloyl were fabricated to evaluate the morphology and viability of h-DPSCs. In in vivo study, an ectopic nude mouse model and an in situ beagle dog model were established to investigate the possibility of pulp regeneration by implanting collagen gel loading BMP7. We concluded that BMP7 promoted the migration and odontogenic differentiation of h-DPSCs and vessel formation. Collagen gel maintained the cell adhesion, cell spreading, and cell viability of h-DPSCs in 2D or 3D culture. The transplantation of collagen gel loading BMP7 induced vascularized pulp-like tissue regeneration in vivo. The injectable approach based on collagen gel loading BMP7 might exert promising therapeutic application in endogenous pulp regeneration. BMP7 as a regenerative signaling molecule mediates stem cell migration and odontoblastic differentiation (a) and as a pro-angiogenic factor promotes revascularization of endothelial cells (b). Collagen gel supports cell adhesion, spreading, and viability (c). ![]()
Collapse
Affiliation(s)
- Cheng Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingqing Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaojing Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Maojiao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaotao Xing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haisen Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Gu R, Zhang S, Saha SK, Ji Y, Reynolds K, McMahon M, Sun B, Islam M, Trainor PA, Chen Y, Xu Y, Chai Y, Burkart-Waco D, Zhou CJ. Single-cell transcriptomic signatures and gene regulatory networks modulated by Wls in mammalian midline facial formation and clefts. Development 2022; 149:dev200533. [PMID: 35781558 PMCID: PMC9382898 DOI: 10.1242/dev.200533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/21/2022] [Indexed: 07/24/2023]
Abstract
Formation of highly unique and complex facial structures is controlled by genetic programs that are responsible for the precise coordination of three-dimensional tissue morphogenesis. However, the underlying mechanisms governing these processes remain poorly understood. We combined mouse genetic and genomic approaches to define the mechanisms underlying normal and defective midfacial morphogenesis. Conditional inactivation of the Wnt secretion protein Wls in Pax3-expressing lineage cells disrupted frontonasal primordial patterning, cell survival and directional outgrowth, resulting in altered facial structures, including midfacial hypoplasia and midline facial clefts. Single-cell RNA sequencing revealed unique transcriptomic atlases of mesenchymal subpopulations in the midfacial primordia, which are disrupted in the conditional Wls mutants. Differentially expressed genes and cis-regulatory sequence analyses uncovered that Wls modulates and integrates a core gene regulatory network, consisting of key midfacial regulatory transcription factors (including Msx1, Pax3 and Pax7) and their downstream targets (including Wnt, Shh, Tgfβ and retinoic acid signaling components), in a mesenchymal subpopulation of the medial nasal prominences that is responsible for midline facial formation and fusion. These results reveal fundamental mechanisms underlying mammalian midfacial morphogenesis and related defects at single-cell resolution.
Collapse
Affiliation(s)
- Ran Gu
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children and UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children and UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Subbroto Kumar Saha
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children and UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children and UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children and UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Moira McMahon
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children and UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children and UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Mohammad Islam
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children and UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Ying Xu
- Can-SU Genomic Resource Center, Medical College of Soochow University, Suzhou 215006, China
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Diana Burkart-Waco
- DNA Technologies and Expression Analysis Core, Genome Center, University of California, Davis, California 95616, USA
| | - Chengji J. Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children and UC Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
15
|
Hammond NL, Dixon MJ. Revisiting the embryogenesis of lip and palate development. Oral Dis 2022; 28:1306-1326. [PMID: 35226783 PMCID: PMC10234451 DOI: 10.1111/odi.14174] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
Clefts of the lip and palate (CLP), the major causes of congenital facial malformation globally, result from failure of fusion of the facial processes during embryogenesis. With a prevalence of 1 in 500-2500 live births, CLP causes major morbidity throughout life as a result of problems with facial appearance, feeding, speaking, obstructive apnoea, hearing and social adjustment and requires complex, multi-disciplinary care at considerable cost to healthcare systems worldwide. Long-term outcomes for affected individuals include increased mortality compared with their unaffected siblings. The frequent occurrence and major healthcare burden imposed by CLP highlight the importance of dissecting the molecular mechanisms driving facial development. Identification of the genetic mutations underlying syndromic forms of CLP, where CLP occurs in association with non-cleft clinical features, allied to developmental studies using appropriate animal models is central to our understanding of the molecular events underlying development of the lip and palate and, ultimately, how these are disturbed in CLP.
Collapse
Affiliation(s)
- Nigel L. Hammond
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Michael J. Dixon
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
16
|
Ademi H, Djari C, Mayère C, Neirijnck Y, Sararols P, Rands CM, Stévant I, Conne B, Nef S. Deciphering the origins and fates of steroidogenic lineages in the mouse testis. Cell Rep 2022; 39:110935. [PMID: 35705036 DOI: 10.1016/j.celrep.2022.110935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 03/22/2022] [Accepted: 05/19/2022] [Indexed: 11/03/2022] Open
Abstract
Leydig cells (LCs) are the major androgen-producing cells in the testis. They arise from steroidogenic progenitors (SPs), whose origins, maintenance, and differentiation dynamics remain largely unknown. Single-cell transcriptomics reveal that the mouse steroidogenic lineage is specified as early as embryonic day 12.5 (E12.5) and has a dual mesonephric and coelomic origin. SPs specifically express the Wnt5a gene and evolve rapidly. At E12.5 and E13.5, they give rise first to an intermediate population of pre-LCs, and finally to fetal LCs. At E16.5, SPs possess the characteristics of the dormant progenitors at the origin of adult LCs and are also transcriptionally closely related to peritubular myoid cells (PMCs). In agreement with our in silico analysis, in vivo lineage tracing indicates that Wnt5a-expressing cells are bona fide progenitors of PMCs as well as fetal and adult LCs, contributing to most of the LCs present in the fetal and adult testis.
Collapse
Affiliation(s)
- Herta Ademi
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland
| | - Cyril Djari
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland
| | - Chloé Mayère
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland
| | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland
| | - Pauline Sararols
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland
| | - Chris M Rands
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland; Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
| | - Isabelle Stévant
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland
| | - Béatrice Conne
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
17
|
Comparative analysis of mouse embryonic palatal mesenchymal cells isolated by two primary culture methods. Tissue Cell 2022; 76:101783. [DOI: 10.1016/j.tice.2022.101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022]
|
18
|
Endo M, Kamizaki K, Minami Y. The Ror-Family Receptors in Development, Tissue Regeneration and Age-Related Disease. Front Cell Dev Biol 2022; 10:891763. [PMID: 35493090 PMCID: PMC9043558 DOI: 10.3389/fcell.2022.891763] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
The Ror-family proteins, Ror1 and Ror2, act as receptors or co-receptors for Wnt5a and its related Wnt proteins to activate non-canonical Wnt signaling. Ror1 and/or Ror2-mediated signaling plays essential roles in regulating cell polarity, migration, proliferation and differentiation during developmental morphogenesis, tissue-/organo-genesis and regeneration of adult tissues following injury. Ror1 and Ror2 are expressed abundantly in developing tissues in an overlapping, yet distinct manner, and their expression in adult tissues is restricted to specific cell types such as tissue stem/progenitor cells. Expression levels of Ror1 and/or Ror2 in the adult tissues are increased following injury, thereby promoting regeneration or repair of these injured tissues. On the other hand, disruption of Wnt5a-Ror2 signaling is implicated in senescence of tissue stem/progenitor cells that is related to the impaired regeneration capacity of aged tissues. In fact, Ror1 and Ror2 are implicated in age-related diseases, including tissue fibrosis, atherosclerosis (or arteriosclerosis), neurodegenerative diseases, and cancers. In these diseases, enhanced and/or sustained (chronic) expression of Ror1 and/or Ror2 is observed, and they might contribute to the progression of these diseases through Wnt5a-dependent and -independent manners. In this article, we overview recent advances in our understanding of the roles of Ror1 and Ror2-mediated signaling in the development, tissue regeneration and age-related diseases, and discuss their potential to be therapeutic targets for chronic inflammatory diseases and cancers.
