1
|
Yuan Y, Wang X, Yan X, He N, Lu X, Yang J, Xie X, Yuan H, Chen N, Liu Y, Ren H, Zhang R, Cui L, Ren P, Lin S, Cheng S, Yang X, Guo Y, Li R, Yan T, Guo J, Xiao Z, Wei Y, Yu L. 3D reconstruction of a human Carnegie stage 9 embryo provides a snapshot of early body plan formation. Cell Stem Cell 2025:S1934-5909(25)00142-0. [PMID: 40345192 DOI: 10.1016/j.stem.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 01/22/2025] [Accepted: 04/14/2025] [Indexed: 05/11/2025]
Abstract
The Carnegie stage 9 (CS9) embryo is a pivotal phase signifying the conclusion of gastrulation and the onset of early organogenesis, crucial for initiating major organ system development. Utilizing spatial transcriptomics, we analyzed an intact CS9 human embryo in a spatially detailed manner. Through the examination of 75 transverse cryosections, we digitally reconstructed a 3D model, allowing us to identify diverse cell types, including those from brain and spine regions, the primitive gut tube, distinct somite formation stages, somatic mesoderm, splanchnic mesoderm, etc. Notably, we observed two distinct trajectories of hindbrain development, pinpointed the isthmic organizer at the midbrain-hindbrain boundary, delineated the bi-layered structure of neuromesodermal progenitor (NMP) cells, and described the early aorta formation and primordial germ cells (PGCs) presence in the aorta-gonad-mesonephros (AGM) region. This study provides key insights into the transcriptomic and spatial intricacies shaping the human body plan.
Collapse
Affiliation(s)
- Yang Yuan
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodi Yan
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nannan He
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xiaojian Lu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyu Yang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xinwei Xie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Huiyao Yuan
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Naixin Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yinbo Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hongan Ren
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runzhao Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Lina Cui
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengcheng Ren
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sirui Lin
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhan Cheng
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Yang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yifei Guo
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Li
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jingtao Guo
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhenyu Xiao
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Yulei Wei
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Leqian Yu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Zhu M, Catta-Preta R, Lee C, Tabin C. Shifts in embryonic oxygen levels cue heterochrony in limb initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620348. [PMID: 39484532 PMCID: PMC11527133 DOI: 10.1101/2024.10.25.620348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Heterochrony, or the alteration of developmental timing, is an important mechanism of evolutionary change. Avian species display synchronized growth of the forelimbs and hindlimbs, while mammalian species show delayed hindlimb development. We find that mammalian limb heterochrony is evident from the start of limb bud formation, and is associated with heterochronic expression of T-box transcription factors. This heterochronic shift is not due to changes in cis-regulatory sequences controlling T-box gene expression, but unexpectedly, is dependent upon differential oxygen levels to which avian and mammalian embryos are exposed prior to limb initiation, mediated, at least partially, by an NFKB transcription factor, cRel. Together, these results provide mechanistic understanding of an important example of developmental heterochrony and exemplify how the maternal environment regulates timing during embryonic development.
Collapse
|
3
|
Barham K, Spencer R, Baker NC, Knudsen TB. Engineering a computable epiblast for in silico modeling of developmental toxicity. Reprod Toxicol 2024; 128:108625. [PMID: 38857815 PMCID: PMC11539952 DOI: 10.1016/j.reprotox.2024.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Developmental hazard evaluation is an important part of assessing chemical risks during pregnancy. Toxicological outcomes from prenatal testing in pregnant animals result from complex chemical-biological interactions, and while New Approach Methods (NAMs) based on in vitro bioactivity profiles of human cells offer promising alternatives to animal testing, most of these assays lack cellular positional information, physical constraints, and regional organization of the intact embryo. Here, we engineered a fully computable model of the embryonic disc in the CompuCell3D.org modeling environment to simulate epithelial-mesenchymal transition (EMT) of epiblast cells and self-organization of mesodermal domains (chordamesoderm, paraxial, lateral plate, posterior/extraembryonic). Mesodermal fate is modeled by synthetic activity of the BMP4-NODAL-WNT signaling axis. Cell position in the epiblast determines timing with respect to EMT for 988 computational cells in the computer model. An autonomous homeobox (Hox) clock hidden in the epiblast is driven by WNT-FGF4-CDX signaling. Executing the model renders a quantitative cell-level computation of mesodermal fate and consequences of perturbation based on known biology. For example, synthetic perturbation of the control network rendered altered phenotypes (cybermorphs) mirroring some aspects of experimental mouse embryology, with electronic knockouts, under-activation (hypermorphs) or over-activation (hypermorphs) particularly affecting the size and specification of the posterior mesoderm. This foundational model is trained on embryology but capable of performing a wide variety of toxicological tasks conversing through anatomical simulation to integrate in vitro chemical bioactivity data with known embryology. It is amenable to quantitative simulation for probabilistic prediction of early developmental toxicity.
Collapse
Affiliation(s)
- Kaitlyn Barham
- Oak Ridge Associated Universities, USA; USEPA, Center for Compuational Toxicology and Exposure.
| | | | | | | |
Collapse
|
4
|
Bulger EA, McDevitt TC, Bruneau BG. CDX2 dose-dependently influences the gene regulatory network underlying human extraembryonic mesoderm development. Biol Open 2024; 13:bio060323. [PMID: 38451093 PMCID: PMC10979512 DOI: 10.1242/bio.060323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
Loss of Cdx2 in vivo leads to stunted development of the allantois, an extraembryonic mesoderm-derived structure critical for nutrient delivery and waste removal in the early embryo. Here, we investigate how CDX2 dose-dependently influences the gene regulatory network underlying extraembryonic mesoderm development. By engineering human induced pluripotent stem cells (hiPSCs) consisting of wild-type (WT), heterozygous (CDX2-Het), and homozygous null CDX2 (CDX2-KO) genotypes, differentiating these cells in a 2D gastruloid model, and subjecting these cells to single-nucleus RNA and ATAC sequencing, we identify several pathways that are dose-dependently regulated by CDX2 including VEGF and non-canonical WNT. snATAC-seq reveals that CDX2-Het cells retain a WT-like chromatin accessibility profile, suggesting accessibility alone is not sufficient to drive this variability in gene expression. Because the loss of CDX2 or TBXT phenocopy one another in vivo, we compared differentially expressed genes in our CDX2-KO to those from TBXT-KO hiPSCs differentiated in an analogous experiment. This comparison identifies several communally misregulated genes that are critical for cytoskeletal integrity and tissue permeability. Together, these results clarify how CDX2 dose-dependently regulates gene expression in the extraembryonic mesoderm and reveal pathways that may underlie the defects in vascular development and allantoic elongation seen in vivo.
Collapse
Affiliation(s)
- Emily A. Bulger
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, 94158, USA
| | - Todd C. McDevitt
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA
| | - Benoit G. Bruneau
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, CA, 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
5
|
Bulger EA, McDevitt TC, Bruneau BG. CDX2 dose-dependently influences the gene regulatory network underlying human extraembryonic mesoderm development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577277. [PMID: 38328098 PMCID: PMC10849648 DOI: 10.1101/2024.01.25.577277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Proper regulation of gene dosage is critical for the development of the early embryo and the extraembryonic tissues that support it. Specifically, loss of Cdx2 in vivo leads to stunted development of the allantois, an extraembryonic mesoderm-derived structure critical for nutrient delivery and waste removal in the early embryo. In this study, we investigate how CDX2 dose-dependently influences the gene regulatory network underlying extraembryonic mesoderm development. We generate an allelic series for CDX2 in human induced pluripotent stem cells (hiPSCs) consisting of WT, heterozygous, and homozygous null CDX2 genotypes, differentiate these cells in a 2D gastruloid model, and subject these cells to multiomic single nucleus RNA and ATAC sequencing. We identify several genes that CDX2 dose-dependently regulate cytoskeletal integrity and adhesiveness in the extraembryonic mesoderm population, including regulators of the VEGF, canonical WNT, and non-canonical WNT signaling pathways. Despite these dose-dependent gene expression patterns, snATAC-seq reveals that heterozygous CDX2 expression is capable of inducing a WT-like chromatin accessibility profile, suggesting accessibility is not sufficient to drive gene expression when the CDX2 dosage is reduced. Finally, because the loss of CDX2 or TBXT phenocopy one another in vivo, we compare differentially expressed genes in our CDX2 knock-out model to those from TBXT knock-out hiPSCs differentiated in an analogous experiment. This comparison identifies several communally misregulated genes that are critical for cytoskeletal integrity and tissue permeability, including ANK3 and ANGPT1. Together, these results clarify how CDX2 dose-dependently regulates gene expression in the extraembryonic mesoderm and suggest these genes may underlie the defects in vascular development and allantoic elongation seen in the absence or reduction of CDX2 in vivo.
Collapse
Affiliation(s)
- Emily A. Bulger
- Gladstone Institutes, San Francisco, CA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA
| | - Todd C. McDevitt
- Gladstone Institutes, San Francisco, CA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA
| | - Benoit G. Bruneau
- Gladstone Institutes, San Francisco, CA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA
- Department of Pediatrics, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco
| |
Collapse
|
6
|
Frith TJR, Briscoe J, Boezio GLM. From signalling to form: the coordination of neural tube patterning. Curr Top Dev Biol 2023; 159:168-231. [PMID: 38729676 DOI: 10.1016/bs.ctdb.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.
Collapse
Affiliation(s)
| | - James Briscoe
- The Francis Crick Institute, London, United Kingdom.
| | | |
Collapse
|
7
|
Lozovska A, Korovesi AG, Duarte P, Casaca A, Assunção T, Mallo M. The control of transitions along the main body axis. Curr Top Dev Biol 2023; 159:272-308. [PMID: 38729678 DOI: 10.1016/bs.ctdb.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Although vertebrates display a large variety of forms and sizes, the mechanisms controlling the layout of the basic body plan are substantially conserved throughout the clade. Following gastrulation, head, trunk, and tail are sequentially generated through the continuous addition of tissue at the caudal embryonic end. Development of each of these major embryonic regions is regulated by a distinct genetic network. The transitions from head-to-trunk and from trunk-to-tail development thus involve major changes in regulatory mechanisms, requiring proper coordination to guarantee smooth progression of embryonic development. In this review, we will discuss the key cellular and embryological events associated with those transitions giving particular attention to their regulation, aiming to provide a cohesive outlook of this important component of vertebrate development.
