1
|
Yee C, Xiao Y, Chen H, Reddy AR, Xu B, Medwig-Kinney TN, Zhang W, Boyle AP, Herbst WA, Xiang YK, Matus DQ, Shen K. An activity-regulated transcriptional program directly drives synaptogenesis. Nat Neurosci 2024; 27:1695-1707. [PMID: 39103556 PMCID: PMC11374667 DOI: 10.1038/s41593-024-01728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/11/2024] [Indexed: 08/07/2024]
Abstract
Although the molecular composition and architecture of synapses have been widely explored, much less is known about what genetic programs directly activate synaptic gene expression and how they are modulated. Here, using Caenorhabditis elegans dopaminergic neurons, we reveal that EGL-43/MECOM and FOS-1/FOS control an activity-dependent synaptogenesis program. Loss of either factor severely reduces presynaptic protein expression. Both factors bind directly to promoters of synaptic genes and act together with CUT homeobox transcription factors to activate transcription. egl-43 and fos-1 mutually promote each other's expression, and increasing the binding affinity of FOS-1 to the egl-43 locus results in increased presynaptic protein expression and synaptic function. EGL-43 regulates the expression of multiple transcription factors, including activity-regulated factors and developmental factors that define multiple aspects of dopaminergic identity. Together, we describe a robust genetic program underlying activity-regulated synapse formation during development.
Collapse
Affiliation(s)
- Callista Yee
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA
| | - Yutong Xiao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Hongwen Chen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anay R Reddy
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA
| | - Bing Xu
- Department of Pharmacology, University of California, Davis, Davis, CA, USA
- VA Northern California Healthcare System, Mather, CA, USA
| | - Taylor N Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Alan P Boyle
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Wendy A Herbst
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA
| | - Yang Kevin Xiang
- Department of Pharmacology, University of California, Davis, Davis, CA, USA
- VA Northern California Healthcare System, Mather, CA, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Martinez MAQ, Zhao CZ, Moore FEQ, Yee C, Zhang W, Shen K, Martin BL, Matus DQ. Cell cycle perturbation uncouples mitotic progression and invasive behavior in a post-mitotic cell. Differentiation 2024; 137:100765. [PMID: 38522217 PMCID: PMC11196158 DOI: 10.1016/j.diff.2024.100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
The acquisition of the post-mitotic state is crucial for the execution of many terminally differentiated cell behaviors during organismal development. However, the mechanisms that maintain the post-mitotic state in this context remain poorly understood. To gain insight into these mechanisms, we used the genetically and visually accessible model of C. elegans anchor cell (AC) invasion into the vulval epithelium. The AC is a terminally differentiated uterine cell that normally exits the cell cycle and enters a post-mitotic state before initiating contact between the uterus and vulva through a cell invasion event. Here, we set out to identify the set of negative cell cycle regulators that maintain the AC in this post-mitotic, invasive state. Our findings revealed a critical role for CKI-1 (p21CIP1/p27KIP1) in redundantly maintaining the post-mitotic state of the AC, as loss of CKI-1 in combination with other negative cell cycle regulators-including CKI-2 (p21CIP1/p27KIP1), LIN-35 (pRb/p107/p130), FZR-1 (Cdh1/Hct1), and LIN-23 (β-TrCP)-resulted in proliferating ACs. Remarkably, time-lapse imaging revealed that these ACs retain their ability to invade. Upon examination of a node in the gene regulatory network controlling AC invasion, we determined that proliferating, invasive ACs do so by maintaining aspects of pro-invasive gene expression. We therefore report that the requirement for a post-mitotic state for invasive cell behavior can be bypassed following direct cell cycle perturbation.
Collapse
Affiliation(s)
- Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Chris Z Zhao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Frances E Q Moore
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Callista Yee
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
3
|
Martinez MAQ, Zhao CZ, Moore FEQ, Yee C, Zhang W, Shen K, Martin BL, Matus DQ. Cell cycle perturbation uncouples mitotic progression and invasive behavior in a post-mitotic cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.16.533034. [PMID: 38370624 PMCID: PMC10871222 DOI: 10.1101/2023.03.16.533034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The acquisition of the post-mitotic state is crucial for the execution of many terminally differentiated cell behaviors during organismal development. However, the mechanisms that maintain the post-mitotic state in this context remain poorly understood. To gain insight into these mechanisms, we used the genetically and visually accessible model of C. elegans anchor cell (AC) invasion into the vulval epithelium. The AC is a terminally differentiated uterine cell that normally exits the cell cycle and enters a post-mitotic state, initiating contact between the uterus and vulva through a cell invasion event. Here, we set out to identify the set of negative cell cycle regulators that maintain the AC in this post-mitotic, invasive state. Our findings revealed a critical role for CKI-1 (p21CIP1/p27KIP1) in redundantly maintaining the post-mitotic state of the AC, as loss of CKI-1 in combination with other negative cell cycle regulators-including CKI-2 (p21CIP1/p27KIP1), LIN-35 (pRb/p107/p130), FZR-1 (Cdh1/Hct1), and LIN-23 (β-TrCP)-resulted in proliferating ACs. Remarkably, time-lapse imaging revealed that these ACs retain their ability to invade. Upon examination of a node in the gene regulatory network controlling AC invasion, we determined that proliferating, invasive ACs do so by maintaining aspects of pro-invasive gene expression. We therefore report that the requirement for a post-mitotic state for invasive cell behavior can be bypassed following direct cell cycle perturbation.
Collapse
Affiliation(s)
- Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chris Z Zhao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Frances E Q Moore
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Callista Yee
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
4
|
Liu J, Murray JI. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023; 225:iyad174. [PMID: 37847877 PMCID: PMC11491538 DOI: 10.1093/genetics/iyad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Stevenson ZC, Moerdyk-Schauwecker MJ, Banse SA, Patel DS, Lu H, Phillips PC. High-throughput library transgenesis in Caenorhabditis elegans via Transgenic Arrays Resulting in Diversity of Integrated Sequences (TARDIS). eLife 2023; 12:RP84831. [PMID: 37401921 PMCID: PMC10328503 DOI: 10.7554/elife.84831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023] Open
Abstract
High-throughput transgenesis using synthetic DNA libraries is a powerful method for systematically exploring genetic function. Diverse synthesized libraries have been used for protein engineering, identification of protein-protein interactions, characterization of promoter libraries, developmental and evolutionary lineage tracking, and various other exploratory assays. However, the need for library transgenesis has effectively restricted these approaches to single-cell models. Here, we present Transgenic Arrays Resulting in Diversity of Integrated Sequences (TARDIS), a simple yet powerful approach to large-scale transgenesis that overcomes typical limitations encountered in multicellular systems. TARDIS splits the transgenesis process into a two-step process: creation of individuals carrying experimentally introduced sequence libraries, followed by inducible extraction and integration of individual sequences/library components from the larger library cassette into engineered genomic sites. Thus, transformation of a single individual, followed by lineage expansion and functional transgenesis, gives rise to thousands of genetically unique transgenic individuals. We demonstrate the power of this system using engineered, split selectable TARDIS sites in Caenorhabditis elegans to generate (1) a large set of individually barcoded lineages and (2) transcriptional reporter lines from predefined promoter libraries. We find that this approach increases transformation yields up to approximately 1000-fold over current single-step methods. While we demonstrate the utility of TARDIS using C. elegans, in principle the process is adaptable to any system where experimentally generated genomic loci landing pads and diverse, heritable DNA elements can be generated.
Collapse
Affiliation(s)
| | | | - Stephen A Banse
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - Dhaval S Patel
- School of Chemical & Biomolecular Engineering, Georgia Institute of TechnologyAtlantaUnited States
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of TechnologyAtlantaUnited States
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| |
Collapse
|
6
|
Martinez MAQ, Mullarkey AA, Yee C, Zhao CZ, Zhang W, Shen K, Matus DQ. Reevaluating the relationship between EGL-43 (EVI1) and LIN-12 (Notch) during C. elegans anchor cell invasion. Biol Open 2022; 11:bio059668. [PMID: 36445013 PMCID: PMC9751802 DOI: 10.1242/bio.059668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
Abstract
Development of the Caenorhabditis elegans reproductive tract is orchestrated by the anchor cell (AC). This occurs in part through a cell invasion event that connects the uterine and vulval tissues. Several key transcription factors regulate AC invasion, such as EGL-43, HLH-2, and NHR-67. Specifically, these transcription factors function together to maintain the post-mitotic state of the AC, a requirement for AC invasion. Recently, a mechanistic connection has been made between loss of EGL-43 and AC cell-cycle entry. The current model states that EGL-43 represses LIN-12 (Notch) expression to prevent AC proliferation, suggesting that Notch signaling has mitogenic effects in the invasive AC. To reexamine the relationship between EGL-43 and LIN-12, we first designed and implemented a heterologous co-expression system called AIDHB that combines the auxin-inducible degron (AID) system of plants with a live cell-cycle sensor based on human DNA helicase B (DHB). After validating AIDHB using AID-tagged GFP, we sought to test it by using AID-tagged alleles of egl-43 and lin-12. Auxin-induced degradation of either EGL-43 or LIN-12 resulted in the expected AC phenotypes. Lastly, we seized the opportunity to pair AIDHB with RNAi to co-deplete LIN-12 and EGL-43, respectively, which revealed that LIN-12 is not required for AC proliferation following loss of EGL-43.