Collapse
|
19
|
Munabi NCO, Mikhail S, Toubat O, Webb M, Auslander A, Sanchez-Lara PA, Manojlovic Z, Schmidt RJ, Craig D, Magee WP, Kumar SR. High prevalence of deleterious mutations in concomitant nonsyndromic cleft and outflow tract heart defects. Am J Med Genet A 2022; 188:2082-2095. [PMID: 35385219 PMCID: PMC9197864 DOI: 10.1002/ajmg.a.62748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 02/26/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022]
Abstract
Our previous work demonstrating enrichment of outflow tract (OFT) congenital heart disease (CHD) in children with cleft lip and/or palate (CL/P) suggests derangements in common underlying developmental pathways. The current pilot study examines the underlying genetics of concomitant nonsyndromic CL/P and OFT CHD phenotype. Of 575 patients who underwent CL/P surgery at Children's Hospital Los Angeles, seven with OFT CHD, negative chromosomal microarray analysis, and no recognizable syndromic association were recruited with their parents (as available). Whole genome sequencing of blood samples paired with whole‐blood‐based RNA sequencing for probands was performed. A pathogenic or potentially pathogenic variant was identified in 6/7 (85.7%) probands. A total of seven candidate genes were mutated (CHD7, SMARCA4, MED12, APOB, RNF213, SETX, and JAG1). Gene ontology analysis of variants predicted involvement in binding (100%), regulation of transcription (42.9%), and helicase activity (42.9%). Four patients (57.1%) expressed gene variants (CHD7, SMARCA4, MED12, and RNF213) previously involved in the Wnt signaling pathway. Our pilot analysis of a small cohort of patients with combined CL/P and OFT CHD phenotype suggests a potentially significant prevalence of deleterious mutations. In our cohort, an overrepresentation of mutations in molecules associated with Wnt‐signaling was found. These variants may represent an expanded phenotypic heterogeneity within known monogenic disease genes or provide novel evidence of shared developmental pathways. The mechanistic implications of these mutations and subsequent developmental derangements resulting in the CL/P and OFT CHD phenotype require further analysis in a larger cohort of patients.
Collapse
Affiliation(s)
- Naikhoba C O Munabi
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | | | - Omar Toubat
- Division of Cardiac Surgery, Department of Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Michelle Webb
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, California, USA
| | | | - Pedro A Sanchez-Lara
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zarko Manojlovic
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Ryan J Schmidt
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA.,Department of Pathology, Keck School of Medicine of USC, Los Angeles, California, USA
| | - David Craig
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, California, USA
| | - William P Magee
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, California, USA.,Department of Plastic Surgery, Shriners Hospital for Children, Los Angeles, California, USA
| | - Subramanyan Ram Kumar
- Division of Cardiac Surgery, Department of Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Heart Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
| |
Collapse
|
20
|
Dave Z, Vondálová Blanářová O, Čada Š, Janovská P, Zezula N, Běhal M, Hanáková K, Ganji SR, Krejci P, Gömöryová K, Peschelová H, Šmída M, Zdráhal Z, Pavlová Š, Kotašková J, Pospíšilová Š, Bryja V. Lyn Phosphorylates and Controls ROR1 Surface Dynamics During Chemotaxis of CLL Cells. Front Cell Dev Biol 2022; 10:838871. [PMID: 35295854 PMCID: PMC8918536 DOI: 10.3389/fcell.2022.838871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) are malignancies characterized by the dependence on B-cell receptor (BCR) signaling and by the high expression of ROR1, the cell surface receptor for Wnt-5a. Both, BCR and ROR1 are therapeutic targets in these diseases and the understanding of their mutual cross talk is thus of direct therapeutic relevance. In this study we analyzed the role of Lyn, a kinase from the Src family participating in BCR signaling, as a mediator of the BCR-ROR1 crosstalk. We confirm the functional interaction between Lyn and ROR1 and demonstrate that Lyn kinase efficiently phosphorylates ROR1 in its kinase domain and aids the recruitment of the E3 ligase c-CBL. We show that ROR1 surface dynamics in migrating primary CLL cells as well as chemotactic properties of CLL cells were inhibited by Lyn inhibitor dasatinib. Our data establish Lyn-mediated phosphorylation of ROR1 as a point of crosstalk between BCR and ROR1 signaling pathways.
Collapse
Affiliation(s)
- Zankruti Dave
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Olga Vondálová Blanářová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Štěpán Čada
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavlína Janovská
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Nikodém Zezula
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Běhal
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kateřina Hanáková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Sri Ranjani Ganji
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Kristína Gömöryová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Helena Peschelová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Michal Šmída
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Šárka Pavlová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Kotašková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Šárka Pospíšilová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Brno, Czech Republic
- *Correspondence: Vítězslav Bryja,
| |
Collapse
|
21
|
Jaruga A, Ksiazkiewicz J, Kuzniarz K, Tylzanowski P. Orofacial Cleft and Mandibular Prognathism-Human Genetics and Animal Models. Int J Mol Sci 2022; 23:ijms23020953. [PMID: 35055138 PMCID: PMC8779325 DOI: 10.3390/ijms23020953] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Many complex molecular interactions are involved in the process of craniofacial development. Consequently, the network is sensitive to genetic mutations that may result in congenital malformations of varying severity. The most common birth anomalies within the head and neck are orofacial clefts (OFCs) and prognathism. Orofacial clefts are disorders with a range of phenotypes such as the cleft of the lip with or without cleft palate and isolated form of cleft palate with unilateral and bilateral variations. They may occur as an isolated abnormality (nonsyndromic-NSCLP) or coexist with syndromic disorders. Another cause of malformations, prognathism or skeletal class III malocclusion, is characterized by the disproportionate overgrowth of the mandible with or without the hypoplasia of maxilla. Both syndromes may be caused by the presence of environmental factors, but the majority of them are hereditary. Several mutations are linked to those phenotypes. In this review, we summarize the current knowledge regarding the genetics of those phenotypes and describe genotype-phenotype correlations. We then present the animal models used to study these defects.
Collapse
Affiliation(s)
- Anna Jaruga
- Laboratory of Molecular Genetics, Department of Biomedical Sciences, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (A.J.); (J.K.)
| | - Jakub Ksiazkiewicz
- Laboratory of Molecular Genetics, Department of Biomedical Sciences, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (A.J.); (J.K.)
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Krystian Kuzniarz
- Department of Maxillofacial Surgery, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland;
| | - Przemko Tylzanowski
- Laboratory of Molecular Genetics, Department of Biomedical Sciences, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (A.J.); (J.K.)
- Department of Development and Regeneration, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
22
|
Morgan JD, Green JBA. Methods of Palate Culture in Later Palatogenesis: Elevation, Horizontal Outgrowth, and Fusion. Methods Mol Biol 2022; 2403:63-80. [PMID: 34913117 DOI: 10.1007/978-1-0716-1847-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ex vivo culture of the palate has provided a versatile model in which to study palatogenesis. Dysmorphias of the palate remain one of the most common birth defects globally, with great scope for future research in both normal and dysmorphic palatogenesis. This process can be studied in the mouse model using both the hyperoxic rolling culture of maxillary explants and Trowell-type static cultures, which are optimal for the study of different stages of palate development respectively. Here, we describe both methods: the former for the study of palatal shelf elevation and horizontal growth, and the latter for palatal shelf fusion . Both are applicable in murine embryos cultured at embryonic day 13.5 using nonspecialist equipment.
Collapse
Affiliation(s)
- Jack D Morgan
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Jeremy B A Green
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
23
|
The concurrent stimulation of Wnt and FGF8 signaling induce differentiation of dental mesenchymal cells into odontoblast-like cells. Med Mol Morphol 2021; 55:8-19. [PMID: 34739612 PMCID: PMC8885561 DOI: 10.1007/s00795-021-00297-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/13/2021] [Indexed: 11/05/2022]
Abstract
Fibroblast growth factor 8 (FGF8) is known to be a potent stimulator of canonical Wnt/β-catenin activity, an essential factor for tooth development. In this study, we analyzed the effects of co-administration of FGF8 and a CHIR99021 (GSK3β inhibitor) on differentiation of dental mesenchymal cells into odontoblasts. Utilizing Cre-mediated EGFP reporter mice, dentin matrix protein 1 (Dmp1) expression was examined in mouse neonatal molar tooth germs. At birth, expression of Dmp1-EGFP was not found in mesenchymal cells but rather epithelial cells, after which Dmp1-positive cells gradually emerged in the mesenchymal area along with disappearance in the epithelial area. Primary cultured mesenchymal cells from neonatal tooth germ specimens showed loss of Dmp1-EGFP positive signals, whereas addition of Wnt3a or the CHIR99021 significantly regained Dmp1 positivity within approximately 2 weeks. Other odontoblast markers such as dentin sialophosphoprotein (Dspp) could not be clearly detected. Concurrent stimulation of primary cultured mesenchymal cells with the CHIR99021 and FGF8 resulted in significant upregulation of odonto/osteoblast proteins. Furthermore, increased expression levels of runt-related transcription factor 2 (Runx2), osterix, and osteocalcin were also observed. The present findings indicate that coordinated action of canonical Wnt/β-catenin and FGF8 signals is essential for odontoblast differentiation of tooth germs in mice.