Collapse
Affiliation(s)
| | | | - Patricia Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Ana Casaca
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Tereza Assunção
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Moises Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal.
| |
Collapse
|
8
|
Maimaitili M, Chen M, Febbraro F, Ucuncu E, Kelly R, Niclis JC, Christiansen JR, Mermet-Joret N, Niculescu D, Lauritsen J, Iannielli A, Klæstrup IH, Jensen UB, Qvist P, Nabavi S, Broccoli V, Nykjær A, Romero-Ramos M, Denham M. Enhanced production of mesencephalic dopaminergic neurons from lineage-restricted human undifferentiated stem cells. Nat Commun 2023; 14:7871. [PMID: 38052784 PMCID: PMC10698156 DOI: 10.1038/s41467-023-43471-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023] Open
Abstract
Current differentiation protocols for generating mesencephalic dopaminergic (mesDA) neurons from human pluripotent stem cells result in grafts containing only a small proportion of mesDA neurons when transplanted in vivo. In this study, we develop lineage-restricted undifferentiated stem cells (LR-USCs) from pluripotent stem cells, which enhances their potential for differentiating into caudal midbrain floor plate progenitors and mesDA neurons. Using a ventral midbrain protocol, 69% of LR-USCs become bona fide caudal midbrain floor plate progenitors, compared to only 25% of human embryonic stem cells (hESCs). Importantly, LR-USCs generate significantly more mesDA neurons under midbrain and hindbrain conditions in vitro and in vivo. We demonstrate that midbrain-patterned LR-USC progenitors transplanted into 6-hydroxydopamine-lesioned rats restore function in a clinically relevant non-pharmacological behavioral test, whereas midbrain-patterned hESC-derived progenitors do not. This strategy demonstrates how lineage restriction can prevent the development of undesirable lineages and enhance the conditions necessary for mesDA neuron generation.
Collapse
Affiliation(s)
- Muyesier Maimaitili
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
| | - Muwan Chen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
| | - Fabia Febbraro
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, 8200, Aarhus, Denmark
| | - Ekin Ucuncu
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
| | - Rachel Kelly
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
| | | | | | - Noëmie Mermet-Joret
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, 8000C, Aarhus, Denmark
- Center of Excellence PROMEMO, Aarhus University, Aarhus, Denmark
| | - Dragos Niculescu
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
- Center of Excellence PROMEMO, Aarhus University, Aarhus, Denmark
| | - Johanne Lauritsen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
| | - Angelo Iannielli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20129, Milan, Italy
| | - Ida H Klæstrup
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
| | - Uffe Birk Jensen
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, 8200, Aarhus, Denmark
| | - Per Qvist
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8000C, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, 8000C, Aarhus, Denmark
- Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, 8000C, Aarhus, Denmark
| | - Sadegh Nabavi
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, 8000C, Aarhus, Denmark
- Center of Excellence PROMEMO, Aarhus University, Aarhus, Denmark
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20129, Milan, Italy
| | - Anders Nykjær
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
- Center of Excellence PROMEMO, Aarhus University, Aarhus, Denmark
| | - Marina Romero-Ramos
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
| | - Mark Denham
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark.
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark.
| |
Collapse
|
9
|
Borborema MEDA, de Lucena TMC, Silva JDA. Vitamin D and estrogen steroid hormones and their immunogenetic roles in Infectious respiratory (TB and COVID-19) diseases. Genet Mol Biol 2023; 46:e20220158. [PMID: 36745756 PMCID: PMC9901533 DOI: 10.1590/1415-4757-gmb-2022-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/07/2022] [Indexed: 02/08/2023] Open
Abstract
The role of steroid hormones against infectious diseases has been extensively studied. From immunomodulatory action to direct inhibition of microorganism growth, hormones D3 (VD3) and 17β-estradiol (E2), and the genetic pathways modulated by them, are key targets for a better understanding pathogenesis of infectious respiratory diseases (IRD) such as tuberculosis (TB) and the coronavirus disease-19 (COVID-19). Currently, the world faces two major public health problems, the outbreak of COVID-19, accounting for more than 6 million so far, and TB, more than 1 million deaths per year. Both, although resulting from different pathogens, the Mtb and the SARS-CoV-2, respectively, are considered serious and epidemic. TB and COVID-19 present similar infection rates between men and women, however the number of complications and deaths resulting from the two infections is higher in men when compared to women in childbearing age, which may indicate a role of the sex hormone E2 in the context of these diseases. E2 and VD3 act upon key gene pathways as important immunomodulatory players and supporting molecules in IRDs. This review summarizes the main roles of these hormones (VD3 and E2) in modulating immune and inflammatory responses and their relationship with TB and COVID-19.
Collapse
Affiliation(s)
- Maria Eduarda de Albuquerque Borborema
- Universidade Federal de Pernambuco, Departamento de Genética, Laboratório de Genética e Biologia Molecular Humana (LGBMH), Recife, PE, Brazil
- Universidade Federal de Pernambuco, Laboratório de Imunopatologia Keizo Asami (LIKA), Recife, PE, Brazil
| | - Thays Maria Costa de Lucena
- Universidade Federal de Pernambuco, Departamento de Genética, Laboratório de Genética e Biologia Molecular Humana (LGBMH), Recife, PE, Brazil
- Universidade Federal de Pernambuco, Laboratório de Imunopatologia Keizo Asami (LIKA), Recife, PE, Brazil
| | - Jaqueline de Azevêdo Silva
- Universidade Federal de Pernambuco, Departamento de Genética, Laboratório de Genética e Biologia Molecular Humana (LGBMH), Recife, PE, Brazil
- Universidade Federal de Pernambuco, Laboratório de Imunopatologia Keizo Asami (LIKA), Recife, PE, Brazil
| |
Collapse
|
10
|
Anand GM, Megale HC, Murphy SH, Weis T, Lin Z, He Y, Wang X, Liu J, Ramanathan S. Controlling organoid symmetry breaking uncovers an excitable system underlying human axial elongation. Cell 2023; 186:497-512.e23. [PMID: 36657443 PMCID: PMC10122509 DOI: 10.1016/j.cell.2022.12.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/28/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023]
Abstract
The human embryo breaks symmetry to form the anterior-posterior axis of the body. As the embryo elongates along this axis, progenitors in the tail bud give rise to tissues that generate spinal cord, skeleton, and musculature. This raises the question of how the embryo achieves axial elongation and patterning. While ethics necessitate in vitro studies, the variability of organoid systems has hindered mechanistic insights. Here, we developed a bioengineering and machine learning framework that optimizes organoid symmetry breaking by tuning their spatial coupling. This framework enabled reproducible generation of axially elongating organoids, each possessing a tail bud and neural tube. We discovered that an excitable system composed of WNT/FGF signaling drives elongation by inducing a neuromesodermal progenitor-like signaling center. We discovered that instabilities in the excitable system are suppressed by secreted WNT inhibitors. Absence of these inhibitors led to ectopic tail buds and branches. Our results identify mechanisms governing stable human axial elongation.
Collapse
Affiliation(s)
- Giridhar M Anand
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Heitor C Megale
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sean H Murphy
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Theresa Weis
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Zuwan Lin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
| | - Yichun He
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
| | - Xiao Wang
- Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
| | - Jia Liu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Sharad Ramanathan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
11
|
Schnirman RE, Kuo SJ, Kelly RC, Yamaguchi TP. The role of Wnt signaling in the development of the epiblast and axial progenitors. Curr Top Dev Biol 2023; 153:145-180. [PMID: 36967193 DOI: 10.1016/bs.ctdb.2023.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Understanding how the body plan is established during embryogenesis remains a fundamental biological question. The Wnt/β-catenin signaling pathway plays a crucial and highly conserved role in body plan formation, functioning to polarize the primary anterior-posterior (AP) or head-to-tail body axis in most metazoans. In this chapter, we focus on the roles that the mammalian Wnt/β-catenin pathway plays to prepare the pluripotent epiblast for gastrulation, and to elicit the emergence of multipotent axial progenitors from the caudal epiblast. Interactions between Wnt and retinoic acid (RA), another powerful family of developmental signaling molecules, in axial progenitors will also be discussed. Gastrulation movements and somitogenesis result in the anterior displacement of the RA source (the rostral somites and lateral plate mesoderm (LPM)), from the posterior Wnt source (the primitive streak (PS)), leading to the establishment of antiparallel gradients of RA and Wnt that control the self-renewal and successive differentiation of neck, trunk and tail progenitors.
Collapse
Affiliation(s)
| | - Samuel J Kuo
- NCI-Frederick, NIH, Frederick, MD, United States
| | - Ryan C Kelly
- NCI-Frederick, NIH, Frederick, MD, United States
| | | |
Collapse
|
12
|
Li B, Brusman L, Dahlka J, Niswander LA. TMEM132A ensures mouse caudal neural tube closure and regulates integrin-based mesodermal migration. Development 2022; 149:dev200442. [PMID: 35950911 PMCID: PMC9482334 DOI: 10.1242/dev.200442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/25/2022] [Indexed: 09/01/2023]
Abstract
Coordinated migration of the mesoderm is essential for accurate organization of the body plan during embryogenesis. However, little is known about how mesoderm migration influences posterior neural tube closure in mammals. Here, we show that spinal neural tube closure and lateral migration of the caudal paraxial mesoderm depend on transmembrane protein 132A (TMEM132A), a single-pass type I transmembrane protein, the function of which is not fully understood. Our study in Tmem132a-null mice and cell models demonstrates that TMEM132A regulates several integrins and downstream integrin pathway activation as well as cell migration behaviors. Our data also implicates mesoderm migration in elevation of the caudal neural folds and successful closure of the caudal neural tube. These results suggest a requirement for paraxial mesodermal cell migration during spinal neural tube closure, disruption of which may lead to spina bifida.
Collapse
Affiliation(s)
| | | | | | - Lee A. Niswander
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
13
|
Jahan S, Awaja N, Hess B, Hajjar S, Sad S, Lohnes D. The transcription factor Cdx2 regulates inflammasome activity through expression of the NLRP3 suppressor TRIM31 to maintain intestinal homeostasis. J Biol Chem 2022; 298:102386. [PMID: 35985421 PMCID: PMC9508567 DOI: 10.1016/j.jbc.2022.102386] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/03/2022] Open
Abstract
The intestine-specific transcription factor Cdx2 is essential for intestinal homeostasis and has been implicated in the pathogenesis of disorders including inflammatory bowel disease. However, the mechanism by which Cdx2 influences intestinal disease is not clear. Here, we present evidence supporting a novel Cdx2–TRIM31–NLRP3 (NLR family, pyrin domain containing 3) signaling pathway, which may represent a mechanistic means by which Cdx2 impacts intestinal inflammation. We found that conditional loss of Cdx function resulted in an increase in proinflammatory cytokines, including tumor necrosis factor alpha, interleukin (IL)-1β, and IL-6, in the mouse colon. We further show that TRIM31, which encodes a suppressor of NLRP3 (a central component of the NLRP3 inflammasome complex) is a novel Cdx2 target gene and is attenuated in the colon of Cdx conditional mutants. Consistent with this, we found that attenuation of TRIM31 in Cdx mutant intestine occurs concomitant with elevated levels of NLRP3 and an increase in inflammasome products. We demonstrate that specific inhibition of NLRP3 activity significantly reduced IL-1β and IL-6 levels and extended the life span of Cdx conditional mutants, reflecting the therapeutic potential of targeting NLRP3. Tumor necrosis factor-alpha levels were also induced independent of NLRP3, potentially via elevated activity of the proinflammatory NF-κB signaling pathway in Cdx mutants. Finally, in silico analysis of ulcerative colitis patients revealed attenuation of CDX2 and TRIM31 expression coincident with enhanced expression of proinflammatory cytokines. We conclude that the novel Cdx2–TRIM31–NLRP3 signaling pathway promotes proinflammatory cytokine expression, and its inhibition may have therapeutic potential in human intestinal diseases.