Collapse
Affiliation(s)
- Michael A. Q. Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Angelina A. Mullarkey
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Callista Yee
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Chris Z. Zhao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - David Q. Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
7
|
Benavidez JM, Kim JH, Greenwald I. Influences of HLH-2 stability on anchor cell fate specification during Caenorhabditis elegans gonadogenesis. G3 GENES|GENOMES|GENETICS 2022; 12:6520806. [PMID: 35134193 PMCID: PMC8982380 DOI: 10.1093/g3journal/jkac028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022]
Abstract
The Caenorhabditis elegans E protein ortholog HLH-2 is required for the specification and function of the anchor cell, a unique, terminally differentiated somatic gonad cell that organizes uterine and vulval development. Initially, 4 cells—2 α cells and their sisters, the β cells—have the potential to be the sole anchor cell. The β cells rapidly lose anchor cell potential and invariably become ventral uterine precursor cells, while the 2 α cells interact via LIN-12/Notch to resolve which will be the anchor cell and which will become another ventral uterine precursor cell. HLH-2 protein stability is dynamically regulated in cells with anchor cell potential; initially present in all 4 cells, HLH-2 is degraded in presumptive ventral uterine precursor cells while remaining stable in the anchor cell. Here, we demonstrate that stability of HLH-2 protein is regulated by the activity of lin-12/Notch in both α and β cells. Our analysis provides evidence that activation of LIN-12 promotes degradation of HLH-2 as part of a negative feedback loop during the anchor cell/ventral uterine precursor cell decision by the α cells, and that absence of lin-12 activity in β cells increases HLH-2 stability and may account for their propensity to adopt the anchor cell fate in a lin-12 null background. We also performed an RNA interference screen of 232 ubiquitin-related genes and identified 7 genes that contribute to HLH-2 degradation in ventral uterine precursor cells; however, stabilizing HLH-2 by depleting ubiquitin ligases in a lin-12(+) background does not result in supernumerary anchor cells, suggesting that LIN-12 activation does not oppose hlh-2 activity solely by causing HLH-2 protein degradation. Finally, we provide evidence for lin-12-independent transcriptional regulation of hlh-2 in β cells that correlates with known differences in POP-1/TCF levels and anchor cell potential between α and β cells. Together, our results indicate that hlh-2 activity is regulated at multiple levels to restrict the anchor cell fate to a single cell.
Collapse
Affiliation(s)
- Justin M Benavidez
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Jee Hun Kim
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
8
|
Smith JJ, Xiao Y, Parsan N, Medwig-Kinney TN, Martinez MAQ, Moore FEQ, Palmisano NJ, Kohrman AQ, Chandhok Delos Reyes M, Adikes RC, Liu S, Bracht SA, Zhang W, Wen K, Kratsios P, Matus DQ. The SWI/SNF chromatin remodeling assemblies BAF and PBAF differentially regulate cell cycle exit and cellular invasion in vivo. PLoS Genet 2022; 18:e1009981. [PMID: 34982771 PMCID: PMC8759636 DOI: 10.1371/journal.pgen.1009981] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/14/2022] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
Chromatin remodelers such as the SWI/SNF complex coordinate metazoan development through broad regulation of chromatin accessibility and transcription, ensuring normal cell cycle control and cellular differentiation in a lineage-specific and temporally restricted manner. Mutations in genes encoding the structural subunits of chromatin, such as histone subunits, and chromatin regulating factors are associated with a variety of disease mechanisms including cancer metastasis, in which cancer co-opts cellular invasion programs functioning in healthy cells during development. Here we utilize Caenorhabditis elegans anchor cell (AC) invasion as an in vivo model to identify the suite of chromatin agents and chromatin regulating factors that promote cellular invasiveness. We demonstrate that the SWI/SNF ATP-dependent chromatin remodeling complex is a critical regulator of AC invasion, with pleiotropic effects on both G0 cell cycle arrest and activation of invasive machinery. Using targeted protein degradation and enhanced RNA interference (RNAi) vectors, we show that SWI/SNF contributes to AC invasion in a dose-dependent fashion, with lower levels of activity in the AC corresponding to aberrant cell cycle entry and increased loss of invasion. Our data specifically implicate the SWI/SNF BAF assembly in the regulation of the G0 cell cycle arrest in the AC, whereas the SWI/SNF PBAF assembly promotes AC invasion via cell cycle-independent mechanisms, including attachment to the basement membrane (BM) and activation of the pro-invasive fos-1/FOS gene. Together these findings demonstrate that the SWI/SNF complex is necessary for two essential components of AC invasion: arresting cell cycle progression and remodeling the BM. The work here provides valuable single-cell mechanistic insight into how the SWI/SNF assemblies differentially contribute to cellular invasion and how SWI/SNF subunit-specific disruptions may contribute to tumorigeneses and cancer metastasis. Cellular invasion is required for animal development and homeostasis. Inappropriate activation of invasion however can result in cancer metastasis. Invasion programs are orchestrated by complex gene regulatory networks (GRN) that function in a coordinated fashion to turn on and off pro-invasive genes. While the core of GRNs are DNA binding transcription factors, they require aid from chromatin remodelers to access the genome. To identify the suite of pro-invasive chromatin remodelers, we paired high resolution imaging with RNA interference to individually knockdown 269 chromatin factors, identifying the evolutionarily conserved SWItching defective/Sucrose Non-Fermenting (SWI/SNF) ATP-dependent chromatin remodeling complex as a new regulator of Caenorhabditis elegans anchor cell (AC) invasion. Using a combination of CRISPR/Cas9 genome engineering and targeted protein degradation we demonstrate that the core SWI/SNF complex functions in a dose-dependent manner to control invasion. Further, we determine that the accessory SWI/SNF complexes, BAF and PBAF, contribute to invasion via distinctive mechanisms: BAF is required to prevent inappropriate proliferation while PBAF promotes AC attachment and remodeling of the basement membrane. Together, our data provide insights into how the SWI/SNF complex, which is mutated in many human cancers, can function in a dose-dependent fashion to regulate switching from invasive to proliferative fates.
Collapse
Affiliation(s)
- Jayson J. Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Yutong Xiao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nithin Parsan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Taylor N. Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Michael A. Q. Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Frances E. Q. Moore
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nicholas J. Palmisano
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Abraham Q. Kohrman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Mana Chandhok Delos Reyes
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Rebecca C. Adikes
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Biology Department, Siena College, Loudonville, New York, United States of America
| | - Simeiyun Liu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Sydney A. Bracht
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Cell Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Kailong Wen
- The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois, United States of America
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Paschalis Kratsios
- The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois, United States of America
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - David Q. Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
9
|
Berger S, Spiri S, deMello A, Hajnal A. Microfluidic-based imaging of complete Caenorhabditis elegans larval development. Development 2021; 148:269282. [PMID: 34170296 PMCID: PMC8327290 DOI: 10.1242/dev.199674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022]
Abstract
Several microfluidic-based methods for Caenorhabditis elegans imaging have recently been introduced. Existing methods either permit imaging across multiple larval stages without maintaining a stable worm orientation, or allow for very good immobilization but are only suitable for shorter experiments. Here, we present a novel microfluidic imaging method that allows parallel live-imaging across multiple larval stages, while maintaining worm orientation and identity over time. This is achieved through an array of microfluidic trap channels carefully tuned to maintain worms in a stable orientation, while allowing growth and molting to occur. Immobilization is supported by an active hydraulic valve, which presses worms onto the cover glass during image acquisition only. In this way, excellent quality images can be acquired with minimal impact on worm viability or developmental timing. The capabilities of the devices are demonstrated by observing the hypodermal seam and P-cell divisions and, for the first time, the entire process of vulval development from induction to the end of morphogenesis. Moreover, we demonstrate feasibility of on-chip RNAi by perturbing basement membrane breaching during anchor cell invasion. Summary: Parallel microfluidic long-term imaging allows reliable long-term study of Caenorhabditis elegans development across multiple larval stages at high-resolution and with minimal effect on physiological development.