Collapse
|
24
|
Alcantara MC, Suzuki K, Acebedo AR, Sakamoto Y, Nishita M, Minami Y, Kikuchi A, Yamada G. Stage-dependent function of Wnt5a during male external genitalia development. Congenit Anom (Kyoto) 2021; 61:212-219. [PMID: 34255394 DOI: 10.1111/cga.12438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/27/2022]
Abstract
External genitalia development in mice involves multiple developmental processes under the regulation of various signaling pathways. Wnt5a, one of the major Wnt ligands, is a crucial developmental regulator of outgrowing organs such as the limb, the mandible, and the external genitalia. Defects in Wnt5a signaling have been linked to Robinow syndrome, a genetic disorder in which male patients manifest a micropenis and defective urethral tube formation. Whereas Wnt5a is required for cell proliferation during embryonic external genitalia outgrowth, its role for urethral tube formation has yet to be understood. Here, we show that Wnt5a contributes to urethral tube formation as well as external genitalia outgrowth. Wnt5a is expressed in the embryonic external genitalia mesenchyme, and mesenchymal-specific conditional Wnt5a knockout mice resulted in hypospadias-like urethral defects. Early deletion of Wnt5a at E10.5 showed severe defects in both external genitalia outgrowth and urethral tube formation, along with reduced cell proliferation. The severe urethral tube defect persisted during later timing deletion of Wnt5a (E13.5). Further analyses revealed that loss of Wnt5a disrupted cell polarity and led to a reduction of the phosphorylated myosin light chain and the focal adhesion protein, vinculin. Altogether, these results suggest that Wnt5a coordinates cell proliferation and directed cell migration in a stage-dependent manner during male external genitalia development. Furthermore, Wnt5a may regulate cell polarity, focal adhesion formation, and cell contractility, leading to directed cell migration during male-type urethral formation in a manner that has not been reported in other organ fusion events.
Collapse
Affiliation(s)
- Mellissa C Alcantara
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Alvin R Acebedo
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yuki Sakamoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Michiru Nishita
- Department of Biochemistry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuhiro Minami
- Faculty of Medical Sciences, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
25
|
Pang X, Wang X, Wang Y, Pu L, Shi J, Burdekin N, Shi B, Li C. Sox9CreER-mediated deletion of β-catenin in palatal mesenchyme results in delayed palatal elevation accompanied with repressed canonical Wnt signaling and reduced actin polymerization. Genesis 2021; 59:e23441. [PMID: 34390177 DOI: 10.1002/dvg.23441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 11/11/2022]
Abstract
Cleft palate is a good model to pushing us toward a deeper understanding of the molecular mechanisms of spatiotemporal patterns in tissues and organisms because of the multiple-step processes such as elevation and fusion. Previous studies have shown that the epithelial β-catenin is crucial for palatal fusion, however, the function of the mesenchymal β-catenin remains elusive. We investigate the role of mesenchymal β-catenin in palatal development by generating a β-catenin conditional knockout mouse (CKO) (Sox9CreER; Ctnnb1F/F ). We found that the CKO mice exhibited delayed palatal elevation, leading to cleft palate in both in vivo and ex vivo. Abnormal cell proliferation and repressed mesenchymal canonical Wnt signaling were found in the CKO palate. Interestingly, Filamentous actin (F-actin) polymerization was significantly reduced in the palatal mesenchyme of mutant embryos. Furthermore, overexpression of adenovirus-mediated transfection with Acta1 in the mutant could help to elevate the palatal shelves but could not prevent cleft palate in ex vivo. Our results suggest that conditionally knock out β-catenin in the palatal mesenchyme by Sox9CreER leading to delayed palatal elevation, which results in repressed mesenchymal canonical Wnt signaling, decreased cell proliferation, and reduced actin polymerization, finally causes cleft palate.
Collapse
Affiliation(s)
- Xiaoxiao Pang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoming Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yahong Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Lingling Pu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jiayu Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Nathaniel Burdekin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chenghao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Zhu S, Song H, Zhong L, Huo S, Fang Y, Zhao W, Yang X, Dai ZM, He R, Qiu M, Zhang Z, Zhu XJ. Essential role of Msx1 in regulating anterior-posterior patterning of the secondary palate in mice. J Genet Genomics 2021; 49:63-73. [PMID: 34857492 DOI: 10.1016/j.jgg.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
Development of the secondary palate displays molecular heterogeneity along the anterior-posterior axis; however, the underlying molecular mechanism remains largely unknown. MSX1 is an anteriorly expressed transcription repressor required for palate development. Here, we investigate the role of Msx1 in regional patterning of the secondary palate. The Wnt1-Cre-mediated expression of Msx1 (RosaMsx1Wnt1-Cre) throughout the palatal mesenchyme leads to cleft palate in mice, associated with aberrant cell proliferation and cell death. Osteogenic patterning of the hard palate in RosaMsx1Wnt1-Cre mice is severely impaired, as revealed by a marked reduction in palatine bone formation and decreased expression of the osteogenic regulator Sp7. Overexpression and knockout of Msx1 in mice show that the transcription repressor promotes the expression of the anterior palate-specific Alx1 but represses the expression of the medial-posterior palate genes Barx1, Meox2, and Tbx22. Furthermore, Tbx22 constitutes a direct Msx1 target gene in the secondary palate, suggesting that Msx1 can directly repress the expression of medial-posterior specific genes. Finally, we determine that Sp7 is downstream of Tbx22 in palatal mesenchymal cells, suggesting that a Msx1/Tbx22/Sp7 axis participates in the regulation of palate development. Our findings unveil a novel role for Msx1 in regulating the anterior-posterior growth and patterning of the secondary palate.
Collapse
Affiliation(s)
- Shicheng Zhu
- Institute of Life Sciences, College of Life and Environmental Sciences, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hanjing Song
- Institute of Life Sciences, College of Life and Environmental Sciences, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Liangjun Zhong
- The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Suman Huo
- Institute of Life Sciences, College of Life and Environmental Sciences, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yukun Fang
- Institute of Life Sciences, College of Life and Environmental Sciences, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wanxin Zhao
- Institute of Life Sciences, College of Life and Environmental Sciences, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xueqin Yang
- Institute of Life Sciences, College of Life and Environmental Sciences, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhong-Min Dai
- Institute of Life Sciences, College of Life and Environmental Sciences, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Rui He
- The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Mengsheng Qiu
- Institute of Life Sciences, College of Life and Environmental Sciences, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zunyi Zhang
- Institute of Life Sciences, College of Life and Environmental Sciences, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiao-Jing Zhu
- Institute of Life Sciences, College of Life and Environmental Sciences, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
27
|
Goering JP, Wenger LW, Stetsiv M, Moedritzer M, Hall EG, Isai DG, Jack BM, Umar Z, Rickabaugh MK, Czirok A, Saadi I. In-frame deletion of SPECC1L microtubule association domain results in gain-of-function phenotypes affecting embryonic tissue movement and fusion events. Hum Mol Genet 2021; 31:18-31. [PMID: 34302166 DOI: 10.1093/hmg/ddab211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/12/2022] Open
Abstract
Patients with autosomal dominant SPECC1L variants show syndromic malformations, including hypertelorism, cleft palate and omphalocele. These SPECC1L variants largely cluster in the second coiled-coil domain (CCD2), which facilitates association with microtubules. To study SPECC1L function in mice, we first generated a null allele (Specc1lΔEx4) lacking the entire SPECC1L protein. Homozygous mutants for these truncations died perinatally without cleft palate or omphalocele. Given the clustering of human variants in CCD2, we hypothesized that targeted perturbation of CCD2 may be required. Indeed, homozygotes for in-frame deletions involving CCD2 (Specc1lΔCCD2) resulted in exencephaly, cleft palate and ventral body wall closure defects (omphalocele). Interestingly, exencephaly and cleft palate were never observed in the same embryo. Further examination revealed a narrower oral cavity in exencephalic embryos, which allowed palatal shelves to elevate and fuse despite their defect. In the cell, wildtype SPECC1L was evenly distributed throughout the cytoplasm and colocalized with both microtubules and filamentous actin. In contrast, mutant SPECC1L-ΔCCD2 protein showed abnormal perinuclear accumulation with diminished overlap with microtubules, indicating that SPECC1L used microtubule association for trafficking in the cell. The perinuclear accumulation in the mutant also resulted in abnormally increased actin and non-muscle myosin II bundles dislocated to the cell periphery. Disrupted actomyosin cytoskeletal organization in SPECC1L CCD2 mutants would affect cell alignment and coordinated movement during neural tube, palate and ventral body wall closure. Thus, we show that perturbation of CCD2 in the context of full SPECC1L protein affects tissue fusion dynamics, indicating that human SPECC1L CCD2 variants are gain-of-function.
