1
|
Poole RJ, Flames N, Cochella L. Neurogenesis in Caenorhabditis elegans. Genetics 2024; 228:iyae116. [PMID: 39167071 PMCID: PMC11457946 DOI: 10.1093/genetics/iyae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 08/23/2024] Open
Abstract
Animals rely on their nervous systems to process sensory inputs, integrate these with internal signals, and produce behavioral outputs. This is enabled by the highly specialized morphologies and functions of neurons. Neuronal cells share multiple structural and physiological features, but they also come in a large diversity of types or classes that give the nervous system its broad range of functions and plasticity. This diversity, first recognized over a century ago, spurred classification efforts based on morphology, function, and molecular criteria. Caenorhabditis elegans, with its precisely mapped nervous system at the anatomical level, an extensive molecular description of most of its neurons, and its genetic amenability, has been a prime model for understanding how neurons develop and diversify at a mechanistic level. Here, we review the gene regulatory mechanisms driving neurogenesis and the diversification of neuron classes and subclasses in C. elegans. We discuss our current understanding of the specification of neuronal progenitors and their differentiation in terms of the transcription factors involved and ensuing changes in gene expression and chromatin landscape. The central theme that has emerged is that the identity of a neuron is defined by modules of gene batteries that are under control of parallel yet interconnected regulatory mechanisms. We focus on how, to achieve these terminal identities, cells integrate information along their developmental lineages. Moreover, we discuss how neurons are diversified postembryonically in a time-, genetic sex-, and activity-dependent manner. Finally, we discuss how the understanding of neuronal development can provide insights into the evolution of neuronal diversity.
Collapse
Affiliation(s)
- Richard J Poole
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia 46012, Spain
| | - Luisa Cochella
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Tamagawa K, Dayi M, Sun S, Hata R, Kikuchi T, Haruta N, Sugimoto A, Makino T. Evolutionary changes of noncoding elements associated with transition of sexual mode in Caenorhabditis nematodes. SCIENCE ADVANCES 2024; 10:eadn9913. [PMID: 39270031 PMCID: PMC11397494 DOI: 10.1126/sciadv.adn9913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024]
Abstract
The transition of the sexual mode occurs widely in animal evolution. In Caenorhabditis nematodes, androdioecy, a sexual polymorphism composed of males and hermaphrodites having the ability to self-fertilize, has evolved independently multiple times. While the modification of noncoding regulatory elements likely contributed to the evolution of hermaphroditism, little is known about these changes. Here, we conducted a genome-wide analysis of conserved noncoding elements (CNEs) focusing on the evolution of hermaphroditism in Caenorhabditis nematodes. We found that, in androdioecious nematodes, mutations rapidly accumulated in CNEs' neighboring genes associated with sexual traits. Expression analysis indicate that the identified CNEs are involved in spermatogenesis in hermaphrodites and associated with the transition of gene expression from dioecious to androdioecious nematodes. Last, genome editing of a CNE neighboring laf-1 resulted in a change in its expression in the gonadal region undergoing spermatogenesis. Our bioinformatic and experimental analyses highlight the importance of CNEs in gene regulation associated with the development of hermaphrodites.
Collapse
Affiliation(s)
- Katsunori Tamagawa
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Mehmet Dayi
- Forestry Vocational School, Duzce University, 81620 Duzce, Türkiye
| | - Simo Sun
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa City, Japan
| | - Rikako Hata
- Department of Biology, Faculty of Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Taisei Kikuchi
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa City, Japan
| | - Nami Haruta
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Asako Sugimoto
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| |
Collapse
|
3
|
Green RA, Khaliullin RN, Zhao Z, Ochoa SD, Hendel JM, Chow TL, Moon H, Biggs RJ, Desai A, Oegema K. Automated profiling of gene function during embryonic development. Cell 2024; 187:3141-3160.e23. [PMID: 38759650 PMCID: PMC11166207 DOI: 10.1016/j.cell.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/10/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
Systematic functional profiling of the gene set that directs embryonic development is an important challenge. To tackle this challenge, we used 4D imaging of C. elegans embryogenesis to capture the effects of 500 gene knockdowns and developed an automated approach to compare developmental phenotypes. The automated approach quantifies features-including germ layer cell numbers, tissue position, and tissue shape-to generate temporal curves whose parameterization yields numerical phenotypic signatures. In conjunction with a new similarity metric that operates across phenotypic space, these signatures enabled the generation of ranked lists of genes predicted to have similar functions, accessible in the PhenoBank web portal, for ∼25% of essential development genes. The approach identified new gene and pathway relationships in cell fate specification and morphogenesis and highlighted the utilization of specialized energy generation pathways during embryogenesis. Collectively, the effort establishes the foundation for comprehensive analysis of the gene set that builds a multicellular organism.