Collapse
Affiliation(s)
- Simon Berger
- Department of Molecular Life Science, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.,Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Silvan Spiri
- Department of Molecular Life Science, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Andrew deMello
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Alex Hajnal
- Department of Molecular Life Science, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
10
|
Lattmann E, Deng T, Hajnal A. To Divide or Invade: A Look Behind the Scenes of the Proliferation-Invasion Interplay in the Caenorhabditis elegans Anchor Cell. Front Cell Dev Biol 2021; 8:616051. [PMID: 33490081 PMCID: PMC7815685 DOI: 10.3389/fcell.2020.616051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cell invasion is defined by the capability of cells to migrate across compartment boundaries established by basement membranes (BMs). The development of complex organs involves regulated cell growth and regrouping of different cell types, which are enabled by controlled cell proliferation and cell invasion. Moreover, when a malignant tumor takes control over the body, cancer cells evolve to become invasive, allowing them to spread to distant sites and form metastases. At the core of the switch between proliferation and invasion are changes in cellular morphology driven by remodeling of the cytoskeleton. Proliferative cells utilize their actomyosin network to assemble a contractile ring during cytokinesis, while invasive cells form actin-rich protrusions, called invadopodia that allow them to breach the BMs. Studies of developmental cell invasion as well as of malignant tumors revealed that cell invasion and proliferation are two mutually exclusive states. In particular, anchor cell (AC) invasion during Caenorhabditis elegans larval development is an excellent model to study the transition from cell proliferation to cell invasion under physiological conditions. This mini-review discusses recent insights from the C. elegans AC invasion model into how G1 cell-cycle arrest is coordinated with the activation of the signaling networks required for BM breaching. Many regulators of the proliferation-invasion network are conserved between C. elegans and mammals. Therefore, the worm may provide important clues to better understand cell invasion and metastasis formation in humans.
Collapse
Affiliation(s)
- Evelyn Lattmann
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ting Deng
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Molecular Life Science PhD Program, University and ETH Zurich, Zurich, Switzerland
| | - Alex Hajnal
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
The Caenorhabditis elegans homolog of the Evi1 proto-oncogene, egl-43, coordinates G1 cell cycle arrest with pro-invasive gene expression during anchor cell invasion. PLoS Genet 2020; 16:e1008470. [PMID: 32203506 PMCID: PMC7117773 DOI: 10.1371/journal.pgen.1008470] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/02/2020] [Accepted: 02/27/2020] [Indexed: 11/30/2022] Open
Abstract
Cell invasion allows cells to migrate across compartment boundaries formed by basement membranes. Aberrant cell invasion is a first step during the formation of metastases by malignant cancer cells. Anchor cell (AC) invasion in C. elegans is an excellent in vivo model to study the regulation of cell invasion during development. Here, we have examined the function of egl-43, the homolog of the human Evi1 proto-oncogene (also called MECOM), in the invading AC. egl-43 plays a dual role in this process, firstly by imposing a G1 cell cycle arrest to prevent AC proliferation, and secondly, by activating pro-invasive gene expression. We have identified the AP-1 transcription factor fos-1 and the Notch homolog lin-12 as critical egl-43 targets. A positive feedback loop between fos-1 and egl-43 induces pro-invasive gene expression in the AC, while repression of lin-12 Notch expression by egl-43 ensures the G1 cell cycle arrest necessary for invasion. Reducing lin-12 levels in egl-43 depleted animals restored the G1 arrest, while hyperactivation of lin-12 signaling in the differentiated AC was sufficient to induce proliferation. Taken together, our data have identified egl-43 Evi1 as an important factor coordinating cell invasion with cell cycle arrest. Cells invasion is a fundamental biological process that allows cells to cross compartment boundaries and migrate to new locations. Aberrant cell invasion is a first step during the formation of metastases by malignant cancer cells. We have investigated how a specialized cell in the Nematode C. elegans, the so-called anchor cell, can invade into the adjacent epithelium during normal development. Our work has identified an oncogenic transcription factor that controls the expression of specific target genes necessary for cell invasion, and at the same time inhibits the proliferation of the invading anchor cell. These findings shed light on the mechanisms, by which cells decide whether to proliferate or invade.
Collapse
|
12
|
Martinez MAQ, Kinney BA, Medwig-Kinney TN, Ashley G, Ragle JM, Johnson L, Aguilera J, Hammell CM, Ward JD, Matus DQ. Rapid Degradation of Caenorhabditis elegans Proteins at Single-Cell Resolution with a Synthetic Auxin. G3 (BETHESDA, MD.) 2020; 10:267-280. [PMID: 31727633 PMCID: PMC6945041 DOI: 10.1534/g3.119.400781] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022]
Abstract
As developmental biologists in the age of genome editing, we now have access to an ever-increasing array of tools to manipulate endogenous gene expression. The auxin-inducible degradation system allows for spatial and temporal control of protein degradation via a hormone-inducible Arabidopsis F-box protein, transport inhibitor response 1 (TIR1). In the presence of auxin, TIR1 serves as a substrate-recognition component of the E3 ubiquitin ligase complex SKP1-CUL1-F-box (SCF), ubiquitinating auxin-inducible degron (AID)-tagged proteins for proteasomal degradation. Here, we optimize the Caenorhabditis elegans AID system by utilizing 1-naphthaleneacetic acid (NAA), an indole-free synthetic analog of the natural auxin indole-3-acetic acid (IAA). We take advantage of the photostability of NAA to demonstrate via quantitative high-resolution microscopy that rapid degradation of target proteins can be detected in single cells within 30 min of exposure. Additionally, we show that NAA works robustly in both standard growth media and physiological buffer. We also demonstrate that K-NAA, the water-soluble, potassium salt of NAA, can be combined with microfluidics for targeted protein degradation in C. elegans larvae. We provide insight into how the AID system functions in C. elegans by determining that TIR1 depends on C. elegans SKR-1/2, CUL-1, and RBX-1 to degrade target proteins. Finally, we present highly penetrant defects from NAA-mediated degradation of the FTZ-F1 nuclear hormone receptor, NHR-25, during C. elegans uterine-vulval development. Together, this work improves our use and understanding of the AID system for dissecting gene function at the single-cell level during C. elegans development.
Collapse
Affiliation(s)
- Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794
| | - Brian A Kinney
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, and
| | - Taylor N Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794
| | - Guinevere Ashley
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064
| | - James M Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064
| | - Londen Johnson
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064
| | - Joseph Aguilera
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064
| | | | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794,
| |
Collapse
|
13
|
Medwig-Kinney TN, Smith JJ, Palmisano NJ, Tank S, Zhang W, Matus DQ. A developmental gene regulatory network for C. elegans anchor cell invasion. Development 2020; 147:dev185850. [PMID: 31806663 PMCID: PMC6983719 DOI: 10.1242/dev.185850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023]
Abstract
Cellular invasion is a key part of development, immunity and disease. Using an in vivo model of Caenorhabditis elegans anchor cell invasion, we characterize the gene regulatory network that promotes cell invasion. The anchor cell is initially specified in a stochastic cell fate decision mediated by Notch signaling. Previous research has identified four conserved transcription factors, fos-1 (Fos), egl-43 (EVI1/MEL), hlh-2 (E/Daughterless) and nhr-67 (NR2E1/TLX), that mediate anchor cell specification and/or invasive behavior. Connections between these transcription factors and the underlying cell biology that they regulate are poorly understood. Here, using genome editing and RNA interference, we examine transcription factor interactions before and after anchor cell specification. Initially, these transcription factors function independently of one another to regulate LIN-12 (Notch) activity. Following anchor cell specification, egl-43, hlh-2 and nhr-67 function largely parallel to fos-1 in a type I coherent feed-forward loop with positive feedback to promote invasion. Together, these results demonstrate that the same transcription factors can function in cell fate specification and differentiated cell behavior, and that a gene regulatory network can be rapidly assembled to reinforce a post-mitotic, pro-invasive state.