Collapse
Affiliation(s)
- Jeremy P Goering
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Luke W Wenger
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Marta Stetsiv
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael Moedritzer
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Everett G Hall
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Dona Greta Isai
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Brittany M Jack
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Zaid Umar
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Madison K Rickabaugh
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Biological Physics, Eotvos University, Budapest 1053, Hungary
| | - Irfan Saadi
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
28
|
Thorup AS, Strachan D, Caxaria S, Poulet B, Thomas BL, Eldridge SE, Nalesso G, Whiteford JR, Pitzalis C, Aigner T, Corder R, Bertrand J, Dell'Accio F. ROR2 blockade as a therapy for osteoarthritis. Sci Transl Med 2021; 12:12/561/eaax3063. [PMID: 32938794 DOI: 10.1126/scitranslmed.aax3063] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 02/20/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Osteoarthritis is characterized by the loss of the articular cartilage, bone remodeling, pain, and disability. No pharmacological intervention can currently halt progression of osteoarthritis. Here, we show that blocking receptor tyrosine kinase-like orphan receptor 2 (ROR2) improves cartilage integrity and pain in osteoarthritis models by inhibiting yes-associated protein (YAP) signaling. ROR2 was up-regulated in the cartilage in response to inflammatory cytokines and mechanical stress. The main ligand for ROR2, WNT5A, and the targets YAP and connective tissue growth factor were up-regulated in osteoarthritis in humans. In vitro, ROR2 overexpression inhibited chondrocytic differentiation. Conversely, ROR2 blockade triggered chondrogenic differentiation of C3H10T1/2 cells and suppressed the expression of the cartilage-degrading enzymes a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5. The chondrogenic effect of ROR2 blockade in the cartilage was independent of WNT signaling and was mediated by down-regulation of YAP signaling. ROR2 signaling induced G protein and Rho-dependent nuclear accumulation of YAP, and YAP inhibition was required but not sufficient for ROR2 blockade-induced chondrogenesis. ROR2 silencing protected mice from instability-induced osteoarthritis with improved structural outcomes, sustained pain relief, and without apparent side effects or organ toxicity. Last, ROR2 silencing in human articular chondrocytes transplanted in nude mice led to the formation of cartilage organoids with more and better differentiated extracellular matrix, suggesting that the anabolic effect of ROR2 blockade is conserved in humans. Thus, ROR2 blockade is efficacious and well tolerated in preclinical animal models of osteoarthritis.
Collapse
Affiliation(s)
- Anne-Sophie Thorup
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Danielle Strachan
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sara Caxaria
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Blandine Poulet
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Bethan L Thomas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Suzanne E Eldridge
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Giovanna Nalesso
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
| | - James R Whiteford
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Costantino Pitzalis
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Thomas Aigner
- Institute of Pathology, Medical Center Coburg, Ketschendorferstrasse 33, 96450 Coburg, Germany
| | - Roger Corder
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Francesco Dell'Accio
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
29
|
Suthon S, Perkins RS, Bryja V, Miranda-Carboni GA, Krum SA. WNT5B in Physiology and Disease. Front Cell Dev Biol 2021; 9:667581. [PMID: 34017835 PMCID: PMC8129536 DOI: 10.3389/fcell.2021.667581] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
WNT5B, a member of the WNT family of proteins that is closely related to WNT5A, is required for cell migration, cell proliferation, or cell differentiation in many cell types. WNT5B signals through the non-canonical β-catenin-independent signaling pathway and often functions as an antagonist of canonical WNT signaling. Although WNT5B has a high amino acid identity with WNT5A and is often assumed to have similar activities, WNT5B often exhibits unique expression patterns and functions. Here, we describe the distinct effects and mechanisms of WNT5B on development, bone, adipose tissue, cardiac tissue, the nervous system, the mammary gland, the lung and hematopoietic cells, compared to WNT5A. We also highlight aberrances in non-canonical WNT5B signaling contributing to diseases such as osteoarthritis, osteoporosis, obesity, type 2 diabetes mellitus, neuropathology, and chronic diseases associated with aging, as well as various cancers.
Collapse
Affiliation(s)
- Sarocha Suthon
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Rachel S Perkins
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Vitezslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czechia
| | - Gustavo A Miranda-Carboni
- Division of Hematology and Oncology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Susan A Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
30
|
Goering JP, Isai DG, Czirok A, Saadi I. Isolation and Time-Lapse Imaging of Primary Mouse Embryonic Palatal Mesenchyme Cells to Analyze Collective Movement Attributes. J Vis Exp 2021. [PMID: 33645552 DOI: 10.3791/62151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Development of the palate is a dynamic process, which involves vertical growth of bilateral palatal shelves next to the tongue followed by elevation and fusion above the tongue. Defects in this process lead to cleft palate, a common birth defect. Recent studies have shown that palatal shelf elevation involves a remodeling process that transforms the orientation of the shelf from a vertical to a horizontal one. The role of the palatal shelf mesenchymal cells in this dynamic remodeling has been difficult to study. Time-lapse-imaging-based quantitative analysis has been recently used to show that primary mouse embryonic palatal mesenchymal (MEPM) cells can self-organize into a collective movement. Quantitative analyses could identify differences in mutant MEPM cells from a mouse model with palate elevation defects. This paper describes methods to isolate and culture MEPM cells from E13.5 embryos-specifically for time-lapse imaging-and to determine various cellular attributes of collective movement, including measures for stream formation, shape alignment, and persistence of direction. It posits that MEPM cells can serve as a proxy model for studying the role of palatal shelf mesenchyme during the dynamic process of elevation. These quantitative methods will allow investigators in the craniofacial field to assess and compare collective movement attributes in control and mutant cells, which will augment the understanding of mesenchymal remodeling during palatal shelf elevation. Furthermore, MEPM cells provide a rare mesenchymal cell model for investigation of collective cell movement in general.
Collapse
Affiliation(s)
- Jeremy P Goering
- Department of Anatomy and Cell Biology, University of Kansas Medical Center
| | - Dona Greta Isai
- Department of Anatomy and Cell Biology, University of Kansas Medical Center
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center; Department of Biological Physics, Eotvos University;
| | - Irfan Saadi
- Department of Anatomy and Cell Biology, University of Kansas Medical Center;
| |
Collapse
|
31
|
Ma Y, Jing J, Feng J, Yuan Y, Wen Q, Han X, He J, Chen S, Ho TV, Chai Y. Ror2-mediated non-canonical Wnt signaling regulates Cdc42 and cell proliferation during tooth root development. Development 2021; 148:dev.196360. [PMID: 33323370 PMCID: PMC7847279 DOI: 10.1242/dev.196360] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Abstract
The control of size and shape is an important part of regulatory process during organogenesis. Tooth formation is a highly complex process that fine-tunes the size and shape of the tooth, which are crucial for its physiological functions. Each tooth consists of a crown and one or more roots. Despite comprehensive knowledge of the mechanism that regulates early tooth crown development, we have limited understanding of the mechanism regulating root patterning and size during development. Here, we show that Ror2-mediated non-canonical Wnt signaling in the dental mesenchyme plays a crucial role in cell proliferation, and thereby regulates root development size in mouse molars. Furthermore, Cdc42 acts as a potential downstream mediator of Ror2 signaling in root formation. Importantly, activation of Cdc42 can restore cell proliferation and partially rescue the root development size defects in Ror2 mutant mice. Collectively, our findings provide novel insights into the function of Ror2-mediated non-canonical Wnt signaling in regulating tooth morphogenesis, and suggest potential avenues for dental tissue engineering. Summary: The function of Ror2-mediated non-canonical Wnt signaling and its effect on Cdc42 activation is crucial in regulating progenitor cell proliferation, odontoblast differentiation and Hertwig's epithelial root sheath formation during tooth root morphogenesis.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,Guangdong Provincial Key Laboratory of Stomatology, Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Quan Wen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Shuo Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
32
|
Goering JP, Isai DG, Hall EG, Wilson NR, Kosa E, Wenger LW, Umar Z, Yousaf A, Czirok A, Saadi I. SPECC1L-deficient primary mouse embryonic palatal mesenchyme cells show speed and directionality defects. Sci Rep 2021; 11:1452. [PMID: 33446878 PMCID: PMC7809270 DOI: 10.1038/s41598-021-81123-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/04/2021] [Indexed: 02/02/2023] Open
Abstract
Cleft lip and/or palate (CL/P) are common anomalies occurring in 1/800 live-births. Pathogenic SPECC1L variants have been identified in patients with CL/P, which signifies a primary role for SPECC1L in craniofacial development. Specc1l mutant mouse embryos exhibit delayed palatal shelf elevation accompanied by epithelial defects. We now posit that the process of palate elevation is itself abnormal in Specc1l mutants, due to defective remodeling of palatal mesenchyme. To characterize the underlying cellular defect, we studied the movement of primary mouse embryonic palatal mesenchyme (MEPM) cells using live-imaging of wound-repair assays. SPECC1L-deficient MEPM cells exhibited delayed wound-repair, however, reduced cell speed only partially accounted for this delay. Interestingly, mutant MEPM cells were also defective in coordinated cell movement. Therefore, we used open-field 2D cultures of wildtype MEPM cells to show that they indeed formed cell streams at high density, which is an important attribute of collective movement. Furthermore, activation of the PI3K-AKT pathway rescued both cell speed and guidance defects in Specc1l mutant MEPM cells. Thus, we show that live-imaging of primary MEPM cells can be used to assess mesenchymal remodeling defects during palatal shelf elevation, and identify a novel role for SPECC1L in collective movement through modulation of PI3K-AKT signaling.