Collapse
Affiliation(s)
- Sanzida Jahan
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Nidaa Awaja
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Bradley Hess
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Stephanie Hajjar
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - David Lohnes
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
14
|
De Azevêdo Silva J, de Lima SC, Fragoso TS, Cavalcanti CAJ, Barbosa AD, Borborema MEDA, de Lucena TMC, Duarte ALBP, Crovella S, Sandrin-Garcia P. Differential distribution of vitamin D receptor (VDR) gene variants and its expression in systemic lupus erythematosus. Int J Immunogenet 2022; 49:181-192. [PMID: 35560516 DOI: 10.1111/iji.12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/23/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disorder that displays an important genetic background. Vitamin D3 (VD3 ) through its receptor (VDR) plays an important immunomodulatory role in autoimmune misbalance, being capable of modulating immune responses. Genetic alterations in VDR gene may contribute to an altered risk in SLE development and clinical manifestations. We investigated VDR SNPs (single nucleotide polymorphisms) frequencies in 128 SLE patients and 138 healthy controls (HC) and mRNA differential expression in 29 patients and 17 HC regarding SLE susceptibility as well as clinical features. We observed that rs11168268 G allele (OR = 1.55, p = .01) and G/G genotype (OR = 2.69, p = .008) were associated with increased SLE susceptibility. The rs2248098 G allele and A/G and G/G genotypes were associated to lower SLE susceptibility (OR = 0.66, p = .01; OR = 0.46, p = .01; OR = 0.44, p = .02, respectively). Regarding clinical features, we observed lower risk for: rs11168268 A/G genotype and nephritis (OR = 0.31, p = .01); rs4760648 T/T genotype and photosensitivity (OR = 0.24, p = .02); rs1540339 T/T genotype and antibody anti-dsDNA (OR = 0.19, p = .015); rs3890733 T/T genotype and serositis (OR = 0.10, p = .01). We identified a significant downregulation in VDR expression levels when compared patients and controls overall (p = 1.04e-7 ), in Cdx-2 A/G and G/G (p = .008 and p = .014, respectively) and in patients with nephritis (p = .016) Our results suggested that VDR SNPs influence upon SLE susceptibility and in particular clinical features, acting on mRNA expression in SLE patients overall and the ones with nephritis.
Collapse
Affiliation(s)
| | - Suelen Cristina de Lima
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Brazil
| | - Thiago Sotero Fragoso
- Serviço de Reumatologia do Hospital das Clínicas, Universidade Federal de Alagoas, Maceió, Brazil
| | | | | | | | - Thays Maria Costa de Lucena
- Laboratório de Genética e Biologia Molecular Humana, Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Sergio Crovella
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, State of Qatar
| | - Paula Sandrin-Garcia
- Departamento de Genética / Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
15
|
Pitsava G, Feldkamp ML, Pankratz N, Lane J, Kay DM, Conway KM, Hobbs C, Shaw GM, Reefhuis J, Jenkins MM, Almli LM, Moore C, Werler M, Browne ML, Cunniff C, Olshan AF, Pangilinan F, Brody LC, Sicko RJ, Finnell RH, Bamshad MJ, McGoldrick D, Nickerson DA, Mullikin JC, Romitti PA, Mills JL, UW Center for Mendelian Genomics, NISC Comparative Sequencing Program and the National Birth Defects Prevention Study.. Exome sequencing identifies variants in infants with sacral agenesis. Birth Defects Res 2022; 114:215-227. [PMID: 35274497 PMCID: PMC9338687 DOI: 10.1002/bdr2.1987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/22/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Sacral agenesis (SA) consists of partial or complete absence of the caudal end of the spine and often presents with additional birth defects. Several studies have examined gene variants for syndromic forms of SA, but only one has examined exomes of children with non-syndromic SA. METHODS Using buccal cell specimens from families of children with non-syndromic SA, exomes of 28 child-parent trios (eight with and 20 without a maternal diagnosis of pregestational diabetes) and two child-father duos (neither with diagnosis of maternal pregestational diabetes) were exome sequenced. RESULTS Three children had heterozygous missense variants in ID1 (Inhibitor of DNA Binding 1), with CADD scores >20 (top 1% of deleterious variants in the genome); two children inherited the variant from their fathers and one from the child's mother. Rare missense variants were also detected in PDZD2 (PDZ Domain Containing 2; N = 1) and SPTBN5 (Spectrin Beta, Non-erythrocytic 5; N = 2), two genes previously suggested to be associated with SA etiology. Examination of variants with autosomal recessive and X-linked recessive inheritance identified five and two missense variants, respectively. Compound heterozygous variants were identified in several genes. In addition, 12 de novo variants were identified, all in different genes in different children. CONCLUSIONS To our knowledge, this is the first study reporting a possible association between ID1 and non-syndromic SA. Although maternal pregestational diabetes has been strongly associated with SA, the missense variants in ID1 identified in two of three children were paternally inherited. These findings add to the knowledge of gene variants associated with non-syndromic SA and provide data for future studies.
Collapse
Affiliation(s)
- Georgia Pitsava
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Marcia L. Feldkamp
- Division of Medical Genetics, Department of Pediatrics, 295 Chipeta Way, Suite 2S010, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Denise M. Kay
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Kristin M. Conway
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - Charlotte Hobbs
- Rady Children’s Institute for Genomic Medicine, San Diego, California, USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Jennita Reefhuis
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mary M. Jenkins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lynn M. Almli
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cynthia Moore
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Martha Werler
- Slone Epidemiology Center at Boston University, Boston, MA
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA
| | - Marilyn L. Browne
- New York State Department of Health, Birth Defects Registry, Albany, New York, USA
- Department of Epidemiology and Biostatistics, University at Albany School of Public Health, Rensselaer, New York, USA
| | - Chris Cunniff
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Faith Pangilinan
- Gene and Environment Interaction Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Lawrence C. Brody
- Gene and Environment Interaction Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Robert J. Sicko
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Richard H. Finnell
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Michael J. Bamshad
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Daniel McGoldrick
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Deborah A. Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - James C. Mullikin
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul A. Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - James L. Mills
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
16
|
Needham J, Metzis V. Heads or tails: Making the spinal cord. Dev Biol 2022; 485:80-92. [DOI: 10.1016/j.ydbio.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/15/2021] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
|
17
|
Foley T, Lohnes D. Cdx regulates gene expression through PRC2-mediated epigenetic mechanisms. Dev Biol 2021; 483:22-33. [PMID: 34973175 DOI: 10.1016/j.ydbio.2021.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/03/2022]
Abstract
The extra-embryonic yolk sac contains adjacent layers of mesoderm and visceral endoderm. The mesodermal layer serves as the first site of embryonic hematopoiesis, while the visceral endoderm provides a means of exchanging nutrients and waste until the development of the chorioallantoic placenta. While defects in chorioallantoic fusion and yolk sac hematopoiesis have been described in Cdx mutant mouse models, little is known about the gene targets and molecular mechanisms through which Cdx members regulate these processes. To this end, we used RNA-seq to examine Cdx-dependent gene expression changes in the yolk sac. We find that loss of Cdx function impacts the expression of genes involved in yolk sac hematopoiesis, as previously described, as well as novel Cdx2 target genes. In addition, we observed Cdx-dependent changes in PRC2 subunit expression accompanied by altered H3K27me3 deposition at a subset of Cdx target genes as early as E7.5 in the embryo proper. This study identifies additional Cdx target genes and provides further evidence for Cdx-dependent epigenetic regulation of gene expression in the early embryo, and that this regulation is required to maintain gene expression programs in the extra-embryonic yolk sac at later developmental stages.
Collapse
Affiliation(s)
- Tanya Foley
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada, K1H 8M5.
| | - David Lohnes
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada, K1H 8M5.
| |
Collapse
|
18
|
Stevens SJC, Stumpel CTRM, Diderich KEM, van Slegtenhorst MA, Abbott MA, Manning C, Balciuniene J, Pyle LC, Leonard J, Murrell JR, van de Putte R, van Rooij IALM, Hoischen A, Lasko P, Brunner HG. The broader phenotypic spectrum of congenital caudal abnormalities associated with mutations in the caudal type homeobox 2 gene. Clin Genet 2021; 101:183-189. [PMID: 34671974 PMCID: PMC9153267 DOI: 10.1111/cge.14076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/28/2022]
Abstract
The caudal type homeobox 2 (CDX2) gene encodes a developmental regulator involved in caudal body patterning. Only three pathogenic variants in human CDX2 have been described, in patients with persistent cloaca, sirenomelia and/or renal and anogenital malformations. We identified five patients with de novo or inherited pathogenic variants in CDX2 with clinical phenotypes that partially overlap with previous cases, that is, imperforate anus and renal, urogenital and limb abnormalities. However, additional clinical features were seen including vertebral agenesis and we describe considerable phenotypic variability, even in unrelated patients with the same recurrent p.(Arg237His) variant. We propose CDX2 variants as rare genetic cause for a multiple congenital anomaly syndrome that can include features of caudal regression syndrome and VACTERL. A causative role is further substantiated by the relationship between CDX2 and other proteins encoded by genes that were previously linked to caudal abnormalities in humans, for example, TBXT (sacral agenesis and other vertebral segmentation defects) and CDX1 (anorectal malformations). Our findings confirm the essential role of CDX2 in caudal morphogenesis and formation of cloacal derivatives in humans, which to date has only been well characterized in animals.