Collapse
Affiliation(s)
- Taylor N Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Jayson J Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Nicholas J Palmisano
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Sujata Tank
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
- Science and Technology Research Program, Smithtown High School East, St. James, NY 11780-1833, USA
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
14
|
Genetic markers enable the verification and manipulation of the dauer entry decision. Dev Biol 2019; 454:170-180. [PMID: 31242447 DOI: 10.1016/j.ydbio.2019.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 11/24/2022]
Abstract
Phenotypic plasticity allows animals to survive in changing environments through the alteration of phenotypes or development. One of the best-studied examples of phenotypic plasticity is dauer larval development in the free-living roundworm Caenorhabditis elegans. When faced with hostile environments, C. elegans larvae can exit reproductive development and enter the stress-resistant and spore-like dauer larval stage. However, knowledge about how the dauer entry decision is made, and how the different tissues of the animal coordinate to execute transformation into dauer, is limited. This is because identifying animals that make the entry decision, or that fail to coordinately remodel their tissues during dauer development, is time-consuming and labor-intensive. Utilizing our previously reported RNA-seq of animals going through dauer or reproductive development (Lee et al., 2017), we have identified genetic markers for conveniently tracking and manipulating the dauer entry decision. These include col-183 (which tracks dauer fate in the hypodermis), ets-10 (neurons and intestine), nhr-246 (intestine and hypodermis), and F53F1.4 (reproductive fate in the hypodermis). Using condition shift experiments, we demonstrate that the dauer-specific fluorescent expression of the markers correspond to the commitment event of the dauer entry decision, and therefore label when the decision is made. We show that these markers can be used to manipulate the entry decision by driving the reproduction-promoting gene daf-9 under the control of the dauer-specific marker col-183, through which we could shift animals into non-dauer development. We further demonstrate that the markers can be used to track tissue coordination during the decision. daf-9, daf-15, and daf-18 partial dauers exhibit incomplete expression of the ets-10 marker, with our results indicating that the same gene (e.g. daf-9 or daf-18) can affect dauer development differently in different tissues. Our findings provide molecular tools for studying phenotypic plasticity during a whole animal decision.
Collapse
|
15
|
Bodofsky S, Liberatore K, Pioppo L, Lapadula D, Thompson L, Birnbaum S, McClung G, Kartik A, Clever S, Wightman B. A tissue-specific enhancer of the C. elegans nhr-67/tailless gene drives coordinated expression in uterine stem cells and the differentiated anchor cell. Gene Expr Patterns 2018; 30:71-81. [PMID: 30404043 PMCID: PMC6373727 DOI: 10.1016/j.gep.2018.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/27/2018] [Accepted: 10/29/2018] [Indexed: 10/27/2022]
Abstract
The nhr-67 nuclear receptor gene of Caenorhabditis elegans encodes the ortholog of the Drosophila tailless and vertebrate Tlx genes. In C. elegans, nhr-67 plays multiple roles in the development of the uterus during L2 and L3 larval stages. Four pre-VU cells are born in the L2 stage and form the precursor complement for the ventral surface of the mature uterus. One of the four pre-VU cells becomes the anchor cell (AC), which exits the cell cycle and differentiates, while the remaining three VU cells serve as stem cells that populate the ventral uterus. The nhr-67 gene functions in the development of both VU cell lineages and AC differentiation. Hypomorphic mutations in nhr-67 identify a 276bp region of the distal promoter that is sufficient to activate nhr-67 expression in pre-VU cells and the AC. The 276bp region includes 8 conserved potential cis-acting sites, including two E boxes and a nuclear receptor binding site. Mutational analysis demonstrates that the two E boxes are required for expression of nhr-67 in uterine precursor cells. The E/daughterless ortholog HLH-2 binds these sites as a homodimer, thus playing a central role in activating nhr-67 expression in the uterine precursors. At least two other binding activities, one of which may be the nhr-25/Ftz-F1 nuclear receptor transcription factor, also contribute to uterine precursor cell expression. The organization of the nhr-67 uterine precursor enhancer is compared to similar conserved enhancers in the egl-43, lag-2, and lin-3 genes, which contain the same HLH-2-binding E boxes and are similarly expressed in both pre-VU cells and the AC. This basic regulatory module allows the coordinated expression of at least four genes. Expression of genes in different cells that must coordinate to form a mature organ is driven by a shared set of promoter elements, which integrate multiple transcription factor inputs.
Collapse
Affiliation(s)
- Shari Bodofsky
- Biology Department, Muhlenberg College, Allentown, PA, 18104, USA.
| | | | - Lauren Pioppo
- Biology Department, Muhlenberg College, Allentown, PA, 18104, USA.
| | - Dominic Lapadula
- Biology Department, Muhlenberg College, Allentown, PA, 18104, USA.
| | - Lily Thompson
- Biology Department, Muhlenberg College, Allentown, PA, 18104, USA.
| | - Susanna Birnbaum
- Biology Department, Muhlenberg College, Allentown, PA, 18104, USA.
| | - George McClung
- Biology Department, Muhlenberg College, Allentown, PA, 18104, USA.
| | - Akshara Kartik
- Biology Department, Muhlenberg College, Allentown, PA, 18104, USA.
| | - Sheila Clever
- Biology Department, Muhlenberg College, Allentown, PA, 18104, USA.
| | - Bruce Wightman
- Biology Department, Muhlenberg College, Allentown, PA, 18104, USA.
| |
Collapse
|
16
|
Sherwood DR, Plastino J. Invading, Leading and Navigating Cells in Caenorhabditis elegans: Insights into Cell Movement in Vivo. Genetics 2018; 208:53-78. [PMID: 29301948 PMCID: PMC5753875 DOI: 10.1534/genetics.117.300082] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Highly regulated cell migration events are crucial during animal tissue formation and the trafficking of cells to sites of infection and injury. Misregulation of cell movement underlies numerous human diseases, including cancer. Although originally studied primarily in two-dimensional in vitro assays, most cell migrations in vivo occur in complex three-dimensional tissue environments that are difficult to recapitulate in cell culture or ex vivo Further, it is now known that cells can mobilize a diverse repertoire of migration modes and subcellular structures to move through and around tissues. This review provides an overview of three distinct cellular movement events in Caenorhabditis elegans-cell invasion through basement membrane, leader cell migration during organ formation, and individual cell migration around tissues-which together illustrate powerful experimental models of diverse modes of movement in vivo We discuss new insights into migration that are emerging from these in vivo studies and important future directions toward understanding the remarkable and assorted ways that cells move in animals.
Collapse
Affiliation(s)
- David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Durham, North Carolina 27705
| | - Julie Plastino
- Institut Curie, PSL Research University, CNRS, UMR 168, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 168, F-75005 Paris, France
| |
Collapse
|
17
|
Ghosh S, Vetrone SA, Sternberg PW. Non-neuronal cell outgrowth in C. elegans. WORM 2017; 6:e1405212. [PMID: 29238627 DOI: 10.1080/21624054.2017.1405212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Cell outgrowth is a hallmark of some non-migratory developing cells during morphogenesis. Understanding the mechanisms that control cell outgrowth not only increases our knowledge of tissue and organ development, but can also shed light on disease pathologies that exhibit outgrowth-like behavior. C. elegans is a highly useful model for the analysis of genes and the function of their respective proteins. In addition, C. elegans also has several cells and tissues that undergo outgrowth during development. Here we discuss the outgrowth mechanisms of nine different C. elegans cells and tissues. We specifically focus on how these cells and tissues grow outward and the interactions they make with their environment. Through our own identification, and a meta-analysis, we also identify gene families involved in multiple cell outgrowth processes, which defined potential C. elegans core components of cell outgrowth, as well as identify a potential stepwise cell behavioral cascade used by cells undergoing outgrowth.
Collapse
Affiliation(s)
- Srimoyee Ghosh
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | | | - Paul W Sternberg
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
18
|
Sallee MD, Littleford HE, Greenwald I. A bHLH Code for Sexually Dimorphic Form and Function of the C. elegans Somatic Gonad. Curr Biol 2017; 27:1853-1860.e5. [PMID: 28602651 DOI: 10.1016/j.cub.2017.05.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/05/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
Abstract
How sexually dimorphic gonads are generated is a fundamental question at the interface of developmental and evolutionary biology [1-3]. In C. elegans, sexual dimorphism in gonad form and function largely originates in different apportionment of roles to three regulatory cells of the somatic gonad primordium in young larvae. Their essential roles include leading gonad arm outgrowth, serving as the germline niche, connecting to epithelial openings, and organizing reproductive organ development. The development and function of the regulatory cells in both sexes requires the basic-helix-loop-helix (bHLH) transcription factor HLH-2, the sole ortholog of the E proteins mammalian E2A and Drosophila Daughterless [4-8], yet how they adopt different fates to execute their different roles has been unknown. Here, we show that each regulatory cell expresses a distinct complement of bHLH-encoding genes-and therefore distinct HLH-2:bHLH dimers-and formulate a "bHLH code" hypothesis for regulatory cell identity. We support this hypothesis by showing that the bHLH gene complement is both necessary and sufficient to confer particular regulatory cell fates. Strikingly, prospective regulatory cells can be directly reprogrammed into other regulatory cell types simply by loss or ectopic expression of bHLH genes, and male-to-female and female-to-male transformations indicate that the code is instructive for sexual dimorphism. The bHLH code appears to be embedded in a bow-tie regulatory architecture [9, 10], wherein sexual, positional, temporal, and lineage inputs connect through bHLH genes to diverse outputs for terminal features and provides a plausible mechanism for the evolutionary plasticity of gonad form seen in nematodes [11-15].