Collapse
Affiliation(s)
- Jeremy P Goering
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Dona G Isai
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Everett G Hall
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
- Clinical Research Training Center, Institute of Clinical and Translational Sciences, Washington University, St. Louis, MO, USA
| | - Nathan R Wilson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Edina Kosa
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Luke W Wenger
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Zaid Umar
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Abdul Yousaf
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA.
| | - Irfan Saadi
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA.
| |
Collapse
|
33
|
Inestrosa NC, Tapia-Rojas C, Cerpa W, Cisternas P, Zolezzi JM. WNT Signaling Is a Key Player in Alzheimer's Disease. Handb Exp Pharmacol 2021; 269:357-382. [PMID: 34486097 DOI: 10.1007/164_2021_532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cellular processes regulated by WNT signaling have been mainly studied during embryonic development and cancer. In the last two decades, the role of WNT in the adult central nervous system has been the focus of interest in our laboratory. In this chapter, we will be summarized β-catenin-dependent and -independent WNT pathways, then we will be revised WNT signaling function at the pre- and post-synaptic level. Concerning Alzheimer's disease (AD) initially, we found that WNT/β-catenin signaling activation exerts a neuroprotective mechanism against the amyloid β (Αβ) peptide toxicity. Later, we found that WNT/β-catenin participates in Tau phosphorylation and in learning and memory. In the last years, we demonstrated that WNT/β-catenin signaling is instrumental in the amyloid precursor protein (APP) processing and that WNT/β-catenin dysfunction results in Aβ production and aggregation. We highlight the importance of WNT/β-catenin signaling dysfunction in the onset of AD and propose that the loss of WNT/β-catenin signaling is a triggering factor of AD. The WNT pathway is therefore positioned as a therapeutic target for AD and could be a valid concept for improving AD therapy. We think that metabolism and inflammation will be relevant when defining future research in the context of WNT signaling and the neurodegeneration associated with AD.
Collapse
Affiliation(s)
- Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
| | - Cheril Tapia-Rojas
- Centro de Biología Celular y Biomedicina (CEBICEM), Laboratory of Neurobiology of Aging, Facultad de Medicina y Ciencia, Universidad de San Sebastián, Sede Los Leones, Santiago, Chile
| | - Waldo Cerpa
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Ciencias de la Salud, Universidad de O´Higgins, Rancagua, Chile
| | - Juan M Zolezzi
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
34
|
Wang XM, Liu WL, Chen Y, Pang XX, Wang YH, Wu M, Shi B, Li CH. Lithium-induced overexpression of β-catenin delays murine palatal shelf elevation by Cdc-42 mediated F-actin remodeling in mesenchymal cells. Birth Defects Res 2020; 113:427-438. [PMID: 33300673 DOI: 10.1002/bdr2.1853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Lithium chloride (LiCl) is widely used for the treatment of manic and other psychotic disorders, but the administration of lithium can result in several congenital defects in the fetus, including cleft palate (Meng, Wang, Torensma, Jw & Bian, 2015) (Szabo, 1970). However, the mechanism of Lithium's action as a developmental toxicant in palatogenesis is not well known. METHODS In this study, hematoxylin-eosin and immunofluorescence staining were employed to evaluate the phenotypes and the expression of related markers in the LiCl-treated mice model. The palatal mesenchymal cells were cultured in vitro, and stimulated with LiCl or SKL2000, and co-treated with CASIN. β-catenin protein and other cytoskeleton associated markers were evaluated by Western blotting. RESULTS We found that Lithium disrupted palate elevation by increasing the expression of β-catenin in C57BL/6J mice with the high incidence of cleft palate (62.5%). LiCl disturbed the F-actin responsible for cytoskeletal remodeling in mesenchymal cells, which proved to be essential in generating the elevating force during palatal elevation. Additionally, our Western blotting analysis revealed that the overexpression of β-catenin resulted in up-regulation of Cdc42, which mediated the downstream F-actin synthesis. CONCLUSIONS We concluded the LiCl-induced β-catenin overexpression delayed murine palatal shelf elevation by disturbing Cdc42 mediated F-actin cytoskeleton synthesis in the palatal mesenchyme.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei-Long Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao-Xiao Pang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Hong Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Bing Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng-Hao Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Reynolds K, Zhang S, Sun B, Garland M, Ji Y, Zhou CJ. Genetics and signaling mechanisms of orofacial clefts. Birth Defects Res 2020; 112:1588-1634. [PMID: 32666711 PMCID: PMC7883771 DOI: 10.1002/bdr2.1754] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Craniofacial development involves several complex tissue movements including several fusion processes to form the frontonasal and maxillary structures, including the upper lip and palate. Each of these movements are controlled by many different factors that are tightly regulated by several integral morphogenetic signaling pathways. Subject to both genetic and environmental influences, interruption at nearly any stage can disrupt lip, nasal, or palate fusion and result in a cleft. Here, we discuss many of the genetic risk factors that may contribute to the presentation of orofacial clefts in patients, and several of the key signaling pathways and underlying cellular mechanisms that control lip and palate formation, as identified primarily through investigating equivalent processes in animal models, are examined.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Michael Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Chengji J. Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| |
Collapse
|
36
|
Song X, Hu H, Zhao M, Ma T, Gao L. Prospects of circadian clock in joint cartilage development. FASEB J 2020; 34:14120-14135. [PMID: 32946614 DOI: 10.1096/fj.202001597r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Altering the food intake, exercise, and sleep patterns have a great influence on the homeostasis of the biological clock. This leads to accelerated aging of the articular cartilage, susceptibility to arthropathy and other aspects. Deficiency or overexpression of certain circadian clock-related genes accelerates the cartilage deterioration and leads to phenotypic variation in different joints. The process of joint cartilage development includes the formation of joint site, interzone, joint cavitation, epiphyseal ossification center, and cartilage maturation. The mechanism by which, biological clock regulates the cell-cycle, growth, metabolism, and other biological processes of chondrocytes is poorly understood. Here, we summarized the interaction between biological clock proteins and developmental pathways in chondrogenesis and provided the evidence from other tissues that further predicts the molecular patterns of these protein-protein networks in activation, proliferation, and differentiation. The purpose of this review is to gain deeper understanding of the evolution of cartilage and its irreversibility seen in damage and aging.
Collapse
Affiliation(s)
- Xiaopeng Song
- Heilongjiang Key Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hailong Hu
- Heilongjiang Key Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mingchao Zhao
- Heilongjiang Key Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianwen Ma
- Heilongjiang Key Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Li Gao
- Heilongjiang Key Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
37
|
Long Noncoding RNA TUG1 Promotes the Function in ox-LDL-Treated HA-VSMCs via miR-141-3p/ROR2 Axis. Cardiovasc Ther 2020; 2020:6758934. [PMID: 32565910 PMCID: PMC7285414 DOI: 10.1155/2020/6758934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background Atherosclerosis (AS) is a common severe disease around the world. The merging paper reported that long noncoding RNAs (lncRNAs) took part in diversified pathological processes of AS, although the mechanism remains unknown. This study is aimed at uncovering the profile of lncRNA taurine-upregulated gene 1 (TUG1), which has biological function, and potential mechanism in AS progression in vitro. Methods Oxidized low-density lipoprotein (ox-LDL) was used for AS model construction in vitro. Levels of lncRNA TUG1, miR-141-3p, and receptor tyrosine kinase-like orphan receptor 2 (ROR2) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) in AS tissues or in ox-LDL-treated vascular smooth muscle cells (HA-VSMCs). The biofunctional effects were examined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and transwell assays. The expression of proliferation-related proteins (CyclinD1, Ki-67) and metastasis-associated proteins (β-catenin, Vimentin) and ROR2 in cells was determined by western blot analysis. The potential binding sites were predicted by starBase software online and confirmed by dual-luciferase reporter analysis. Results The expression of TUG1 and ROR2 was promoted in AS tissues and ox-LDL-treated HA-VSMCs. While the low expression of miR-141-3p negatively correlated with that of TUG1 or ROR2 in AS tissues. Silencing of TUG1 inhibited the proliferation, migration, invasion, and metastasis in ox-LDL-treated HA-VSMCs. Moreover, the putative binding sites between miR-141-3p and TUG1 or ROR2 were predicted by starBase software online. Also, miR-141-3p deletion reversed the positive effects of TUG1 knockdown on cells. Besides, downregulation of miR-141-3p disrupted the biofunctional results from ROR2 silencing. Conclusion TUG1 enhanced the progression of AS in vitro by regulating the miR-141-3p/ROR2 axis.
Collapse
|
38
|
Kamizaki K, Endo M, Minami Y, Kobayashi Y. Role of noncanonical Wnt ligands and Ror-family receptor tyrosine kinases in the development, regeneration, and diseases of the musculoskeletal system. Dev Dyn 2020; 250:27-38. [PMID: 31925877 DOI: 10.1002/dvdy.151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/26/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
The Ror-family receptor tyrosine kinases (RTKs), consisting of Ror1 and Ror2, play crucial roles in morphogenesis and formation of various tissues/organs, including the bones and skeletal muscles, the so-called musculoskeletal system, during embryonic development, by acting as receptors or coreceptors for a noncanonical Wnt protein Wnt5a. Furthermore, several lines of evidence have indicated that Ror1 and/or Ror2 play critical roles in the regeneration and maintenance of the musculoskeletal system in adults. Considering the anatomical and functional relationship between the skeleton and skeletal muscles, their structural and functional association might be tightly regulated during their embryonic development, development after birth, and their regeneration after injury in adults. Importantly, in addition to their congenital anomalies, much attention has been paid onto the age-related disorders of the musculoskeletal system, including osteopenia and sarcopenia, which affect severely the quality of life. In this article, we overview recent advances in our understanding of the roles of Ror1- and/or Ror2-mediated signaling in the embryonic development, regeneration in adults, and congenital and age-related disorders of the musculoskeletal system and discuss possible therapeutic approaches to locomotive syndromes by modulating Ror1- and/or Ror2-mediated signaling.