Collapse
Affiliation(s)
- Servi J C Stevens
- Department of Clinical Genetics, Maastricht University Medical Centre and GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Constance T R M Stumpel
- Department of Clinical Genetics, Maastricht University Medical Centre and GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Karin E M Diderich
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, the Netherlands
| | | | - Mary-Alice Abbott
- Department of Pediatrics, University of Massachusetts Medical School-Baystate, Springfield, Massachusetts, USA
| | - Courtney Manning
- Department of Pediatrics, University of Massachusetts Medical School-Baystate, Springfield, Massachusetts, USA
| | - Jorune Balciuniene
- Division of Human Genetics and the Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Louise C Pyle
- Division of Human Genetics and the Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jacqueline Leonard
- Division of Human Genetics and the Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jill R Murrell
- Division of Human Genetics and the Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Romy van de Putte
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Iris A L M van Rooij
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexander Hoischen
- Department of Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Paul Lasko
- Department of Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands.,Department of Biology, McGill University, Montréal, Québec, Canada
| | - Han G Brunner
- Department of Clinical Genetics, Maastricht University Medical Centre and GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.,Department of Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
19
|
Abstract
The intestinal epithelium is a unique tissue, serving both as a barrier against pathogens and to conduct the end digestion and adsorption of nutrients. As regards the former, the intestinal epithelium contains a diverse repertoire of immune cells, including a variety of resident lymphocytes, macrophages and dendritic cells. These cells serve a number of roles including mitigation of infection and to stimulate regeneration in response to damage. The transcription factor Cdx2, and to a lesser extent Cdx1, plays essential roles in intestinal homeostasis, and acts as a context-dependent tumour suppressor in colorectal cancer. Deletion of Cdx2 from the murine intestinal epithelium leads to macrophage infiltration resulting in a chronic inflammatory response. However the mechanisms by which Cdx2 loss evokes this response are poorly understood. To better understand this relationship, we used a conditional mouse model lacking all intestinal Cdx function to identify potential target genes which may contribute to this inflammatory phenotype. One such candidate encodes the histocompatability complex protein H2-T3, which functions to regulate intestinal iCD8α lymphocyte activity. We found that Cdx2 occupies the H3-T3 promoter in vivo and directly regulates its expression via a Cdx response element. Loss of Cdx function leads to a rapid and pronounced attenuation of H2-T3, followed by a decrease in iCD8α cell number, an increase in macrophage infiltration and activation of pro-inflammatory cascades. These findings suggest a previously unrecognized role for Cdx in intestinal homeostasis through H2-T3-dependent regulation of iCD8α cells.
Collapse
|
20
|
Xu PF, Borges RM, Fillatre J, de Oliveira-Melo M, Cheng T, Thisse B, Thisse C. Construction of a mammalian embryo model from stem cells organized by a morphogen signalling centre. Nat Commun 2021; 12:3277. [PMID: 34078907 PMCID: PMC8172561 DOI: 10.1038/s41467-021-23653-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 05/11/2021] [Indexed: 12/16/2022] Open
Abstract
Generating properly differentiated embryonic structures in vitro from pluripotent stem cells remains a challenge. Here we show that instruction of aggregates of mouse embryonic stem cells with an experimentally engineered morphogen signalling centre, that functions as an organizer, results in the development of embryo-like entities (embryoids). In situ hybridization, immunolabelling, cell tracking and transcriptomic analyses show that these embryoids form the three germ layers through a gastrulation process and that they exhibit a wide range of developmental structures, highly similar to neurula-stage mouse embryos. Embryoids are organized around an axial chordamesoderm, with a dorsal neural plate that displays histological properties similar to the murine embryo neuroepithelium and that folds into a neural tube patterned antero-posteriorly from the posterior midbrain to the tip of the tail. Lateral to the chordamesoderm, embryoids display somitic and intermediate mesoderm, with beating cardiac tissue anteriorly and formation of a vasculature network. Ventrally, embryoids differentiate a primitive gut tube, which is patterned both antero-posteriorly and dorso-ventrally. Altogether, embryoids provide an in vitro model of mammalian embryo that displays extensive development of germ layer derivatives and that promises to be a powerful tool for in vitro studies and disease modelling.
Collapse
Affiliation(s)
- Peng-Fei Xu
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
- Institute of Genetics and Department of Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Jonathan Fillatre
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Maraysa de Oliveira-Melo
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, State University of Campinas, Campinas, Brazil
| | - Tao Cheng
- Institute of Genetics and Department of Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bernard Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Christine Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
21
|
Wymeersch FJ, Wilson V, Tsakiridis A. Understanding axial progenitor biology in vivo and in vitro. Development 2021; 148:148/4/dev180612. [PMID: 33593754 DOI: 10.1242/dev.180612] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of the components that make up the embryonic body axis, such as the spinal cord and vertebral column, takes place in an anterior-to-posterior (head-to-tail) direction. This process is driven by the coordinated production of various cell types from a pool of posteriorly-located axial progenitors. Here, we review the key features of this process and the biology of axial progenitors, including neuromesodermal progenitors, the common precursors of the spinal cord and trunk musculature. We discuss recent developments in the in vitro production of axial progenitors and their potential implications in disease modelling and regenerative medicine.
Collapse
Affiliation(s)
- Filip J Wymeersch
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Valerie Wilson
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield S10 2TN UK .,Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| |
Collapse
|
22
|
Zhu Y, Hryniuk A, Foley T, Hess B, Lohnes D. Cdx2 Regulates Intestinal EphrinB1 through the Notch Pathway. Genes (Basel) 2021; 12:genes12020188. [PMID: 33525395 PMCID: PMC7911442 DOI: 10.3390/genes12020188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 01/07/2023] Open
Abstract
The majority of colorectal cancers harbor loss-of-function mutations in APC, a negative regulator of canonical Wnt signaling, leading to intestinal polyps that are predisposed to malignant progression. Comparable murine APC alleles also evoke intestinal polyps, which are typically confined to the small intestine and proximal colon, but do not progress to carcinoma in the absence of additional mutations. The Cdx transcription factors Cdx1 and Cdx2 are essential for homeostasis of the intestinal epithelium, and loss of Cdx2 has been associated with more aggressive subtypes of colorectal cancer in the human population. Consistent with this, concomitant loss of Cdx1 and Cdx2 in a murine APC mutant background leads to an increase in polyps throughout the intestinal tract. These polyps also exhibit a villous phenotype associated with the loss of EphrinB1. However, the basis for these outcomes is poorly understood. To further explore this, we modeled Cdx2 loss in SW480 colorectal cancer cells. We found that Cdx2 impacted Notch signaling in SW480 cells, and that EphrinB1 is a Notch target gene. As EphrinB1 loss also leads to a villus tumor phenotype, these findings evoke a mechanism by which Cdx2 impacts colorectal cancer via Notch-dependent EphrinB1 signaling.
Collapse
Affiliation(s)
- Yalun Zhu
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
| | - Alexa Hryniuk
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Tanya Foley
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
| | - Bradley Hess
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
| | - David Lohnes
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
- Correspondence: ; Tel.: +1-613-562-5800 (ext. 8684)
| |
Collapse
|
23
|
The Cdx transcription factors and retinoic acid play parallel roles in antero-posterior position of the pectoral fin field during gastrulation. Mech Dev 2020; 164:103644. [PMID: 32911082 DOI: 10.1016/j.mod.2020.103644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022]
Abstract
The molecular regulators that determine the precise position of the vertebrate limb along the anterio-posterior axis have not been identified. One model suggests that a combination of hox genes in the lateral plate mesoderm (LPM) promotes formation of the limb field, however redundancy among duplicated paralogs has made this model difficult to confirm. In this study, we identify an optimal window during mid-gastrulation stages when transient mis-regulation of retinoic acid signaling or the caudal related transcription factor, Cdx4, both known regulators of hox genes, can alter the position of the pectoral fin field. We show that increased levels of either RA or Cdx4 during mid-gastrulation are sufficient to rostrally shift the position of the pectoral fin field at the expense of surrounding gene expression in the anterior lateral plate mesoderm (aLPM). Alternatively, embryos deficient for both Cdx4 and Cdx1a (Cdx-deficient) form pectoral fins that are shifted towards the posterior and reveal an additional effect on size of the pectoral fin buds. Prior to formation of the pectoral fin buds, the fin field in Cdx-deficient embryos is visibly expanded into the posterior LPM (pLPM) region at the expense of surrounding gene expression. The effects on gene expression immediately post-gastrulation and during somitogenesis support a model where RA and Cdx4 act in parallel to regulate the position of the pectoral fin. Our transient method is a potentially useful model for studying the mechanisms of limb positioning along the AP axis.
Collapse
|
24
|
Zhao ZH, Ma JY, Meng TG, Wang ZB, Yue W, Zhou Q, Li S, Feng X, Hou Y, Schatten H, Ou XH, Sun QY. Single-cell RNA sequencing reveals the landscape of early female germ cell development. FASEB J 2020; 34:12634-12645. [PMID: 32716582 DOI: 10.1096/fj.202001034rr] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 01/15/2023]
Abstract
Meiosis initiation is a crucial step for the production of haploid gametes, which occurs from anterior to posterior in fetal ovaries. The asynchrony of the transition from mitosis to meiosis results in heterogeneity in the female germ cell populations, which limits the studies of meiosis initiation and progression at a higher resolution level. To dissect the process of meiosis initiation, we investigated the transcriptional profiles of 19 363 single germ cells collected from E12.5, E14.5, and E16.5 mouse fetal ovaries. Clustering analysis identified seven groups and defined dozens of corresponding transcription factors, providing a global view of cellular differentiation from primordial germ cells toward meiocytes. Furthermore, we explored the dynamics of gene expression within the developmental trajectory with special focus on the critical state of meiosis. We found that meiosis initiation occurs as early as E12.5 and the cluster of oogonia_4 is the critical state between mitosis and meiosis. Our data provide key insights into the transcriptome features of peri-meiotic female germ cells, which offers new information not only on meiosis initiation and progression but also on screening pathogenic mutations in meiosis-associated diseases.
Collapse
Affiliation(s)
- Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Yu Ma
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Sen Li
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xie Feng
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
25
|
Zhong Y, Herrera-Úbeda C, Garcia-Fernàndez J, Li G, Holland PWH. Mutation of amphioxus Pdx and Cdx demonstrates conserved roles for ParaHox genes in gut, anus and tail patterning. BMC Biol 2020; 18:68. [PMID: 32546156 PMCID: PMC7296684 DOI: 10.1186/s12915-020-00796-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The homeobox genes Pdx and Cdx are widespread across the animal kingdom and part of the small ParaHox gene cluster. Gene expression patterns suggest ancient roles for Pdx and Cdx in patterning the through-gut of bilaterian animals although functional data are available for few lineages. To examine evolutionary conservation of Pdx and Cdx gene functions, we focus on amphioxus, small marine animals that occupy a pivotal position in chordate evolution and in which ParaHox gene clustering was first reported. RESULTS Using transcription activator-like effector nucleases (TALENs), we engineer frameshift mutations in the Pdx and Cdx genes of the amphioxus Branchiostoma floridae and establish mutant lines. Homozygous Pdx mutants have a defect in amphioxus endoderm, manifest as loss of a midgut region expressing endogenous GFP. The anus fails to open in homozygous Cdx mutants, which also have defects in posterior body extension and epidermal tail fin development. Treatment with an inverse agonist of retinoic acid (RA) signalling partially rescues the axial and tail fin phenotypes indicating they are caused by increased RA signalling. Gene expression analyses and luciferase assays suggest that posterior RA levels are kept low in wild type animals by a likely direct transcriptional regulation of a Cyp26 gene by Cdx. Transcriptome analysis reveals extensive gene expression changes in mutants, with a disproportionate effect of Pdx and Cdx on gut-enriched genes and a colinear-like effect of Cdx on Hox genes. CONCLUSIONS These data reveal that amphioxus Pdx and Cdx have roles in specifying middle and posterior cell fates in the endoderm of the gut, roles that likely date to the origin of Bilateria. This conclusion is consistent with these two ParaHox genes playing a role in the origin of the bilaterian through-gut with a distinct anus, morphological innovations that contributed to ecological change in the Cambrian. In addition, we find that amphioxus Cdx promotes body axis extension through a molecular mechanism conserved with vertebrates. The axial extension role for Cdx dates back at least to the origin of Chordata and may have facilitated the evolution of the post-anal tail and active locomotion in chordates.