Collapse
Affiliation(s)
- Maria D Sallee
- Department of Genetics and Development, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027, USA
| | - Hana E Littleford
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Iva Greenwald
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
19
|
Abstract
In this study, Sallee et al. demonstrate that E-protein dimer formation can promote C. elegans and human bHLH protein instability. By investigating HLH-2, the sole C. elegans E protein, the authors show that HLH-2 functions as a homodimer for sequential roles in AC specification and differentiation and that the functional dimer is targeted for degradation in VUs, the “opposite” fate. The findings indicate that dimerization-driven regulation of bHLH protein stability may be a conserved mechanism for differential regulation in specific cell contexts. E proteins are conserved regulators of growth and development. We show that the Caenorhabditis elegans E-protein helix–loop–helix-2 (HLH-2) functions as a homodimer in directing development and function of the anchor cell (AC) of the gonad, the critical organizer of uterine and vulval development. Our structure–function analysis of HLH-2 indicates that dimerization drives its degradation in other uterine cells (ventral uterine precursor cells [VUs]) that initially have potential to be the AC. We also provide evidence that this mode of dimerization-driven down-regulation can target other basic HLH (bHLH) dimers as well. Remarkably, human E proteins can functionally substitute for C. elegans HLH-2 in regulating AC development and also display dimerization-dependent degradation in VUs. Our results suggest that dimerization-driven regulation of bHLH protein stability may be a conserved mechanism for differential regulation in specific cell contexts.
Collapse
|
20
|
Spatial and molecular cues for cell outgrowth during C. elegans uterine development. Dev Biol 2014; 396:121-35. [PMID: 25281934 DOI: 10.1016/j.ydbio.2014.09.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 01/04/2023]
Abstract
The Caenorhabditis elegans uterine seam cell (utse) is an H-shaped syncytium that connects the uterus to the body wall. Comprising nine nuclei that move outward in a bidirectional manner, this synctium undergoes remarkable shape change during development. Using cell ablation experiments, we show that three surrounding cell types affect utse development: the uterine toroids, the anchor cell and the sex myoblasts. The presence of the anchor cell (AC) nucleus within the utse is necessary for proper utse development and AC invasion genes fos-1, cdh-3, him-4, egl-43, zmp-1 and mig-10 promote utse cell outgrowth. Two types of uterine lumen epithelial cells, uterine toroid 1 (ut1) and uterine toroid 2 (ut2), mediate proper utse outgrowth and we show roles in utse development for two genes expressed in the uterine toroids: the RASEF ortholog rsef-1 and Trio/unc-73. The SM expressed gene unc-53/NAV regulates utse cell shape; ablation of sex myoblasts (SMs), which generate uterine and vulval muscles, cause defects in utse morphology. Our results clarify the nature of the interactions that exist between utse and surrounding tissue, identify new roles for genes involved in cell outgrowth, and present the utse as a new model system for understanding cell shape change and, putatively, diseases associated with cell shape change.
Collapse
|
21
|
Choi VN, Park SK, Hwang BJ. Clustered LAG-1 binding sites in lag-1/CSL are involved in regulating lag-1 expression during lin-12/Notch-dependent cell-fate specification. BMB Rep 2013; 46:219-24. [PMID: 23615264 PMCID: PMC4133882 DOI: 10.5483/bmbrep.2013.46.4.269] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell-fate specification of the anchor cell (AC) and a ventral uterine precursor cell (VU) in Caenorhabditis elegans is initiated by a stochastic interaction between LIN-12/Notch receptor and LAG-2/Delta ligand in two neighboring Z1.ppp and Z4.aaa cells. Both cells express lin-12 and lag-2 before specification, and a small difference in LIN-12 activity leads to the exclusive expressions of lin-12 in VU and lag-2 in the AC, through a feedback mechanism of unknown nature. Here we show that the expression pattern of lag-1/CSL, a transcriptional repressor itself that turns into an activator upon binding of the intracellular domain of Notch, overlaps with that of lin-12. Site-directed mutagenesis of LAG-1 binding sites in lag-1 maintains its expression in the AC, and eliminates it in the VU. Thus, AC/VU cell-fate specification appears to involve direct regulation of lag-1 expression by the LAG-1 protein, activating its transcription in VU cells, but repressing it in the AC.
Collapse
Affiliation(s)
- Vit Na Choi
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | | | | |
Collapse
|
22
|
Rasmussen JP, Feldman JL, Reddy SS, Priess JR. Cell interactions and patterned intercalations shape and link epithelial tubes in C. elegans. PLoS Genet 2013; 9:e1003772. [PMID: 24039608 PMCID: PMC3764189 DOI: 10.1371/journal.pgen.1003772] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/19/2013] [Indexed: 01/15/2023] Open
Abstract
Many animal organs are composed largely or entirely of polarized epithelial tubes, and the formation of complex organ systems, such as the digestive or vascular systems, requires that separate tubes link with a common polarity. The Caenorhabditis elegans digestive tract consists primarily of three interconnected tubes—the pharynx, valve, and intestine—and provides a simple model for understanding the cellular and molecular mechanisms used to form and connect epithelial tubes. Here, we use live imaging and 3D reconstructions of developing cells to examine tube formation. The three tubes develop from a pharynx/valve primordium and a separate intestine primordium. Cells in the pharynx/valve primordium polarize and become wedge-shaped, transforming the primordium into a cylindrical cyst centered on the future lumenal axis. For continuity of the digestive tract, valve cells must have the same, radial axis of apicobasal polarity as adjacent intestinal cells. We show that intestinal cells contribute to valve cell polarity by restricting the distribution of a polarizing cue, laminin. After developing apicobasal polarity, many pharyngeal and valve cells appear to explore their neighborhoods through lateral, actin-rich lamellipodia. For a subset of cells, these lamellipodia precede more extensive intercalations that create the valve. Formation of the valve tube begins when two valve cells become embedded at the left-right boundary of the intestinal primordium. Other valve cells organize symmetrically around these two cells, and wrap partially or completely around the orthogonal, lumenal axis, thus extruding a small valve tube from the larger cyst. We show that the transcription factors DIE-1 and EGL-43/EVI1 regulate cell intercalations and cell fates during valve formation, and that the Notch pathway is required to establish the proper boundary between the pharyngeal and valve tubes. Tubes composed of epithelial cells are universal building blocks of animal organs, and complex organs typically contain multiple interconnected tubes, such as in the digestive tract or vascular system. The nematode Caenorhabditis elegans provides a simple genetic system to study how tubes form and link. Understanding these events provides insight into basic biology, and can inform engineering strategies for building or repairing cellular tubes. A small tube called the valve connects the two major tubular organs of the nematode digestive tract, the pharynx and intestine. The pharynx and valve form from the same primordium, while the intestine forms from a separate primordium. Cells in each primordium polarize around a central axis, and valve formation involves connecting these axes. Using live imaging, we show that valve cells initially resemble other pharyngeal cells, but undergo additional and extensive intercalations around the lumenal axis, effectively squeezing a small tube from the larger primordium. Valve cells develop the same polarity axis as intestinal cells, and we show that this depends on interactions with the intestinal cells. We show that valve formation involves dynamic changes in the localization of adhesive proteins, and identify transcription factors that play a role in valve cell specification and intercalation.
Collapse
Affiliation(s)
- Jeffrey P. Rasmussen
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Jessica L. Feldman
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Sowmya Somashekar Reddy
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - James R. Priess
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
23
|
Park SK, Choi VN, Hwang BJ. LIN-12/Notch regulates lag-1 and lin-12 expression during anchor cell/ventral uterine precursor cell fate specification. Mol Cells 2013; 35:249-54. [PMID: 23483278 PMCID: PMC3887913 DOI: 10.1007/s10059-013-2333-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/02/2013] [Accepted: 01/04/2013] [Indexed: 01/22/2023] Open
Abstract
During Caenorhabditis elegans gonadal development, a stochastic interaction between the LIN-12/Notch receptor and the LAG-2/Delta ligand initiates cell fate specification of two equivalent pre-anchor cell (AC)/pre-ventral uterine (VU) precursor cells. Both cells express lin-12 and lag-2 before specification, and a small difference in LIN-12 activity leads to the exclusive expression of lin-12 in VUs and lag-2 in the AC through an unknown feedback mechanism. In this Notch signaling process, the cleaved LIN-12/Notch intracellular domain (NICD) binds to the LAG-1/CSL transcriptional repressor, forming a transcriptional activator complex containing LAG-1 and NICD. Here we show that clustered LAG-1 binding sites in lin-12 and lag-1 are involved in regulating lin-12 and lag-1 expression during AC/VU cell fate specification. Both genes are expressed in VU cells, but not the AC, after specification. We also show that lin-12 is necessary for lag-1 expression in VU cells. Interestingly, lin-12 (null) animals express lag-1 in the AC, suggesting that LIN-12 signaling is necessary for the suppression of lag-1 expression in the AC. Ectopic expression of lag-1 cDNA in the AC causes a defect in the vulvaluterine (V-U) connection; therefore, LAG-1 should be eliminated in the AC to form a normal V-U connection at a later developmental stage in wild-type animals.