Collapse
Affiliation(s)
- Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | | |
Collapse
|
39
|
Endo M, Tanaka Y, Otsuka M, Minami Y. E2F1-Ror2 signaling mediates coordinated transcriptional regulation to promote G1/S phase transition in bFGF-stimulated NIH/3T3 fibroblasts. FASEB J 2020; 34:3413-3428. [PMID: 31922321 DOI: 10.1096/fj.201902849r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 01/18/2023]
Abstract
Ror2 signaling has been shown to regulate the cell cycle progression in normal and cancer cells. However, the molecular mechanism of the cell cycle progression upon activation of Ror2 signaling still remains unknown. Here, we found that the expression levels of Ror2 in G1-arrested NIH/3T3 fibroblasts are low and are rapidly increased following the cell cycle progression induced by basic fibroblast growth factor (bFGF) stimulation. By expressing wild-type or a dominant negative mutant of E2F1, we show that E2F1 mediates bFGF-induced expression of Ror2, and that E2F1 binds to the promoter of the Ror2 gene to activate its expression. We also found that G1/S phase transition of bFGF-stimulated NIH/3T3 cells is delayed by the suppressed expression of Ror2. RNA-seq analysis revealed that the suppressed expression of Ror2 results in the decreased expression of various E2F target genes concomitantly with increased expression of Forkhead box O (FoxO) target genes, including p21Cip1 , and p27Kip1 . Moreover, the inhibitory effect of Ror2 knockdown on the cell cycle progression can be restored by suppressed expression of p21Cip1 , p27Kip1 ,or FoxO3a. Collectively, these findings indicate that E2F1-Ror2 signaling mediates the transcriptional activation and inhibition of E2F1-driven and FoxO3a-driven cell cycle-regulated genes, respectively, thereby promoting G1/S phase transition of bFGF-stimulated NIH/3T3 cells.
Collapse
Affiliation(s)
- Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yuki Tanaka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mako Otsuka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
40
|
Nishihara H. Transposable elements as genetic accelerators of evolution: contribution to genome size, gene regulatory network rewiring and morphological innovation. Genes Genet Syst 2020; 94:269-281. [PMID: 31932541 DOI: 10.1266/ggs.19-00029] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In the current era, as a growing number of genome sequence assemblies have been reported in animals, an in-depth analysis of transposable elements (TEs) is one of the most fundamental and essential studies for evolutionary genomics. Although TEs have, in general, been regarded as non-functional junk/selfish DNA, parasitic elements or harmful mutagens, studies have revealed that TEs have had a substantial and sometimes beneficial impact on host genomes in several ways. First, TEs are themselves diverse and thus provide lineage-specific characteristics to the genomes. Second, because TEs constitute a substantial fraction of animal genomes, they are a major contributing factor to evolutionary changes in genome size and composition. Third, host organisms have co-opted many repetitive sequences as genes, cis-regulatory elements and chromatin domain boundaries, which alter gene regulatory networks and in addition are partly involved in morphological evolution, as has been well documented in mammals. Here, I review the impact of TEs on various aspects of the genome, such as genome size and diversity in animals, as well as the evolution of gene networks and genome architecture in mammals. Given that a number of TE families probably remain to be discovered in many non-model organisms, unknown TEs may have contributed to gene networks in a much wider variety of animals than considered previously.
Collapse
|
41
|
Roberts JL, Liu G, Paglia DN, Kinter CW, Fernandes LM, Lorenzo J, Hansen MF, Arif A, Drissi H. Deletion of
Wnt5a
in osteoclasts results in bone loss through decreased bone formation. Ann N Y Acad Sci 2020; 1463:45-59. [DOI: 10.1111/nyas.14293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Joseph L. Roberts
- Department of Orthopaedics Emory University School of Medicine Atlanta Georgia
| | - Guanglu Liu
- Department of Orthopaedics Emory University School of Medicine Atlanta Georgia
| | - David N. Paglia
- Department of Orthopaedics, New Jersey Medical School Rutgers University Newark New Jersey
| | | | | | - Joseph Lorenzo
- Department of Medicine and Department of Orthopaedic Surgery University of Connecticut Health Farmington Connecticut
| | - Marc F. Hansen
- Center for Molecular Medicine University of Connecticut Health Farmington Connecticut
| | - Abul Arif
- Department of Orthopaedics Emory University School of Medicine Atlanta Georgia
| | - Hicham Drissi
- Department of Orthopaedics Emory University School of Medicine Atlanta Georgia
| |
Collapse
|
42
|
Vargas JY, Loria F, Wu Y, Córdova G, Nonaka T, Bellow S, Syan S, Hasegawa M, van Woerden GM, Trollet C, Zurzolo C. The Wnt/Ca 2+ pathway is involved in interneuronal communication mediated by tunneling nanotubes. EMBO J 2019; 38:e101230. [PMID: 31625188 PMCID: PMC6885744 DOI: 10.15252/embj.2018101230] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 01/15/2023] Open
Abstract
Tunneling nanotubes (TNTs) are actin-based transient tubular connections that allow direct communication between distant cells. TNTs play an important role in several physiological (development, immunity, and tissue regeneration) and pathological (cancer, neurodegeneration, and pathogens transmission) processes. Here, we report that the Wnt/Ca2+ pathway, an intracellular cascade that is involved in actin cytoskeleton remodeling, has a role in TNT formation and TNT-mediated transfer of cargoes. Specifically, we found that Ca2+ /calmodulin-dependent protein kinase II (CaMKII), a transducer of the Wnt/Ca2+ pathway, regulates TNTs in a neuronal cell line and in primary neurons. We identified the β isoform of CaMKII as a key molecule in modulating TNT formation and transfer, showing that this depends on the actin-binding activity of the protein. Finally, we found that the transfer of vesicles and aggregated α-synuclein between primary neurons can be regulated by the activation of the Wnt/Ca2+ pathway. Our findings suggest that Wnt/Ca2+ pathway could be a novel promising target for therapies designed to impair TNT-mediated propagation of pathogens.
Collapse
Affiliation(s)
- Jessica Y Vargas
- Unité de Trafic Membranaire et PathogénèseDépartement de Biologie Cellulaire et de l'InfectionInstitut PasteurParisFrance
| | - Frida Loria
- Unité de Trafic Membranaire et PathogénèseDépartement de Biologie Cellulaire et de l'InfectionInstitut PasteurParisFrance
- Present address:
Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)Departamento de Biología MolecularUniversidad Autónoma de MadridMadridSpain
| | - Yuan‐Ju Wu
- Unité de Trafic Membranaire et PathogénèseDépartement de Biologie Cellulaire et de l'InfectionInstitut PasteurParisFrance
| | - Gonzalo Córdova
- Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieCentre de Recherche en MyologieUMRS974Sorbonne UniversitéParisFrance
| | - Takashi Nonaka
- Department of Dementia and Higher Brain FunctionTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | | | - Sylvie Syan
- Unité de Trafic Membranaire et PathogénèseDépartement de Biologie Cellulaire et de l'InfectionInstitut PasteurParisFrance
| | - Masato Hasegawa
- Department of Dementia and Higher Brain FunctionTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Geeske M van Woerden
- Department of NeuroscienceErasmus Medical CenterRotterdamThe Netherlands
- ENCORE Expertise Center for Neurodevelopmental DisordersErasmus Medical CenterRotterdamThe Netherlands
| | - Capucine Trollet
- Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieCentre de Recherche en MyologieUMRS974Sorbonne UniversitéParisFrance
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et PathogénèseDépartement de Biologie Cellulaire et de l'InfectionInstitut PasteurParisFrance
| |
Collapse
|
43
|
Abstract
Cleft palate is a common major birth defect resulting from disruption of palatal shelf growth, elevation, or fusion during fetal palatogenesis. Whereas the molecular mechanism controlling palatal shelf elevation is not well understood, a prevailing hypothesis is that region-specific accumulation of hyaluronan, a predominant extracellular glycosaminoglycan in developing palatal mesenchyme, plays a major role in palatal shelf elevation. However, direct genetic evidence for a requirement of hyaluronan in palate development is still lacking. In this study, we show that Has2, 1 of 3 hyaluronan synthases in mammals, plays a major role in hyaluronan synthesis in the neural crest-derived craniofacial mesenchyme during palatogenesis in mice. We analyzed developmental defects caused by tissue-specific inactivation of Has2 throughout the cranial neural crest lineage or specifically in developing palatal or mandibular mesenchyme, respectively, using Wnt1-Cre, Osr2-Cre, and Hand2-Cre transgenic mice. Inactivation of Has2 either throughout the neural crest lineage or specifically in the developing palatal mesenchyme caused reduced palatal shelf size and increased palatal mesenchyme cell density prior to the time of normal palatal shelf elevation. Whereas both Has2f/f;Wnt1-Cre and Has2f/f;Osr2-Cre mutant mice exhibit cleft palate at complete penetrance, the Has2f/f; Wnt1-Cre fetuses showed dramatically reduced mandible size and complete failure of palatal shelf elevation, whereas Has2f/f;Osr2-Cre fetuses had normal mandibles and delayed palatal shelf elevation. All Has2f/f;Hand2-Cre pups showed reduced mandible size and about 50% of them had cleft palate with disruption of palatal shelf elevation. Results from explant culture assays indicate that disruption of palatal shelf elevation in Has2f/f;Hand2-Cre mutant fetuses resulted from physical obstruction by the malformed mandible and tongue. Together, these data indicate that hyaluronan plays a crucial intrinsic role in palatal shelf expansion and timely reorientation to the horizontal position above the tongue as well as an important role in mandibular morphogenesis that secondarily affects palatal shelf elevation.