Collapse
Affiliation(s)
- Yanhong Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Carlos Herrera-Úbeda
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK.,Department of Genetics, Microbiology & Statistics, and Institute of Biomedicine (IBUB), University of Barcelona, 08028, Barcelona, Spain
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Microbiology & Statistics, and Institute of Biomedicine (IBUB), University of Barcelona, 08028, Barcelona, Spain
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | | |
Collapse
|
26
|
Hematopoietic stem and progenitor cell-restricted Cdx2 expression induces transformation to myelodysplasia and acute leukemia. Nat Commun 2020; 11:3021. [PMID: 32541670 PMCID: PMC7296000 DOI: 10.1038/s41467-020-16840-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 05/28/2020] [Indexed: 02/08/2023] Open
Abstract
The caudal-related homeobox transcription factor CDX2 is expressed in leukemic cells but not during normal blood formation. Retroviral overexpression of Cdx2 induces AML in mice, however the developmental stage at which CDX2 exerts its effect is unknown. We developed a conditionally inducible Cdx2 mouse model to determine the effects of in vivo, inducible Cdx2 expression in hematopoietic stem and progenitor cells (HSPCs). Cdx2-transgenic mice develop myelodysplastic syndrome with progression to acute leukemia associated with acquisition of additional driver mutations. Cdx2-expressing HSPCs demonstrate enrichment of hematopoietic-specific enhancers associated with pro-differentiation transcription factors. Furthermore, treatment of Cdx2 AML with azacitidine decreases leukemic burden. Extended scheduling of low-dose azacitidine shows greater efficacy in comparison to intermittent higher-dose azacitidine, linked to more specific epigenetic modulation. Conditional Cdx2 expression in HSPCs is an inducible model of de novo leukemic transformation and can be used to optimize treatment in high-risk AML.
Collapse
|
27
|
Saito S, Suzuki T. How do signaling and transcription factors regulate both axis elongation and Hox gene expression along the anteroposterior axis? Dev Growth Differ 2020; 62:363-375. [DOI: 10.1111/dgd.12682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Seiji Saito
- Division of Biological Science Graduate School of Science Nagoya University Nagoya Japan
| | - Takayuki Suzuki
- Avian Bioscience Research Center Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| |
Collapse
|
28
|
Roberts C. Regulating Retinoic Acid Availability during Development and Regeneration: The Role of the CYP26 Enzymes. J Dev Biol 2020; 8:jdb8010006. [PMID: 32151018 PMCID: PMC7151129 DOI: 10.3390/jdb8010006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the role of the Cytochrome p450 subfamily 26 (CYP26) retinoic acid (RA) degrading enzymes during development and regeneration. Cyp26 enzymes, along with retinoic acid synthesising enzymes, are absolutely required for RA homeostasis in these processes by regulating availability of RA for receptor binding and signalling. Cyp26 enzymes are necessary to generate RA gradients and to protect specific tissues from RA signalling. Disruption of RA homeostasis leads to a wide variety of embryonic defects affecting many tissues. Here, the function of CYP26 enzymes is discussed in the context of the RA signalling pathway, enzymatic structure and biochemistry, human genetic disease, and function in development and regeneration as elucidated from animal model studies.
Collapse
Affiliation(s)
- Catherine Roberts
- Developmental Biology of Birth Defects, UCL-GOS Institute of Child Health, 30 Guilford St, London WC1N 1EH, UK;
- Institute of Medical and Biomedical Education St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| |
Collapse
|
29
|
Lecoquierre F, Brehin A, Coutant S, Coursimault J, Bazin A, Finck W, Benoist G, Begorre M, Beneteau C, Cailliez D, Chenal P, De Jong M, Degré S, Devisme L, Francannet C, Gérard B, Jeanne C, Joubert M, Journel H, Laurichesse Delmas H, Layet V, Liquier A, Mangione R, Patrier S, Pelluard F, Petit F, Tillouche N, Ravenswaaij‐Arts C, Frebourg T, Saugier‐Veber P, Gruchy N, Nicolas G, Gerard M. Exome sequencing identifies the first genetic determinants of sirenomelia in humans. Hum Mutat 2020; 41:926-933. [DOI: 10.1002/humu.23998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/19/2020] [Accepted: 02/09/2020] [Indexed: 12/25/2022]
Affiliation(s)
- François Lecoquierre
- Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, Normandie UnivUNIROUENInserm U1245 and Rouen University Hospital Rouen France
| | - Anne‐Claire Brehin
- Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, Normandie UnivUNIROUENInserm U1245 and Rouen University Hospital Rouen France
- Department of FoetopathologyCHU Rouen Rouen France
| | - Sophie Coutant
- Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, Normandie UnivUNIROUENInserm U1245 and Rouen University Hospital Rouen France
| | - Juliette Coursimault
- Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, Normandie UnivUNIROUENInserm U1245 and Rouen University Hospital Rouen France
| | - Anne Bazin
- Département de Génétique et de Biologie SpécialiséeLaboratoire Cerba Saint Ouen l'Aumone France
| | - Wilfrid Finck
- Unité de Foetopathologie, Laboratoire d'anatomie et cytologie pathologiqueCHU Clermont Ferrand Clermont‐Ferrand France
| | - Guillaume Benoist
- Service de gynécologie‐obstétrique et médecine de la reproductionCentre Hospitalier Universitaire de Caen, Universite de Caen Normandie Caen Basse‐Normandie France
| | | | - Claire Beneteau
- Department of Clinical geneticsCHU Hôpital mère et enfant Nantes France
| | | | - Pierre Chenal
- Department of FoetopathologyHopital Monod Le Havre France
| | - Mirjam De Jong
- Department of GeneticsUniversity Medical Centre Groningen, University of Groningen Groningen The Netherlands
| | | | | | - Christine Francannet
- Centre de référence des anomalies malformatives, Service de génétique médicaleCHU Clermont‐Ferrand Clermont‐Ferrand France
- Centre d'Etude des Malformations Congénitales, CEMC‐AuvergneCHU Clermont‐Ferrand Clermont‐Ferrand France
| | - Bénédicte Gérard
- Department of GeneticsCHU de Strasbourg, Hôpital CivilStrasbourg France
| | - Corinne Jeanne
- Department of Foetopathology, Centre François BaclesseCHU Côte de NacreCaen France
| | | | | | - Hélène Laurichesse Delmas
- Centre d'Etude des Malformations Congénitales, CEMC‐AuvergneCHU Clermont‐Ferrand Clermont‐Ferrand France
- Unité de Médecine Fœtale, Service de gynécologie‐obstétriqueCHU Clermont‐FerrandClermont‐Ferrand France
| | - Valérie Layet
- Department of Clinical GeneticsHopital MonodLe Havre France
| | | | - Raphaele Mangione
- Departement of RadiologyPolyclinique Bordeaux Nord‐AquitaineBordeaux France
| | | | - Fanny Pelluard
- Service d'Anatomie‐Cytologie PathologiqueCentre Hospitalier Universitaire de BordeauxBordeaux France
- INSERM UMR1053, Bordeaux Research in Translational Oncology, BaRITOnUniversité de Bordeaux Bordeaux France
| | - Florence Petit
- Clinique de Génétique “Guy Fontaine”—Centre de référence CLAD, Hôpital Jeanne de FlandreCHU LilleLille France
| | - Nadia Tillouche
- Pôle Femme‐Mère‐Nouveau‐néCentre Hospitalier de ValenciennesValenciennes France
| | - Conny Ravenswaaij‐Arts
- Department of GeneticsUniversity Medical Centre Groningen, University of Groningen Groningen The Netherlands
| | - Thierry Frebourg
- Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, Normandie UnivUNIROUENInserm U1245 and Rouen University Hospital Rouen France
| | - Pascale Saugier‐Veber
- Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, Normandie UnivUNIROUENInserm U1245 and Rouen University Hospital Rouen France
| | - Nicolas Gruchy
- Department of Genetics, Normandy Center for Genomic and Personalized MedicineCaen University HospitalCaen France
| | - Gaël Nicolas
- Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, Normandie UnivUNIROUENInserm U1245 and Rouen University Hospital Rouen France
| | - Marion Gerard
- Department of Genetics, Normandy Center for Genomic and Personalized MedicineCaen University HospitalCaen France
| |
Collapse
|
30
|
Zujur D, Kanke K, Onodera S, Tani S, Lai J, Azuma T, Xin X, Lichtler AC, Rowe DW, Saito T, Tanaka S, Masaki H, Nakauchi H, Chung UI, Hojo H, Ohba S. Stepwise strategy for generating osteoblasts from human pluripotent stem cells under fully defined xeno-free conditions with small-molecule inducers. Regen Ther 2020; 14:19-31. [PMID: 31988991 PMCID: PMC6965656 DOI: 10.1016/j.reth.2019.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/20/2019] [Accepted: 12/24/2019] [Indexed: 01/01/2023] Open
Abstract
Clinically relevant human induced pluripotent stem cell (hiPSC) derivatives require efficient protocols to differentiate hiPSCs into specific lineages. Here we developed a fully defined xeno-free strategy to direct hiPSCs toward osteoblasts within 21 days. The strategy successfully achieved the osteogenic induction of four independently derived hiPSC lines by a sequential use of combinations of small-molecule inducers. The induction first generated mesodermal cells, which subsequently recapitulated the developmental expression pattern of major osteoblast genes and proteins. Importantly, Col2.3-Cherry hiPSCs subjected to this strategy strongly expressed the cherry fluorescence that has been observed in bone-forming osteoblasts in vivo. Moreover, the protocol combined with a three-dimensional (3D) scaffold was suitable for the generation of a xeno-free 3D osteogenic system. Thus, our strategy offers a platform with significant advantages for bone biology studies and it will also contribute to clinical applications of hiPSCs to skeletal regenerative medicine.