Collapse
Affiliation(s)
- Seong Kyun Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 200–701,
Korea
| | - Vit Na Choi
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 200–701,
Korea
| | - Byung Joon Hwang
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 200–701,
Korea
| |
Collapse
|
24
|
Regulatory regions of the C elegans genome contain more low-affinity REF-1 transcription-factor binding sites than high-affinity sites. Genes Genomics 2012. [DOI: 10.1007/s13258-012-0213-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Hohenauer T, Moore AW. The Prdm family: expanding roles in stem cells and development. Development 2012; 139:2267-82. [PMID: 22669819 DOI: 10.1242/dev.070110] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Members of the Prdm family are characterized by an N-terminal PR domain that is related to the SET methyltransferase domain, and multiple zinc fingers that mediate sequence-specific DNA binding and protein-protein interactions. Prdm factors either act as direct histone methyltransferases or recruit a suite of histone-modifying enzymes to target promoters. In this way, they function in many developmental contexts to drive and maintain cell state transitions and to modify the activity of developmental signalling pathways. Here, we provide an overview of the structure and function of Prdm family members and discuss the roles played by these proteins in stem cells and throughout development.
Collapse
Affiliation(s)
- Tobias Hohenauer
- Disease Mechanism Research Core, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
26
|
Verghese E, Schocken J, Jacob S, Wimer AM, Royce R, Nesmith JE, Baer GM, Clever S, McCain E, Lakowski B, Wightman B. The tailless ortholog nhr-67 functions in the development of the C. elegans ventral uterus. Dev Biol 2011; 356:516-28. [DOI: 10.1016/j.ydbio.2011.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 05/13/2011] [Accepted: 06/04/2011] [Indexed: 12/14/2022]
|
27
|
Schindler AJ, Sherwood DR. The transcription factor HLH-2/E/Daughterless regulates anchor cell invasion across basement membrane in C. elegans. Dev Biol 2011; 357:380-91. [PMID: 21784067 DOI: 10.1016/j.ydbio.2011.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 06/17/2011] [Accepted: 07/07/2011] [Indexed: 10/18/2022]
Abstract
Cell invasion through basement membrane is a specialized cellular behavior critical for many developmental processes and leukocyte trafficking. Invasive cellular behavior is also inappropriately co-opted during cancer progression. Acquisition of an invasive phenotype is accompanied by changes in gene expression that are thought to coordinate the steps of invasion. The transcription factors responsible for these changes in gene expression, however, are largely unknown. C. elegans anchor cell (AC) invasion is a genetically tractable in vivo model of invasion through basement membrane. AC invasion requires the conserved transcription factor FOS-1A, but other transcription factors are thought to act in parallel to FOS-1A to control invasion. Here we identify the transcription factor HLH-2, the C. elegans ortholog of Drosophila Daughterless and vertebrate E proteins, as a regulator of AC invasion. Reduction of HLH-2 function by RNAi or with a hypomorphic allele causes defects in AC invasion. Genetic analysis indicates that HLH-2 has functions outside of the FOS-1A pathway. Using expression analysis, we identify three genes that are transcriptionally regulated by HLH-2: the protocadherin cdh-3, and two genes encoding secreted extracellular matrix proteins, mig-6/papilin and him-4/hemicentin. Further, we show that reduction of HLH-2 function causes defects in polarization of F-actin to the invasive cell membrane, a process required for the AC to generate protrusions that breach the basement membrane. This work identifies HLH-2 as a regulator of the invasive phenotype in the AC, adding to our understanding of the transcriptional networks that control cell invasion.
Collapse
|
28
|
Hagedorn EJ, Sherwood DR. Cell invasion through basement membrane: the anchor cell breaches the barrier. Curr Opin Cell Biol 2011; 23:589-96. [PMID: 21632231 DOI: 10.1016/j.ceb.2011.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/03/2011] [Accepted: 05/09/2011] [Indexed: 11/26/2022]
Abstract
Cell invasion through basement membrane (BM) is a specialized cellular behavior critical to many normal developmental events, immune surveillance, and cancer metastasis. A highly dynamic process, cell invasion involves a complex interplay between cell-intrinsic elements that promote the invasive phenotype, and cell-cell and cell-BM interactions that regulate the timing and targeting of BM transmigration. The intricate nature of these interactions has made it challenging to study cell invasion in vivo and model in vitro. Anchor cell invasion in Caenorhabditis elegans is emerging as an important experimental paradigm for comprehensive analysis of BM invasion, revealing the gene networks that specify invasive behavior and the interactions that occur at the cell-BM interface.
Collapse
Affiliation(s)
- Elliott J Hagedorn
- Department of Biology, Duke University, Science Drive, Box 90388, Durham, NC 27708, USA
| | | |
Collapse
|
29
|
De Weer A, Van der Meulen J, Rondou P, Taghon T, Konrad TA, De Preter K, Mestdagh P, Van Maerken T, Van Roy N, Jeison M, Yaniv I, Cauwelier B, Noens L, Poirel HA, Vandenberghe P, Lambert F, De Paepe A, Sánchez MG, Odero M, Verhasselt B, Philippé J, Vandesompele J, Wieser R, Dastugue N, Van Vlierberghe P, Poppe B, Speleman F. EVI1-mediated down regulation of MIR449A is essential for the survival of EVI1 positive leukaemic cells. Br J Haematol 2011; 154:337-48. [DOI: 10.1111/j.1365-2141.2011.08737.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Abstract
With unique genetic and cell biological strengths, C. elegans has emerged as a powerful model system for studying many biological processes. These processes are typically regulated by complex genetic networks consisting of genes. Identifying those genes and organizing them into genetic pathways are two major steps toward understanding the mechanisms that regulate biological events. Forward genetic screens with various designs are a traditional approach for identifying candidate genes. The completion of the genome sequencing in C. elegans and the advent of high-throughput experimental techniques have led to the development of two additional powerful approaches: functional genomics and systems biology. Genes that are discovered by these approaches can be ordered into interacting pathways through a variety of strategies, involving genetics, cell biology, biochemistry, and functional genomics, to gain a more complete understanding of how gene regulatory networks control a particular biological process. The aim of this review is to provide an overview of the approaches available to identify and construct the genetic pathways using C. elegans.
Collapse
Affiliation(s)
- Zheng Wang
- Dept. of Biology, Duke University, Durham NC
| | | |
Collapse
|
31
|
Matus DQ, Li XY, Durbin S, Agarwal D, Chi Q, Weiss SJ, Sherwood DR. In vivo identification of regulators of cell invasion across basement membranes. Sci Signal 2010; 3:ra35. [PMID: 20442418 DOI: 10.1126/scisignal.2000654] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cell invasion through basement membranes during development, immune surveillance, and metastasis remains poorly understood. To gain further insight into this key cellular behavior, we performed an in vivo screen for regulators of cell invasion through basement membranes, using the simple model of Caenorhabditis elegans anchor cell invasion, and identified 99 genes that promote invasion, including the genes encoding the chaperonin complex cct. Notably, most of these genes have not been previously implicated in invasive cell behavior. We characterized members of the cct complex and 11 other gene products, determining the distinct aspects of the invasive cascade that they regulate, including formation of a specialized invasive cell membrane and its ability to breach the basement membrane. RNA interference-mediated knockdown of the human orthologs of cct-5 and lit-1, which had not previously been implicated in cell invasion, reduced the invasiveness of metastatic carcinoma cells, suggesting that a conserved genetic program underlies cell invasion. These results increase our understanding of the genetic underpinnings of cell invasion and also provide new potential therapeutic targets to limit this behavior.
Collapse
Affiliation(s)
- David Q Matus
- Biology Department, Duke University, Durham, NC 27708, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The proteolytic cleavages elicited by activation of the Notch receptor release an intracellular fragment, Notch intracellular domain, which enters the nucleus to activate the transcription of targets. Changes in transcription are therefore a major output of this pathway. However, the Notch outputs clearly differ from cell type to cell type. In this review we discuss current understanding of Notch targets, the mechanisms involved in their transcriptional regulation, and what might underlie the activation of different sets of targets in different cell types.