Collapse
Affiliation(s)
- Y. Lan
- Division of Plastic Surgery, Cincinnati
Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati
Children’s Hospital Medical Center, Cincinnati, OH, USA
- Departments of Pediatrics and Surgery,
University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Shriners Hospitals for Children, Cincinnati,
OH, USA
| | - C. Qin
- Division of Developmental Biology, Cincinnati
Children’s Hospital Medical Center, Cincinnati, OH, USA
- The State Key Laboratory Breeding Base of
Basic Science of Stomatology (Hubei-MOST) & Ministry of Education Key Laboratory of Oral
Biomedicine, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei,
China
| | - R. Jiang
- Division of Plastic Surgery, Cincinnati
Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati
Children’s Hospital Medical Center, Cincinnati, OH, USA
- Departments of Pediatrics and Surgery,
University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Shriners Hospitals for Children, Cincinnati,
OH, USA
| |
Collapse
|
44
|
Shi L, Li B, Zhang B, Zhen C, Zhou J, Tang S. Mouse embryonic palatal mesenchymal cells maintain stemness through the PTEN-Akt-mTOR autophagic pathway. Stem Cell Res Ther 2019; 10:217. [PMID: 31358051 PMCID: PMC6664599 DOI: 10.1186/s13287-019-1340-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/21/2019] [Accepted: 07/14/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Both genetic and environmental factors are implicated in the pathogenesis of cleft palate. However, the molecular and cellular mechanisms that regulate the development of palatal shelves, which are composed of mesenchymal cells, have not yet been fully elucidated. This study aimed to determine the stemness and multilineage differentiation potential of mouse embryonic palatal mesenchyme (MEPM) cells in palatal shelves and to explore the underlying regulatory mechanism associated with cleft palate formation. METHODS Palatal shelves excised from mice models were cultured in vitro to ascertain whether MEPM are stem cells through immunofluorescence and flow cytometry. The osteogenic, adipogenic, and chondrogenic differentiation potential of MEPM cells were also determined to characterize MEPM stemness. In addition, the role of the PTEN-Akt-mTOR autophagic pathway was investigated using quantitative RT-PCR, Western blotting, and transmission electron microscopy. RESULTS MEPM cells in culture exhibited cell surface marker expression profiles similar to that of mouse bone marrow stem cells and exhibited positive staining for vimentin (mesodermal marker), nestin (ectodermal marker), PDGFRα, Efnb1, Osr2, and Meox2 (MEPM cells markers). In addition, exposure to PDGFA stimulated chemotaxis of MEPM cells. MEPM cells exhibited stronger potential for osteogenic differentiation as compared to that for adipogenic and chondrogenic differentiation. Undifferentiated MEPM cells displayed a high concentration of autophagosomes, which disappeared after differentiation (at passage four), indicating the involvement of PTEN-Akt-mTOR signaling. CONCLUSIONS Our findings suggest that MEPM cells are ectomesenchymal stem cells with a strong osteogenic differentiation potential and that maintenance of their stemness via PTEN/AKT/mTOR autophagic signaling prevents cleft palate development.
Collapse
Affiliation(s)
- Lungang Shi
- Department of Plastic Surgery and Burn Center, the Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041 Guangdong China
| | - Binchen Li
- Shantou University Medical College, No. 22 Xinling road, Shantou, 515041 Guangdong China
| | - Binna Zhang
- Center for Translational Medicine, the Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041 Guangdong China
| | - Congyuan Zhen
- Shantou University Medical College, No. 22 Xinling road, Shantou, 515041 Guangdong China
| | - Jianda Zhou
- Department of Plastic Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, the Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041 Guangdong China
| |
Collapse
|
45
|
Cui C, Wang X, Shang XM, Li L, Ma Y, Zhao GY, Song YX, Geng XB, Zhao BQ, Tian MR, Wang HL. lncRNA 430945 promotes the proliferation and migration of vascular smooth muscle cells via the ROR2/RhoA signaling pathway in atherosclerosis. Mol Med Rep 2019; 19:4663-4672. [PMID: 30957191 PMCID: PMC6522828 DOI: 10.3892/mmr.2019.10137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/27/2019] [Indexed: 11/09/2022] Open
Abstract
The proliferation and migration of vascular smooth muscle cells (VSMCs) are major cellular events in hypertension‑induced vascular remodeling, which is closely involved in the progression of atherosclerosis (AS). Although long non‑coding RNAs (lncRNAs) are gaining recognition as novel regulators of VSMCs, their functioning and role in AS remain to be elucidated. In the present study, the role of lncRNA ENST00000430945 (lncRNA 430945) in AS was investigated. VSMCs transfected with a small interfering RNA (siRNA; si‑430945) and a negative control (si‑NC) were used. Cell Counting Kit‑8, wound‑healing and Transwell migration arrays were performed to determine whether lncRNA 430945 influenced VSMC proliferation and migration. Furthermore, the study examined whether a correlation exists between lncRNA 430945 and the receptor tyrosine kinase‑like orphan receptor 2 (ROR2) signaling pathway. It was found that the expression of lncRNA 430945 was high in human AS tissues, which in turn promoted angiotensin II (AngII)‑induced VSMC proliferation. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blot analyses showed that lncRNA 430945 mediated the AngII‑induced upregulation of ROR2. In addition, the microarray and RT‑qPCR results showed that the expression of lncRNA 430945 was increased considerably in AS tissues. The downregulation of lncRNA 430945 significantly suppressed AngII‑induced VSMC proliferation and migration. In addition, ROR2 levels in VSMCs transfected with si‑430945 were markedly lower than those cells transfected with si‑NC. Additionally, western blotting showed that lncRNA 430945 activated the signaling pathways associated with ROR2 and Ras homolog gene family member A (RhoA). The upregulation of lncRNA 430945 in AS promoted the proliferation and migration of VSMCs via activation of the ROR2/RhoA signaling pathway. Therefore, targeting ROR2 or RhoA may be a promising technique in developing therapeutic strategies for treating AS.
Collapse
Affiliation(s)
- Chuan Cui
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
- Department of Cardiology, Tangshan Workers Hospital, Tangshan, Hebei 063000, P.R. China
| | - Xing Wang
- Department of Internal Medicine, Qian'an Hospital of Traditional Chinese Medicine, Qian'an, Hebei 064400, P.R. China
| | - Xiao-Ming Shang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
- Department of Cardiology, Tangshan Workers Hospital, Tangshan, Hebei 063000, P.R. China
| | - Li Li
- Department of Cardiology, Tangshan Workers Hospital, Tangshan, Hebei 063000, P.R. China
| | - Yi Ma
- Department of Cardiology, Tangshan Workers Hospital, Tangshan, Hebei 063000, P.R. China
| | - Guo-Yu Zhao
- Department of Cardiology, Tangshan Workers Hospital, Tangshan, Hebei 063000, P.R. China
| | - Yu-Xin Song
- Department of Cardiology, Tangshan Workers Hospital, Tangshan, Hebei 063000, P.R. China
| | - Xue-Bin Geng
- Department of Cardiology, Tangshan Workers Hospital, Tangshan, Hebei 063000, P.R. China
| | - Bi-Qiong Zhao
- Department of Cardiology, Tangshan Workers Hospital, Tangshan, Hebei 063000, P.R. China
| | - Mei-Rong Tian
- Department of Cardiology, Tangshan Workers Hospital, Tangshan, Hebei 063000, P.R. China
| | - Hong-Ling Wang
- Department of Cardiology, Tangshan Workers Hospital, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
46
|
Weissenböck M, Latham R, Nishita M, Wolff LI, Ho HYH, Minami Y, Hartmann C. Genetic interactions between Ror2 and Wnt9a, Ror1 and Wnt9a and Ror2 and Ror1: Phenotypic analysis of the limb skeleton and palate in compound mutants. Genes Cells 2019; 24:307-317. [PMID: 30801848 DOI: 10.1111/gtc.12676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 01/20/2023]
Abstract
Mutations in the human receptor tyrosine kinase ROR2 are associated with Robinow syndrome (RRS) and brachydactyly type B1. Amongst others, the shortened limb phenotype associated with RRS is recapitulated in Ror2-/- mutant mice. In contrast, Ror1-/- mutant mice are viable and show no limb phenotype. Ror1-/- ;Ror2-/- double mutants are embryonic lethal, whereas double mutants containing a hypomorphic Ror1 allele (Ror1hyp ) survive up to birth and display a more severe shortened limb phenotype. Both orphan receptors have been shown to act as possible Wnt coreceptors and to mediate the Wnt5a signal. Here, we analyzed genetic interactions between the Wnt ligand, Wnt9a, and Ror2 or Ror1, as Wnt9a has also been implicated in skeletal development. Wnt9a-/- single mutants display a mild shortening of the long bones, whereas these are severely shortened in Ror2-/- mutants. Ror2-/- ;Wnt9a-/- double mutants displayed even more severely shortened long bones, and intermediate phenotypes were observed in compound Ror2;Wnt9a mutants. Long bones were also shorter in Ror1hyp/hyp ;Wnt9a-/- double mutants. In addition, Ror1hyp/hyp ;Wnt9a-/- double mutants displayed a secondary palate cleft phenotype, which was not present in the respective single mutants. Interestingly, 50% of compound mutant pups heterozygous for Ror2 and homozygous mutant for Ror1 also developed a secondary palate cleft phenotype.