Collapse
Affiliation(s)
- Denise Zujur
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kosuke Kanke
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Shoichiro Tani
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jenny Lai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Xiaonan Xin
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Alexander C Lichtler
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - David W Rowe
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Taku Saito
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sakae Tanaka
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Masaki
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiromitsu Nakauchi
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ung-Il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hironori Hojo
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Ohba
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
31
|
Martyn I, Siggia ED, Brivanlou AH. Mapping cell migrations and fates in a gastruloid model to the human primitive streak. Development 2019; 146:dev.179564. [PMID: 31427289 DOI: 10.1242/dev.179564] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
Abstract
Although fate maps of early embryos exist for nearly all model organisms, a fate map of the gastrulating human embryo remains elusive. Here, we use human gastruloids to piece together a rudimentary fate map for the human primitive streak (PS). This is possible because differing levels of BMP, WNT and NODAL lead to self-organization of gastruloids into homogenous subpopulations of endoderm and mesoderm, and comparative analysis of these gastruloids, together with the fate map of the mouse embryo, allows the organization of these subpopulations along an anterior-posterior axis. We also developed a novel cell tracking technique that detected robust fate-dependent cell migrations in our gastruloids comparable with those found in the mouse embryo. Taken together, our fate map and recording of cell migrations provides a first coarse view of what the human PS may resemble in vivo.
Collapse
Affiliation(s)
- Iain Martyn
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA.,Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Eric D Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
32
|
Lukacs M, Roberts T, Chatuverdi P, Stottmann RW. Glycosylphosphatidylinositol biosynthesis and remodeling are required for neural tube closure, heart development, and cranial neural crest cell survival. eLife 2019; 8:45248. [PMID: 31232685 PMCID: PMC6611694 DOI: 10.7554/elife.45248] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchors attach nearly 150 proteins to the cell membrane. Patients with pathogenic variants in GPI biosynthesis genes develop diverse phenotypes including seizures, dysmorphic facial features and cleft palate through an unknown mechanism. We identified a novel mouse mutant (cleft lip/palate, edema and exencephaly; Clpex) with a hypo-morphic mutation in Post-Glycophosphatidylinositol Attachment to Proteins-2 (Pgap2), a component of the GPI biosynthesis pathway. The Clpex mutation decreases surface GPI expression. Surprisingly, Pgap2 showed tissue-specific expression with enrichment in the brain and face. We found the Clpex phenotype is due to apoptosis of neural crest cells (NCCs) and the cranial neuroepithelium. We showed folinic acid supplementation in utero can partially rescue the cleft lip phenotype. Finally, we generated a novel mouse model of NCC-specific total GPI deficiency. These mutants developed median cleft lip and palate demonstrating a previously undocumented cell autonomous role for GPI biosynthesis in NCC development.
Collapse
Affiliation(s)
- Marshall Lukacs
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States.,Medical Scientist Training Program, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Tia Roberts
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Praneet Chatuverdi
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States.,Medical Scientist Training Program, Cincinnati Children's Medical Center, Cincinnati, United States.,Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, United States
| |
Collapse
|
33
|
Foley TE, Hess B, Savory JGA, Ringuette R, Lohnes D. Role of Cdx factors in early mesodermal fate decisions. Development 2019; 146:146/7/dev170498. [PMID: 30936115 DOI: 10.1242/dev.170498] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/01/2019] [Indexed: 12/30/2022]
Abstract
Murine cardiac and hematopoietic progenitors are derived from Mesp1+ mesoderm. Cdx function impacts both yolk sac hematopoiesis and cardiogenesis in zebrafish, suggesting that Cdx family members regulate early mesoderm cell fate decisions. We found that Cdx2 occupies a number of transcription factor loci during embryogenesis, including key regulators of both cardiac and blood development, and that Cdx function is required for normal expression of the cardiogenic transcription factors Nkx2-5 and Tbx5 Furthermore, Cdx and Brg1, an ATPase subunit of the SWI/SNF chromatin remodeling complex, co-occupy a number of loci, suggesting that Cdx family members regulate target gene expression through alterations in chromatin architecture. Consistent with this, we demonstrate loss of Brg1 occupancy and altered chromatin structure at several cardiogenic genes in Cdx-null mutants. Finally, we provide evidence for an onset of Cdx2 expression at E6.5 coinciding with egression of cardiac progenitors from the primitive streak. Together, these findings suggest that Cdx functions in multi-potential mesoderm to direct early cell fate decisions through transcriptional regulation of several novel target genes, and provide further insight into a potential epigenetic mechanism by which Cdx influences target gene expression.
Collapse
Affiliation(s)
- Tanya E Foley
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Bradley Hess
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Joanne G A Savory
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Randy Ringuette
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - David Lohnes
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
34
|
Joshi P, Darr AJ, Skromne I. CDX4 regulates the progression of neural maturation in the spinal cord. Dev Biol 2019; 449:132-142. [PMID: 30825428 DOI: 10.1016/j.ydbio.2019.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 11/17/2022]
Abstract
The progression of cells down different lineage pathways is a collaborative effort between networks of extracellular signals and intracellular transcription factors. In the vertebrate spinal cord, FGF, Wnt and Retinoic Acid signaling pathways regulate the progressive caudal-to-rostral maturation of neural progenitors by regulating a poorly understood gene regulatory network of transcription factors. We have mapped out this gene regulatory network in the chicken pre-neural tube, identifying CDX4 as a dual-function core component that simultaneously regulates gradual loss of cell potency and acquisition of differentiation states: in a caudal-to-rostral direction, CDX4 represses the early neural differentiation marker Nkx1.2 and promotes the late neural differentiation marker Pax6. Significantly, CDX4 prevents premature PAX6-dependent neural differentiation by blocking Ngn2 activation. This regulation of CDX4 over Pax6 is restricted to the rostral pre-neural tube by Retinoic Acid signaling. Together, our results show that in the spinal cord, CDX4 is part of the gene regulatory network controlling the sequential and progressive transition of states from high to low potency during neural progenitor maturation. Given CDX well-known involvement in Hox gene regulation, we propose that CDX factors coordinate the maturation and axial specification of neural progenitor cells during spinal cord development.
Collapse
Affiliation(s)
- Piyush Joshi
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, United States; Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, 600 5th St S, St. Petersburg, FL 33701, United States
| | - Andrew J Darr
- Department of Health Sciences Education, University of Illinois College of Medicine, 1 Illini Drive, Peoria, IL 61605, United States
| | - Isaac Skromne
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, United States; Department of Biology, University of Richmond, 138 UR Drive B322, Richmond, VA, 23173, United States.
| |
Collapse
|
35
|
Hsu JSJ, So M, Tang CSM, Karim A, Porsch RM, Wong C, Yu M, Yeung F, Xia H, Zhang R, Cherny SS, Chung PHY, Wong KKY, Sham PC, Ngo ND, Li M, Tam PKH, Lui VCH, Garcia-Barcelo MM. De novo mutations in Caudal Type Homeo Box transcription Factor 2 (CDX2) in patients with persistent cloaca. Hum Mol Genet 2019; 27:351-358. [PMID: 29177441 DOI: 10.1093/hmg/ddx406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/27/2017] [Indexed: 12/24/2022] Open
Abstract
The cloaca is an embryonic cavity that is divided into the urogenital sinus and rectum upon differentiation of the cloacal epithelium triggered by tissue-specific transcription factors including CDX2. Defective differentiation leads to persistent cloaca in humans (PC), a phenotype recapitulated in Cdx2 mutant mice. PC is linked to hypo/hyper-vitaminosis A. Although no gene has ever been identified, there is a strong evidence for a genetic contribution to PC. We applied whole-exome sequencing and copy-number-variants analyses to 21 PC patients and their unaffected parents. The damaging p.Cys132* and p.Arg237His de novo CDX2 variants were identified in two patients. These variants altered the expression of CYP26A1, a direct CDX2 target encoding the major retinoic acid (RA)-degrading enzyme. Other RA genes, including the RA-receptor alpha, were also mutated. Genes governing the development of cloaca-derived structures were recurrently mutated and over-represented in the basement-membrane components set (q-value < 1.65 × 10-6). Joint analysis of the patients' profile highlighted the extracellular matrix-receptor interaction pathway (MsigDBID: M7098, FDR: q-value < 7.16 × 10-9). This is the first evidence that PC is genetic, with genes involved in the RA metabolism at the lead. Given the CDX2 de novo variants and the role of RA, our observations could potentiate preventive measures. For the first time, a gene recapitulating PC in mouse models is found mutated in humans.
Collapse
Affiliation(s)
- Jacob S J Hsu
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Manting So
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Clara S M Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Anwarul Karim
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Robert M Porsch
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Carol Wong
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Michelle Yu
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fanny Yeung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guandong, China
| | - Ruizhong Zhang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guandong, China
| | - Stacey S Cherny
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Patrick H Y Chung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kenneth K Y Wong
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Pak C Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ngoc Diem Ngo
- Department of Human Genetics, National Hospital of Pediatrics, Hà N?i, Vietnam
| | - Miaoxin Li
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Paul K H Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vincent C H Lui
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
36
|
Lv S, Wang N, Lv H, Yang J, Liu J, Li WP, Zhang C, Chen ZJ. The Attenuation of Trophoblast Invasion Caused by the Downregulation of EZH2 Is Involved in the Pathogenesis of Human Recurrent Miscarriage. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 14:377-387. [PMID: 30710891 PMCID: PMC6356049 DOI: 10.1016/j.omtn.2018.12.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/28/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022]
Abstract
Recurrent miscarriage (RM) is currently defined as two or more losses of a clinically established intrauterine pregnancy. Despite years of research, RM continues to be a clinically frustrating challenge for patients and physicians, and its etiology remains poorly understood. Accumulating evidence has suggested that epigenetic modifications are involved in early embryogenesis, and defects in epigenetic patterning contribute to the development of RM. Here, we studied the role of enhancer of zeste homolog 2 (EZH2) in the pathogenesis of RM and found that the EZH2 expression was significantly decreased in the villi from women with RM compared with that in control villi. EZH2 promoted the invasion of trophoblast cells. Moreover, EZH2 could promote epithelial-mesenchymal transition by epigenetically silencing CDX1. Both chromatin immunoprecipitation (ChIP)-PCR and dual-luciferase report assays demonstrated that EZH2 repressed CDX1 transcription via direct binding to its promoter region and then trimethylating Histone3-Lysine27. Furthermore, we discovered that progesterone, which is used extensively in the treatment of miscarriage and RM, increased the expression of EZH2 via the extracellular signaling-regulated kinase (ERK1/2) pathway. These findings revealed that EZH2 may regulate trophoblast invasion as an epigenetic factor, suggesting that EZH2 might be a potential therapeutic target for RM.