Collapse
Affiliation(s)
- Sarah Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
33
|
Hagedorn EJ, Yashiro H, Ziel JW, Ihara S, Wang Z, Sherwood DR. Integrin acts upstream of netrin signaling to regulate formation of the anchor cell's invasive membrane in C. elegans. Dev Cell 2009; 17:187-98. [PMID: 19686680 DOI: 10.1016/j.devcel.2009.06.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Revised: 04/30/2009] [Accepted: 06/09/2009] [Indexed: 12/16/2022]
Abstract
Integrin expression and activity have been strongly correlated with developmental and pathological processes involving cell invasion through basement membranes. The role of integrins in mediating these invasions, however, remains unclear. Utilizing the genetically and visually accessible model of anchor cell (AC) invasion in C. elegans, we have recently shown that netrin signaling orients a specialized invasive cell membrane domain toward the basement membrane. Here, we demonstrate that the integrin heterodimer INA-1/PAT-3 plays a crucial role in AC invasion, in part by targeting the netrin receptor UNC-40 (DCC) to the AC's plasma membrane. Analyses of the invasive membrane components phosphatidylinositol 4,5-bisphosphate, the Rac GTPase MIG-2, and F-actin further indicate that INA-1/PAT-3 plays a broad role in promoting the plasma membrane association of these molecules. Taken together, these studies reveal a role for integrin in regulating the plasma membrane targeting and netrin-dependent orientation of a specialized invasive membrane domain.
Collapse
Affiliation(s)
- Elliott J Hagedorn
- Department of Biology, Duke University, Science Drive, Box 90388, Durham, NC 27708, USA
| | | | | | | | | | | |
Collapse
|
34
|
Klerkx EPF, Alarcón P, Waters K, Reinke V, Sternberg PW, Askjaer P. Protein kinase VRK-1 regulates cell invasion and EGL-17/FGF signaling in Caenorhabditis elegans. Dev Biol 2009; 335:12-21. [PMID: 19679119 DOI: 10.1016/j.ydbio.2009.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 08/03/2009] [Accepted: 08/03/2009] [Indexed: 11/16/2022]
Abstract
The vaccinia-related kinases (VRKs) are highly conserved throughout the animal kingdom and phosphorylate several chromatin proteins and transcription factors. In early Caenorhabditis elegans embryos, VRK-1 is required for proper nuclear envelope formation. In this work, we present the first investigation of the developmental role of VRKs by means of a novel C. elegans vrk-1 mutant allele. We found that VRK-1 is essential in hermaphrodites for formation of the vulva, uterus, and utse and for development and maintenance of the somatic gonad and thus the germ line. VRK-1 regulates anchor cell polarity and the timing of anchor cell invasion through the basement membranes separating vulval and somatic gonadal cells during the L3 larval stage. VRK-1 is also required for proper specification and proliferation of uterine cells and sex myoblasts. Expression of the fibroblast growth factor-like protein EGL-17 and its receptor EGL-15 is reduced in vrk-1 mutants, suggesting that VRK-1 might act at least partially through activation of FGF signaling. Expression of a translational VRK-1Colon, two colonsGFP fusion protein in the ventral nerve cord and vulva precursor cells restores vulva and uterus formation, suggesting both cell autonomous and non-autonomous roles of VRK-1.
Collapse
Affiliation(s)
- Elke P F Klerkx
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville 41013, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Jovelin R. Rapid sequence evolution of transcription factors controlling neuron differentiation in Caenorhabditis. Mol Biol Evol 2009; 26:2373-86. [PMID: 19589887 DOI: 10.1093/molbev/msp142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Whether phenotypic evolution proceeds predominantly through changes in regulatory sequences is a controversial issue in evolutionary genetics. Ample evidence indicates that the evolution of gene regulatory networks via changes in cis-regulatory sequences is an important determinant of phenotypic diversity. However, recent experimental work suggests that the role of transcription factor (TF) divergence in developmental evolution may be underestimated. In order to help understand what levels of constraints are acting on the coding sequence of developmental regulatory genes, evolutionary rates were investigated among 48 TFs required for neuronal development in Caenorhabditis elegans. Allelic variation was then sampled for 28 of these genes within a population of the related species Caenorhabditis remanei. Neuronal TFs are more divergent, both within and between species, than structural genes. TFs affecting different neuronal classes are under different levels of selective constraints. The regulatory genes controlling the differentiation of chemosensory neurons evolve particularly fast and exhibit higher levels of within- and between-species nucleotide variation than TFs required for the development of several neuronal classes and TFs required for motorneuron differentiation. The TFs affecting chemosensory neuron development are also more divergent than chemosensory genes expressed in the neurons they differentiate. These results illustrate that TFs are not as highly constrained as commonly thought and suggest that the role of divergence in developmental regulatory genes during the evolution of gene regulatory networks requires further attention.
Collapse
Affiliation(s)
- Richard Jovelin
- Center for Ecology and Evolutionary Biology, University of Oregon, Oregon, USA.
| |
Collapse
|
36
|
Hiatt SM, Duren HM, Shyu YJ, Ellis RE, Hisamoto N, Matsumoto K, Kariya KI, Kerppola TK, Hu CD. Caenorhabditis elegans FOS-1 and JUN-1 regulate plc-1 expression in the spermatheca to control ovulation. Mol Biol Cell 2009; 20:3888-95. [PMID: 19570917 DOI: 10.1091/mbc.e08-08-0833] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fos and Jun are components of activator protein-1 (AP-1) and play crucial roles in the regulation of many cellular, developmental, and physiological processes. Caenorhabditis elegans fos-1 has been shown to act in uterine and vulval development. Here, we provide evidence that C. elegans fos-1 and jun-1 control ovulation, a tightly regulated rhythmic program in animals. Knockdown of fos-1 or jun-1 blocks dilation of the distal spermathecal valve, a critical step for the entry of mature oocytes into the spermatheca for fertilization. Furthermore, fos-1 and jun-1 regulate the spermathecal-specific expression of plc-1, a gene that encodes a phospholipase C (PLC) isozyme that is rate-limiting for inositol triphosphate production and ovulation, and overexpression of PLC-1 rescues the ovulation defect in fos-1(RNAi) worms. Unlike fos-1, regulation of ovulation by jun-1 requires genetic interactions with eri-1 and lin-15B, which are involved in the RNA interference pathway and chromatin remodeling, respectively. At least two isoforms of jun-1 are coexpressed with fos-1b in the spermatheca, and different AP-1 dimers formed between these isoforms have distinct effects on the activation of a reporter gene. These findings uncover a novel role for FOS-1 and JUN-1 in the reproductive system and establish C. elegans as a model for studying AP-1 dimerization.
Collapse
Affiliation(s)
- Susan M Hiatt
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Capra EJ, Skrovanek SM, Kruglyak L. Comparative developmental expression profiling of two C. elegans isolates. PLoS One 2008; 3:e4055. [PMID: 19116648 PMCID: PMC2605249 DOI: 10.1371/journal.pone.0004055] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 12/01/2008] [Indexed: 02/01/2023] Open
Abstract
Gene expression is known to change during development and to vary among genetically diverse strains. Previous studies of temporal patterns of gene expression during C. elegans development were incomplete, and little is known about how these patterns change as a function of genetic background. We used microarrays that comprehensively cover known and predicted worm genes to compare the landscape of genetic variation over developmental time between two isolates of C. elegans. We show that most genes vary in expression during development from egg to young adult, many genes vary in expression between the two isolates, and a subset of these genes exhibit isolate-specific changes during some developmental stages. This subset is strongly enriched for genes with roles in innate immunity. We identify several novel motifs that appear to play a role in regulating gene expression during development, and we propose functional annotations for many previously unannotated genes. These results improve our understanding of gene expression and function during worm development and lay the foundation for linkage studies of the genetic basis of developmental variation in gene expression in this important model organism.
Collapse
Affiliation(s)
- Emily J. Capra
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Sonja M. Skrovanek
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Leonid Kruglyak
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
38
|
UNC-6 (netrin) orients the invasive membrane of the anchor cell in C. elegans. Nat Cell Biol 2008; 11:183-9. [PMID: 19098902 PMCID: PMC2635427 DOI: 10.1038/ncb1825] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 10/16/2008] [Indexed: 12/16/2022]
Abstract
Despite profound importance in development and cancer, the extracellular cues that target cell invasions through basement membrane barriers remain poorly understood 1. A central obstacle has been the difficulty of studying the interactions between invading cells and basement membranes in vivo2,3. Using the genetically and visually tractable model of C. elegans anchor cell (AC) invasion, we show that unc-6 (netrin) signaling, a pathway not previously implicated in controlling cell invasion in vivo, is a key regulator of this process. Site of action studies reveal that prior to invasion localized UNC-6 secretion directs its receptor, UNC-40, to the AC’s plasma membrane in contact with the basement membrane. There, UNC-40 polarizes a specialized invasive membrane domain through the enrichment of actin regulators, F-actin and phosphatidylinositol 4,5-bisphosphate. Cell ablation experiments indicate that UNC-6 promotes the formation of invasive protrusions from the AC that break down the basement membrane in response to a subsequent vulval cue. Together, these results characterize an invasive membrane domain in vivo, and reveal a novel role for netrin in polarizing this domain towards its basement membrane target.