Collapse
Affiliation(s)
| | - Richard Latham
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Michiru Nishita
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Lena Ingeborg Wolff
- Department of Bone and Skeletal Research, Medical Faculty, Institute of Musculoskeletal Medicine, University of Münster, Münster, Germany
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Christine Hartmann
- Department of Bone and Skeletal Research, Medical Faculty, Institute of Musculoskeletal Medicine, University of Münster, Münster, Germany
| |
Collapse
|
47
|
Pavlidis ET, Pavlidis TE. A Review of Primary Thyroid Lymphoma: Molecular Factors, Diagnosis and Management. J INVEST SURG 2019; 32:137-142. [PMID: 29058491 DOI: 10.1080/08941939.2017.1383536] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
UNLABELLED Purpose/aim: To focus on current aspects of primary thyroid lymphoma (PTL), which is a rare clinical entity usually manifested by a rapidly growing mass in the neck that can cause pressure symptoms. MATERIALS AND METHODS Relevant papers in PubMed published through June 2017 were selected to track updated information about PTL with an emphasis on diagnosis and novel therapeutic management. RESULTS The most frequent cases include non-Hodgkin lymphoma derived from B-cells, mainly diffuse large B-cell lymphoma (DLBCL) followed by mucosa-associated lymphoid tissue (MALT) lymphoma or a mixed type. Other subtypes are less common. Lymphomas derived from T-cells and Hodgkin lymphomas are extremely rare. Hashimoto's autoimmune thyroiditis has been implicated as a risk factor for lymphoma. At the molecular level, the Wnt5a protein and its receptor Ror2 are involved in the course of the disease. Ultrasonography, fine needle aspiration (FNA) biopsy, and core or open biopsy combined with new diagnostic facilities contribute to an accurate diagnosis. An increased potential exists for a cure without the need for a radical surgical procedure. Modern chemoradiation therapy plus the monoclonal antibody rituximab, which acts against CD20, have limited the need for surgical interventions and provide an excellent outcome in most cases. However, some cases have resulted in treatment failure or recurrence. CONCLUSIONS A multidisciplinary approach must be used to define the management policy in each case. Future efforts by researchers are likely to be focused on the molecular level.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biopsy
- Chemoradiotherapy/methods
- Clinical Trials as Topic
- Disease-Free Survival
- Humans
- Lymphoma, B-Cell, Marginal Zone/diagnosis
- Lymphoma, B-Cell, Marginal Zone/mortality
- Lymphoma, B-Cell, Marginal Zone/therapy
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/therapy
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/prevention & control
- Patient Care Team
- Prognosis
- Receptor Tyrosine Kinase-like Orphan Receptors/metabolism
- Rituximab/therapeutic use
- Thyroid Gland/diagnostic imaging
- Thyroid Gland/pathology
- Thyroid Neoplasms/diagnosis
- Thyroid Neoplasms/mortality
- Thyroid Neoplasms/therapy
- Thyroidectomy
- Wnt-5a Protein/metabolism
Collapse
Affiliation(s)
- Efstathios T Pavlidis
- a Second Surgical Propedeutic Department , Aristotle University of Thessaloniki, Medical School, Prof. Theodoros E Pavlidis (Department Head), Hippocration Hospital , Konstantinoupoleos 49, Thessaloniki , Greece
| | - Theodoros E Pavlidis
- a Second Surgical Propedeutic Department , Aristotle University of Thessaloniki, Medical School, Prof. Theodoros E Pavlidis (Department Head), Hippocration Hospital , Konstantinoupoleos 49, Thessaloniki , Greece
| |
Collapse
|
48
|
Reynolds K, Kumari P, Sepulveda Rincon L, Gu R, Ji Y, Kumar S, Zhou CJ. Wnt signaling in orofacial clefts: crosstalk, pathogenesis and models. Dis Model Mech 2019; 12:12/2/dmm037051. [PMID: 30760477 PMCID: PMC6398499 DOI: 10.1242/dmm.037051] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diverse signaling cues and attendant proteins work together during organogenesis, including craniofacial development. Lip and palate formation starts as early as the fourth week of gestation in humans or embryonic day 9.5 in mice. Disruptions in these early events may cause serious consequences, such as orofacial clefts, mainly cleft lip and/or cleft palate. Morphogenetic Wnt signaling, along with other signaling pathways and transcription regulation mechanisms, plays crucial roles during embryonic development, yet the signaling mechanisms and interactions in lip and palate formation and fusion remain poorly understood. Various Wnt signaling and related genes have been associated with orofacial clefts. This Review discusses the role of Wnt signaling and its crosstalk with cell adhesion molecules, transcription factors, epigenetic regulators and other morphogenetic signaling pathways, including the Bmp, Fgf, Tgfβ, Shh and retinoic acid pathways, in orofacial clefts in humans and animal models, which may provide a better understanding of these disorders and could be applied towards prevention and treatments.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| | - Priyanka Kumari
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Lessly Sepulveda Rincon
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Ran Gu
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| | - Santosh Kumar
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA .,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| |
Collapse
|
49
|
Li R, Chen Z, Yu Q, Weng M, Chen Z. The Function and Regulatory Network of Pax9 Gene in Palate Development. J Dent Res 2018; 98:277-287. [PMID: 30583699 DOI: 10.1177/0022034518811861] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cleft palate, a common congenital deformity, can arise from disruptions in any stage of palatogenesis, including palatal shelf growth, elevation, adhesion, and fusion. Paired box gene 9 (Pax9) is recognized as a vital regulator of palatogenesis with great relevance to cleft palate in humans and mice. Pax9-deficient murine palatal shelves displayed deficient elongation, postponed elevation, failed contact, and fusion. Pax9 is expressed in epithelium and mesenchyme, exhibiting a dynamic expression pattern that changes according to the proceeding of palatogenesis. Recent studies highlighted the Pax9-related genetic interactions and their critical roles during palatogenesis. During palate growth, PAX9 interacts with numerous molecules and members of pathways (e.g., OSR2, FGF10, SHOS2, MSX1, BARX1, TGFβ3, LDB1, BMP, WNT β-catenin dependent, and EDA) in the mesenchyme and functions as a key mediator in epithelial-mesenchymal communications with FGF8, TBX1, and the SHH pathway. During palate elevation, PAX9 is hypothesized to mediate the time point of the elevation event in the anterior and posterior parts of the palatal shelves. The delayed elevation of Pax9 mutant palatal shelves probably results from abnormal expressions of a series of genes ( Osr2 and Bmpr1a) leading to deficient palate growth, abnormal tongue morphology, and altered hyaluronic acid distribution. The interactions between PAX9 and genes encoding the OSR2, TGFβ3, and WNT β-catenin-dependent pathways provide evidence that PAX9 might participate in the regulation of palate fusion. This review summarizes the current understanding of PAX9’s functions and emphasizes the interactions between PAX9 and vital genes during palatogenesis. We hope to provide some clues for further exploration of the function and mechanism of PAX9, especially during palate elevation and fusion events.
Collapse
Affiliation(s)
- R. Li
- Department of Orthodontics, Ninth People’s Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Z. Chen
- Department of Orthodontics, Ninth People’s Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Q. Yu
- Department of Orthodontics, Ninth People’s Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - M. Weng
- Department of Orthodontics, Ninth People’s Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Z. Chen
- Department of Orthodontics, Ninth People’s Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
50
|
Chen L, Huang T, Qiao Y, Jiang F, Lan J, Zhou Y, Yang C, Yan S, Luo K, Su L, Li J. Perspective into
the regulation of cell‐generated forces toward stem cell migration and differentiation. J Cell Biochem 2018; 120:8884-8890. [PMID: 30536423 DOI: 10.1002/jcb.28251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/22/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Liujing Chen
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Tu Huang
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Yini Qiao
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Fulin Jiang
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Jingxiang Lan
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Yimei Zhou
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Cai Yang
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Shanyu Yan
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Kaihui Luo
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Liping Su
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Juan Li
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| |
Collapse
|