Collapse
Affiliation(s)
- Shijian Lv
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Na Wang
- Obstetrical Department, Obstetrics and Gynecology Hospital of Fudan University, No. 128, Shenyang Road, Yangpu District, Shanghai 200090, China
| | - Hong Lv
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jieqiong Yang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jianwei Liu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Wei-Ping Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| | - Cong Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Ji'nan, Shandong 250014, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| |
Collapse
|
37
|
Aires R, Dias A, Mallo M. Deconstructing the molecular mechanisms shaping the vertebrate body plan. Curr Opin Cell Biol 2018; 55:81-86. [DOI: 10.1016/j.ceb.2018.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 11/28/2022]
|
38
|
Magli A, Perlingeiro RRC. Myogenic progenitor specification from pluripotent stem cells. Semin Cell Dev Biol 2018; 72:87-98. [PMID: 29107681 DOI: 10.1016/j.semcdb.2017.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022]
Abstract
Pluripotent stem cells represent important tools for both basic and translational science as they enable to study mechanisms of development, model diseases in vitro and provide a potential source of tissue-specific progenitors for cell therapy. Concomitantly with the increasing knowledge of the molecular mechanisms behind activation of the skeletal myogenic program during embryonic development, novel findings in the stem cell field provided the opportunity to begin recapitulating in vitro the events occurring during specification of the myogenic lineage. In this review, we will provide a perspective of the molecular mechanisms responsible for skeletal myogenic commitment in the embryo and how this knowledge was instrumental for specifying this lineage from pluripotent stem cells. In addition, we will discuss the current limitations for properly recapitulating skeletal myogenesis in the petri dish, and we will provide insights about future applications of pluripotent stem cell-derived myogenic cells.
Collapse
Affiliation(s)
- Alessandro Magli
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rita R C Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
39
|
Zhou J, Plagge A, Murray P. Functional comparison of distinct Brachyury+ states in a renal differentiation assay. Biol Open 2018; 7:bio.031799. [PMID: 29666052 PMCID: PMC5992531 DOI: 10.1242/bio.031799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mesodermal populations can be generated in vitro from mouse embryonic stem cells (mESCs) using three-dimensional (3-D) aggregates called embryoid bodies or two-dimensional (2-D) monolayer culture systems. Here, we investigated whether Brachyury-expressing mesodermal cells generated using 3-D or 2-D culture systems are equivalent or, instead, have different properties. Using a Brachyury-GFP/E2-Crimson reporter mESC line, we isolated Brachyury-GFP + mesoderm cells using flow-activated cell sorting and compared their gene expression profiles and ex vivo differentiation patterns. Quantitative real-time polymerase chain reaction analysis showed significant up-regulation of Cdx2, Foxf1 and Hoxb1 in the Brachyury-GFP+ cells isolated from the 3-D system compared with those isolated from the 2-D system. Furthermore, using an ex vivo mouse kidney rudiment assay, we found that, irrespective of their source, Brachyury-GFP+ cells failed to integrate into developing nephrons, which are derived from the intermediate mesoderm. However, Brachyury-GFP+ cells isolated under 3-D conditions appeared to differentiate into endothelial-like cells within the kidney rudiments, whereas the Brachyury-GFP+ isolated from the 2-D conditions only did so to a limited degree. The high expression of Foxf1 in the 3-D Brachyury-GFP+ cells combined with their tendency to differentiate into endothelial-like cells suggests that these mesodermal cells may represent lateral plate mesoderm.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Antonius Plagge
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Patricia Murray
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
40
|
Fan HB, Zhai ZY, Li XG, Gao CQ, Yan HC, Chen ZS, Wang XQ. CDX2 Stimulates the Proliferation of Porcine Intestinal Epithelial Cells by Activating the mTORC1 and Wnt/β-Catenin Signaling Pathways. Int J Mol Sci 2017; 18:ijms18112447. [PMID: 29156556 PMCID: PMC5713414 DOI: 10.3390/ijms18112447] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Caudal type homeobox 2 (CDX2) is expressed in intestinal epithelial cells and plays a role in gut development and homeostasis by regulating cell proliferation. However, whether CDX2 cooperates with the mammalian target of rapamycin complex 1 (mTORC1) and Wnt/β-catenin signaling pathways to stimulate cell proliferation remains unknown. The objective of this study was to investigate the effect of CDX2 on the proliferation of porcine jejunum epithelial cells (IPEC-J2) and the correlation between CDX2, the mTORC1 and Wnt/β-catenin signaling pathways. CDX2 overexpression and knockdown cell culture models were established to explore the regulation of CDX2 on both pathways. Pathway-specific antagonists were used to verify the effects. The results showed that CDX2 overexpression increased IPEC-J2 cell proliferation and activated both the mTORC1 and Wnt/β-catenin pathways, and that CDX2 knockdown decreased cell proliferation and inhibited both pathways. Furthermore, the mTORC1 and Wnt/β-catenin pathway-specific antagonist rapamycin and XAV939 (3,5,7,8-tetrahydro-2-[4-(trifluoromethyl)]-4H -thiopyrano[4,3-d]pyrimidin-4-one) both suppressed the proliferation of IPEC-J2 cells overexpressing CDX2, and that the combination of rapamycin and XAV939 had an additive effect. Regardless of whether the cells were treated with rapamycin or XAV939 alone or in combination, both mTORC1 and Wnt/β-catenin pathways were down-regulated, accompanied by a decrease in CDX2 expression. Taken together, our data indicate that CDX2 stimulates porcine intestinal epithelial cell proliferation by activating the mTORC1 and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Hong-Bo Fan
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Zhen-Ya Zhai
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Xiang-Guang Li
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Chun-Qi Gao
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Hui-Chao Yan
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Science, College of Pharmacy and Health Science, St. John's University, Queens, NY 11439, USA.
| | - Xiu-Qi Wang
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
41
|
Epigenetic restriction of extraembryonic lineages mirrors the somatic transition to cancer. Nature 2017; 549:543-547. [PMID: 28959968 PMCID: PMC5789792 DOI: 10.1038/nature23891] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/03/2017] [Indexed: 12/18/2022]
Abstract
In mammals, the canonical somatic DNA methylation landscape is established upon specification of the embryo proper and subsequently disrupted within many cancer types. However, the underlying mechanisms that direct this genome-scale transformation remain elusive, with no clear model for its systematic acquisition or potential developmental utility. Here, we analysed global remethylation from the mouse preimplantation embryo into the early epiblast and extraembryonic ectoderm. We show that these two states acquire highly divergent genomic distributions with substantial disruption of bimodal, CpG density-dependent methylation in the placental progenitor. The extraembryonic epigenome includes specific de novo methylation at hundreds of embryonically protected CpG island promoters, particularly those that are associated with key developmental regulators and are orthologously methylated across most human cancer types. Our data suggest that the evolutionary innovation of extraembryonic tissues may have required co-option of DNA methylation-based suppression as an alternative to regulation by Polycomb-group proteins, which coordinate embryonic germ-layer formation in response to extraembryonic cues. Moreover, we establish that this decision is made deterministically, downstream of promiscuously used-and frequently oncogenic-signalling pathways, via a novel combination of epigenetic cofactors. Methylation of developmental gene promoters during tumorigenesis may therefore reflect the misappropriation of an innate trajectory and the spontaneous reacquisition of a latent, developmentally encoded epigenetic landscape.
Collapse
|
42
|
Abstract
During vertebrate embryonic development, the spinal cord is formed by the neural derivatives of a neuromesodermal population that is specified at early stages of development and which develops in concert with the caudal regression of the primitive streak. Several processes related to spinal cord specification and maturation are coupled to this caudal extension including neurogenesis, ventral patterning and neural crest specification and all of them seem to be crucially regulated by Fibroblast Growth Factor (FGF) signaling, which is prominently active in the neuromesodermal region and transiently in its derivatives. Here we review the role of FGF signaling in those processes, trying to separate its different functions and highlighting the interactions with other signaling pathways. Finally, these early functions of FGF signaling in spinal cord development may underlay partly its ability to promote regeneration in the lesioned spinal cord as well as its action promoting specific fates in neural stem cell cultures that may be used for therapeutical purposes.
Collapse
Affiliation(s)
- Ruth Diez Del Corral
- Department of Cellular, Molecular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Champalimaud Research, Champalimaud Centre for the UnknownLisbon, Portugal
| | - Aixa V Morales
- Department of Cellular, Molecular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
43
|
Gouti M, Delile J, Stamataki D, Wymeersch FJ, Huang Y, Kleinjung J, Wilson V, Briscoe J. A Gene Regulatory Network Balances Neural and Mesoderm Specification during Vertebrate Trunk Development. Dev Cell 2017; 41:243-261.e7. [PMID: 28457792 PMCID: PMC5425255 DOI: 10.1016/j.devcel.2017.04.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/20/2017] [Accepted: 04/03/2017] [Indexed: 01/02/2023]
Abstract
Transcriptional networks, regulated by extracellular signals, control cell fate decisions and determine the size and composition of developing tissues. One example is the network controlling bipotent neuromesodermal progenitors (NMPs) that fuel embryo elongation by generating spinal cord and trunk mesoderm tissue. Here, we use single-cell transcriptomics to identify the molecular signature of NMPs and reverse engineer the mechanism that regulates their differentiation. Together with genetic perturbations, this reveals a transcriptional network that integrates opposing retinoic acid (RA) and Wnt signals to determine the rate at which cells enter and exit the NMP state. RA, produced by newly generated mesodermal cells, provides feedback that initiates NMP generation and induces neural differentiation, thereby coordinating the production of neural and mesodermal tissue. Together, the data define a regulatory network architecture that balances the generation of different cell types from bipotential progenitors in order to facilitate orderly axis elongation.