Collapse
|
39
|
Prdm proto-oncogene transcription factor family expression and interaction with the Notch-Hes pathway in mouse neurogenesis. PLoS One 2008; 3:e3859. [PMID: 19050759 PMCID: PMC2585159 DOI: 10.1371/journal.pone.0003859] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 11/07/2008] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Establishment and maintenance of a functional central nervous system (CNS) requires a highly orchestrated process of neural progenitor cell proliferation, cell cycle exit, and differentiation. An evolutionary conserved program consisting of Notch signalling mediated by basic Helix-Loop-Helix (bHLH) transcription factor activity is necessary for both the maintenance of neural progenitor cell character and the progression of neurogenesis; however, additional players in mammalian CNS neural specification remain largely unknown. In Drosophila we recently characterized Hamlet, a transcription factor that mediates Notch signalling and neural cell fate. METHODOLOGY/PRINCIPAL FINDINGS Hamlet is a member of the Prdm (PRDI-BF1 and RIZ homology domain containing) proto-oncogene transcription factor family, and in this study we report that multiple genes in the Prdm family (Prdm6, 8, 12, 13 and 16) are expressed in the developing mouse CNS in a spatially and temporally restricted manner. In developing spinal cord Prdm8, 12 and 13 are expressed in precise neuronal progenitor zones suggesting that they may specify discrete neuronal subtypes. In developing telencephalon Prdm12 and 16 are expressed in the ventricular zone in a lateral to medial graded manner, and Prdm8 is expressed in a complementary domain in postmitotic neurons. In postnatal brain Prdm8 additionally shows restricted expression in cortical layers 2/3 and 4, the hippocampus, and the amygdala. To further elucidate roles of Prdm8 and 16 in the developing telencephalon we analyzed the relationship between these factors and the bHLH Hes (Hairy and enhancer of split homolog) effectors of Notch signalling. In Hes null telencephalon neural differentiation is enhanced, Prdm8 expression is upregulated, and Prdm16 expression is downregulated; conversely in utero electroporation of Hes1 into the developing telencephalon upregulates Prdm16 expression. CONCLUSIONS/SIGNIFICANCE Our data demonstrate that Prdm genes are regulated by the Notch-Hes pathway and represent strong candidates to control neural class specification and the sequential progression of mammalian CNS neurogenesis.
Collapse
|
40
|
Marri S, Gupta BP. Dissection of lin-11 enhancer regions in Caenorhabditis elegans and other nematodes. Dev Biol 2008; 325:402-11. [PMID: 18950616 DOI: 10.1016/j.ydbio.2008.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 09/16/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
Abstract
The Caenorhabditis elegans LIM homeobox gene lin-11 plays crucial roles in the morphogenesis of the reproductive system and differentiation of several neurons. The expression of lin-11 in different tissues is regulated by enhancer regions located upstream as well as within lin-11 introns. These regions are functionally separable suggesting that multiple regulatory inputs operate to control the spatiotemporal pattern of lin-11 expression. To further dissect apart the nature of lin-11 regulation we focused on three Caenorhabditis species C. briggsae, C. remanei, and C. brenneri that are substantially diverged from C. elegans but share almost identical vulval morphology. We show that, in these species, the 5' region of lin-11 possesses conserved sequences to activate lin-11 expression in the reproductive system. Analysis of the in vivo role of these sequences in C. elegans has led to the identification of three functionally distinct enhancers for the vulva, VC neurons, and uterine pi lineage cells. We found that the pi enhancer is regulated by FOS homolog FOS-1 and LIN-12/Notch pathway effectors, LAG-1 (Su(H)/CBF1 family) and EGL-43 (EVI1 family). These results indicate that multiple factors cooperate to regulate pi-specific expression of lin-11 and together with other findings suggest that the mechanism of lin-11 regulation by LIN-12/Notch signaling is evolutionarily conserved in Caenorhabditis species. Our work demonstrates that 4-way comparison is a powerful tool to study conserved mechanisms of gene regulation in C. elegans and other nematodes.
Collapse
Affiliation(s)
- Sujatha Marri
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | | |
Collapse
|
41
|
Page-McCaw A. Remodeling the model organism: matrix metalloproteinase functions in invertebrates. Semin Cell Dev Biol 2008; 19:14-23. [PMID: 17702617 PMCID: PMC2248213 DOI: 10.1016/j.semcdb.2007.06.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 06/23/2007] [Indexed: 11/17/2022]
Abstract
The matrix metalloproteinase (MMP) family of extracellular proteases is conserved throughout the animal kingdom. Studies of invertebrate MMPs have demonstrated they are involved in tissue remodeling. In Drosophila, MMPs are required for histolysis, tracheal growth, tissue invasion, axon guidance, and dendritic remodeling. Recent work demonstrates that MMPs also participate in Drosophila tumor invasion. In Caenorhabditis elegans an MMP is involved in anchor cell invasion; a Hydra MMP is important for regeneration and maintaining cell identity; and a sea urchin MMP degrades matrix to allow hatching. In worms and in flies, MMPs are regulated by the JNK pathway.
Collapse
Affiliation(s)
- Andrea Page-McCaw
- Center for Biotechnology and Interdisciplinary Studies and Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
42
|
Métais JY, Dunbar CE. The MDS1-EVI1 gene complex as a retrovirus integration site: impact on behavior of hematopoietic cells and implications for gene therapy. Mol Ther 2008; 16:439-49. [PMID: 18227842 DOI: 10.1038/sj.mt.6300372] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gene therapy trials have been performed with virus-based vectors that have the ability to integrate permanently into genomic DNA and thus allow prolonged expression of corrective genes after transduction of hematopoietic stem and progenitor cells. Adverse events observed during the X-linked severe combined immunodeficiency gene therapy trial revealed a significant risk of genotoxicity related to retrovirus vector integration and activation of adjacent proto-oncogenes, with several cases of T-cell leukemia linked to vector activation of the LMO2 gene. In patients with chronic granulomatous disease (CGD), rhesus macaques, and mice receiving hematopoietic stem and progenitor cells transduced with retrovirus vectors, a highly non-random pattern of vector integration has been reported. The most striking finding has been overrepresentation of integrations in one specific genomic locus, a complex containing the MDS1 and the EVI1 genes. Most evidence suggests that this overrepresentation is primarily due to a modification of primitive myeloid cell behavior by overexpression of EVI1 or MDS1-EVI1, as opposed to a specific predilection for integration at this site. Three different proteins can be produced from this complex locus: MDS1, MDS1-EVI1, and EVI1. This review will summarize current knowledge regarding this locus and its gene products, with specific focus on issues with relevance to gene therapy, leukemogenesis, and hematopoiesis. Insights into the mechanisms that result in altered hematopoiesis and leukemogenesis when this locus is dysregulated could improve the safety of gene therapy in the future.
Collapse
Affiliation(s)
- Jean-Yves Métais
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
43
|
Rimann I, Hajnal A. Regulation of anchor cell invasion and uterine cell fates by the egl-43 Evi-1 proto-oncogene in Caenorhabditis elegans. Dev Biol 2007; 308:187-95. [PMID: 17573066 DOI: 10.1016/j.ydbio.2007.05.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 05/16/2007] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
Cell invasion is a tightly controlled process occurring during development and tumor progression. The nematode Caenorhabditis elegans serves as a genetic model to study cell invasion during normal development. In the third larval stage, the anchor cell in the somatic gonad first induces and then invades the adjacent epidermal vulval precursor cells. The homolog of the Evi-1 oncogene, egl-43, is necessary for basement membrane destruction and anchor cell invasion. egl-43 is part of a regulatory network mediating cell invasion downstream of the fos-1 proto-oncogene. In addition, EGL-43 is required to specify the cell fates of ventral uterus cells downstream of or in parallel with LIN-12 NOTCH. Comparison with mammalian Evi-1 suggests a conserved pathway controlling cell invasion and cell fate specification.
Collapse
Affiliation(s)
- Ivo Rimann
- Institute of Zoology, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | | |
Collapse
|