Single-cell RNA-seq reveals a signature of neuromesodermal progenitors In vitro NMPs resemble and differentiate similar to their in vivo counterparts Dual role for retinoic acid signaling in NMP induction and neural differentiation A transcriptional network regulates neural versus mesodermal allocation
Collapse
Affiliation(s)
- Mina Gouti
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK; Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| | - Julien Delile
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | | | - Filip J Wymeersch
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Yali Huang
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Jens Kleinjung
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Valerie Wilson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - James Briscoe
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
44
|
Nguyen TT, Savory JGA, Brooke-Bisschop T, Ringuette R, Foley T, Hess BL, Mulatz KJ, Trinkle-Mulcahy L, Lohnes D. Cdx2 Regulates Gene Expression through Recruitment of Brg1-associated Switch-Sucrose Non-fermentable (SWI-SNF) Chromatin Remodeling Activity. J Biol Chem 2017; 292:3389-3399. [PMID: 28082674 DOI: 10.1074/jbc.m116.752774] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/10/2017] [Indexed: 12/22/2022] Open
Abstract
The packaging of genomic DNA into nucleosomes creates a barrier to transcription that can be relieved through ATP-dependent chromatin remodeling via complexes such as the switch-sucrose non-fermentable (SWI-SNF) chromatin remodeling complex. The SWI-SNF complex remodels chromatin via conformational or positional changes of nucleosomes, thereby altering the access of transcriptional machinery to target genes. The SWI-SNF complex has limited ability to bind to sequence-specific elements, and, therefore, its recruitment to target loci is believed to require interaction with DNA-associated transcription factors. The Cdx family of homeodomain transcript ion factors (Cdx1, Cdx2, and Cdx4) are essential for a number of developmental programs in the mouse. Cdx1 and Cdx2 also regulate intestinal homeostasis throughout life. Although a number of Cdx target genes have been identified, the basis by which Cdx members impact their transcription is poorly understood. We have found that Cdx members interact with the SWI-SNF complex and make direct contact with Brg1, a catalytic member of SWI-SNF. Both Cdx2 and Brg1 co-occupy a number of Cdx target genes, and both factors are necessary for transcriptional regulation of such targets. Finally, Cdx2 and Brg1 occupancy occurs coincident with chromatin remodeling at some of these loci. Taken together, our findings suggest that Cdx transcription factors regulate target gene expression, in part, through recruitment of Brg1-associated SWI-SNF chromatin remodeling activity.
Collapse
Affiliation(s)
- Thinh T Nguyen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Joanne G A Savory
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Travis Brooke-Bisschop
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Randy Ringuette
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Tanya Foley
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Bradley L Hess
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Kirk J Mulatz
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - David Lohnes
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
45
|
Essential roles for Cdx in murine primitive hematopoiesis. Dev Biol 2017; 422:115-124. [PMID: 28065741 DOI: 10.1016/j.ydbio.2017.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 11/24/2022]
Abstract
The Cdx transcription factors play essential roles in primitive hematopoiesis in the zebrafish where they exert their effects, in part, through regulation of hox genes. Defects in hematopoiesis have also been reported in Cdx mutant murine embryonic stem cell models, however, to date no mouse model reflecting the zebrafish Cdx mutant hematopoietic phenotype has been described. This is likely due, in part, to functional redundancy among Cdx members and the early lethality of Cdx2 null mutants. To circumvent these limitations, we used Cre-mediated conditional deletion to assess the impact of concomitant loss of Cdx1 and Cdx2 on murine primitive hematopoiesis. We found that Cdx1/Cdx2 double mutants exhibited defects in primitive hematopoiesis and yolk sac vasculature concomitant with reduced expression of several genes encoding hematopoietic transcription factors including Scl/Tal1. Chromatin immunoprecipitation analysis revealed that Scl was occupied by Cdx2 in vivo, and Cdx mutant hematopoietic yolk sac differentiation defects could be rescued by expression of exogenous Scl. These findings demonstrate critical roles for Cdx members in murine primitive hematopoiesis upstream of Scl.
Collapse
|
46
|
Sanchez-Ferras O, Bernas G, Farnos O, Touré AM, Souchkova O, Pilon N. A direct role for murine Cdx proteins in the trunk neural crest gene regulatory network. Development 2016; 143:1363-74. [PMID: 26952979 DOI: 10.1242/dev.132159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/18/2016] [Indexed: 12/28/2022]
Abstract
Numerous studies in chordates and arthropods currently indicate that Cdx proteins have a major ancestral role in the organization of post-head tissues. In urochordate embryos, Cdx loss-of-function has been shown to impair axial elongation, neural tube (NT) closure and pigment cell development. Intriguingly, in contrast to axial elongation and NT closure, a Cdx role in neural crest (NC)-derived melanocyte/pigment cell development has not been reported in any other chordate species. To address this, we generated a new conditional pan-Cdx functional knockdown mouse model that circumvents Cdx functional redundancy as well as the early embryonic lethality of Cdx mutants. Through directed inhibition in the neuroectoderm, we provide in vivo evidence that murine Cdx proteins impact melanocyte and enteric nervous system development by, at least in part, directly controlling the expression of the key early regulators of NC ontogenesis Pax3,Msx1 and Foxd3 Our work thus reveals a novel role for Cdx proteins at the top of the trunk NC gene regulatory network in the mouse, which appears to have been inherited from their ancestral ortholog.
Collapse
Affiliation(s)
- Oraly Sanchez-Ferras
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Guillaume Bernas
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Omar Farnos
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Aboubacrine M Touré
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Ouliana Souchkova
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| |
Collapse
|
47
|
Kimelman D. Tales of Tails (and Trunks): Forming the Posterior Body in Vertebrate Embryos. Curr Top Dev Biol 2016; 116:517-36. [PMID: 26970638 DOI: 10.1016/bs.ctdb.2015.12.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A major question in developmental biology is how the early embryonic axes are established. Recent studies using different model organisms and mammalian in vitro systems have revealed the surprising result that most of the early posterior embryonic body forms from a Wnt-regulated bipotential neuromesodermal progenitor population that escapes early germ layer patterning. Part of the regulatory network that drives the maintenance and differentiation of these progenitors has recently been determined, but much remains to be discovered. This review discusses some of the common features present in all vertebrates, as well as unique aspects that different species utilize to establish their anterior-posterior (A-P) axis.
Collapse
Affiliation(s)
- David Kimelman
- Department of Biochemistry, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
48
|
Henrique D, Abranches E, Verrier L, Storey KG. Neuromesodermal progenitors and the making of the spinal cord. Development 2015; 142:2864-75. [PMID: 26329597 PMCID: PMC4958456 DOI: 10.1242/dev.119768] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuromesodermal progenitors (NMps) contribute to both the elongating spinal cord and the adjacent paraxial mesoderm. It has been assumed that these cells arise as a result of patterning of the anterior neural plate. However, as the molecular mechanisms that specify NMps in vivo are uncovered, and as protocols for generating these bipotent cells from mouse and human pluripotent stem cells in vitro are established, the emerging data suggest that this view needs to be revised. Here, we review the characteristics, regulation, in vitro derivation and in vivo induction of NMps. We propose that these cells arise within primitive streak-associated epiblast via a mechanism that is separable from that which establishes neural fate in the anterior epiblast. We thus argue for the existence of two distinct routes for making central nervous system progenitors.
Collapse
Affiliation(s)
- Domingos Henrique
- Instituto de Medicina Molecular and Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Avenida Prof. Egas Moniz, Lisboa 1649-028, Portugal
| | - Elsa Abranches
- Instituto de Medicina Molecular and Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Avenida Prof. Egas Moniz, Lisboa 1649-028, Portugal
| | - Laure Verrier
- Division of Cell & Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Kate G Storey
- Division of Cell & Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
49
|
Fantini S, Salsi V, Vitobello A, Rijli FM, Zappavigna V. MicroRNA-196b is transcribed from an autonomous promoter and is directly regulated by Cdx2 and by posterior Hox proteins during embryogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1066-80. [PMID: 26141604 DOI: 10.1016/j.bbagrm.2015.06.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/25/2015] [Accepted: 06/28/2015] [Indexed: 12/26/2022]
Abstract
The miR-196 miRNA gene family located within the Hox gene clusters has been shown to function during embryogenesis and to be aberrantly expressed in various malignancies, including leukaemia, melanoma, and colorectal cancer. Despite its involvement in numerous biological processes, the control of miR-196 expression is still poorly defined. We identified the miR-196b promoter and found that the mature miR-196b originates from a large, non-coding primary transcript, which starts within an autonomous TATA box promoter and is not in physical continuity with either the Hoxa10 or Hoxa9 main primary transcripts. A ~680bp genomic fragment, spanning the pri-miR-196b transcription start site, is sufficient to recapitulate the neural tube expression pattern of miR-196 during embryogenesis. This region contains potential binding sites for Cdx and 5'Hox transcription factors. Two of these sites revealed to be necessary for neural tube expression and were bound in vivo by Cdx2 and Hoxd13. We show that Cdx2 is required for miR-196 expression and that both Cdx2 and 5'Hox, but not 3'Hox, are able to activate the miR-196b promoter. The possible role of Cdx2- and 5'Hox-mediated regulation of miR-196 expression in vertebrate anterior-posterior (AP) axis formation during embryogenesis is discussed.
Collapse
Affiliation(s)
- Sebastian Fantini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/d, Modena 41125, Italy
| | - Valentina Salsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/d, Modena 41125, Italy
| | - Antonio Vitobello
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Vincenzo Zappavigna
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/d, Modena 41125, Italy.
| |
Collapse
|
50
|
Shir-Shapira H, Sharabany J, Filderman M, Ideses D, Ovadia-Shochat A, Mannervik M, Juven-Gershon T. Structure-Function Analysis of the Drosophila melanogaster Caudal Transcription Factor Provides Insights into Core Promoter-preferential Activation. J Biol Chem 2015; 290:17293-305. [PMID: 26018075 DOI: 10.1074/jbc.m114.632109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Indexed: 11/06/2022] Open
Abstract
Regulation of RNA polymerase II transcription is critical for the proper development, differentiation, and growth of an organism. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters encompass the RNA start site and consist of functional elements such as the TATA box, initiator, and downstream core promoter element (DPE), which confer specific properties to the core promoter. We have previously discovered that Drosophila Caudal, which is a master regulator of genes involved in development and differentiation, is a DPE-specific transcriptional activator. Here, we show that the mouse Caudal-related homeobox (Cdx) proteins (mCdx1, mCdx2, and mCdx4) are also preferential core promoter transcriptional activators. To elucidate the mechanism that enables Caudal to preferentially activate DPE transcription, we performed structure-function analysis. Using a systematic series of deletion mutants (all containing the intact DNA-binding homeodomain) we discovered that the C-terminal region of Caudal contributes to the preferential activation of the fushi tarazu (ftz) Caudal target gene. Furthermore, the region containing both the homeodomain and the C terminus of Caudal was sufficient to confer core promoter-preferential activation to the heterologous GAL4 DNA-binding domain. Importantly, we discovered that Drosophila CREB-binding protein (dCBP) is a co-activator for Caudal-regulated activation of ftz. Strikingly, dCBP conferred the ability to preferentially activate the DPE-dependent ftz reporter to mini-Caudal proteins that were unable to preferentially activate ftz transcription themselves. Taken together, it is the unique combination of dCBP and Caudal that enables the co-activation of ftz in a core promoter-preferential manner.
Collapse
Affiliation(s)
- Hila Shir-Shapira
- From The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel and
| | - Julia Sharabany
- From The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel and
| | - Matan Filderman
- From The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel and
| | - Diana Ideses
- From The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel and
| | - Avital Ovadia-Shochat
- From The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel and
| | - Mattias Mannervik
- The Wenner-Gren Institute, Developmental Biology, Stockholm University, Arrhenius Laboratories E3, SE-106 91 Stockholm, Sweden
| | - Tamar Juven-Gershon
- From The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel and
| |
Collapse
|