Collapse
Affiliation(s)
- Rebecca A Green
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | - Zhiling Zhao
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Stacy D Ochoa
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | | | | | - HongKee Moon
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Ronald J Biggs
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Medwig-Kinney TN, Kinney BA, Martinez MAQ, Yee C, Sirota SS, Mullarkey AA, Somineni N, Hippler J, Zhang W, Shen K, Hammell C, Pani AM, Matus DQ. Dynamic compartmentalization of the pro-invasive transcription factor NHR-67 reveals a role for Groucho in regulating a proliferative-invasive cellular switch in C. elegans. eLife 2023; 12:RP84355. [PMID: 38038410 PMCID: PMC10691804 DOI: 10.7554/elife.84355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
A growing body of evidence suggests that cell division and basement membrane invasion are mutually exclusive cellular behaviors. How cells switch between proliferative and invasive states is not well understood. Here, we investigated this dichotomy in vivo by examining two cell types in the developing Caenorhabditis elegans somatic gonad that derive from equipotent progenitors, but exhibit distinct cell behaviors: the post-mitotic, invasive anchor cell and the neighboring proliferative, non-invasive ventral uterine (VU) cells. We show that the fates of these cells post-specification are more plastic than previously appreciated and that levels of NHR-67 are important for discriminating between invasive and proliferative behavior. Transcription of NHR-67 is downregulated following post-translational degradation of its direct upstream regulator, HLH-2 (E/Daughterless) in VU cells. In the nuclei of VU cells, residual NHR-67 protein is compartmentalized into discrete punctae that are dynamic over the cell cycle and exhibit liquid-like properties. By screening for proteins that colocalize with NHR-67 punctae, we identified new regulators of uterine cell fate maintenance: homologs of the transcriptional co-repressor Groucho (UNC-37 and LSY-22), as well as the TCF/LEF homolog POP-1. We propose a model in which the association of NHR-67 with the Groucho/TCF complex suppresses the default invasive state in non-invasive cells, which complements transcriptional regulation to add robustness to the proliferative-invasive cellular switch in vivo.
Collapse
Affiliation(s)
- Taylor N Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Brian A Kinney
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Michael AQ Martinez
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Callista Yee
- Howard Hughes Medical Institute, Department of Biology, Stanford UniversityStanfordUnited States
| | - Sydney S Sirota
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Angelina A Mullarkey
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Neha Somineni
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Justin Hippler
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
- Science and Technology Research Program, Smithtown High School EastSt. JamesUnited States
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford UniversityStanfordUnited States
| | | | - Ariel M Pani
- Departments of Biology and Cell Biology, University of VirginiaCharlottesvilleUnited States
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| |
Collapse
|
5
|
Leydon AR, Wang W, Gala HP, Gilmour S, Juarez-Solis S, Zahler ML, Zemke JE, Zheng N, Nemhauser JL. Repression by the Arabidopsis TOPLESS corepressor requires association with the core mediator complex. eLife 2021; 10:66739. [PMID: 34075876 PMCID: PMC8203292 DOI: 10.7554/elife.66739] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
The plant corepressor TOPLESS (TPL) is recruited to a large number of loci that are selectively induced in response to developmental or environmental cues, yet the mechanisms by which it inhibits expression in the absence of these stimuli are poorly understood. Previously, we had used the N-terminus of Arabidopsis thaliana TPL to enable repression of a synthetic auxin response circuit in Saccharomyces cerevisiae (yeast). Here, we leveraged the yeast system to interrogate the relationship between TPL structure and function, specifically scanning for repression domains. We identified a potent repression domain in Helix 8 located within the CRA domain, which directly interacted with the Mediator middle module subunits Med21 and Med10. Interactions between TPL and Mediator were required to fully repress transcription in both yeast and plants. In contrast, we found that multimer formation, a conserved feature of many corepressors, had minimal influence on the repression strength of TPL.
Collapse
Affiliation(s)
| | - Wei Wang
- Department of Pharmacology, Seattle, United States
| | - Hardik P Gala
- Department of Biology, University of Washington, Seattle, United States
| | - Sabrina Gilmour
- Department of Biology, University of Washington, Seattle, United States
| | | | - Mollye L Zahler
- Department of Biology, University of Washington, Seattle, United States
| | - Joseph E Zemke
- Department of Biology, University of Washington, Seattle, United States
| | - Ning Zheng
- Department of Pharmacology, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | | |
Collapse
|
6
|
Wilson-Sánchez D, Lup SD, Sarmiento-Mañús R, Ponce MR, Micol JL. Next-generation forward genetic screens: using simulated data to improve the design of mapping-by-sequencing experiments in Arabidopsis. Nucleic Acids Res 2020; 47:e140. [PMID: 31544937 PMCID: PMC6868388 DOI: 10.1093/nar/gkz806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022] Open
Abstract
Forward genetic screens have successfully identified many genes and continue to be powerful tools for dissecting biological processes in Arabidopsis and other model species. Next-generation sequencing technologies have revolutionized the time-consuming process of identifying the mutations that cause a phenotype of interest. However, due to the cost of such mapping-by-sequencing experiments, special attention should be paid to experimental design and technical decisions so that the read data allows to map the desired mutation. Here, we simulated different mapping-by-sequencing scenarios. We first evaluated which short-read technology was best suited for analyzing gene-rich genomic regions in Arabidopsis and determined the minimum sequencing depth required to confidently call single nucleotide variants. We also designed ways to discriminate mutagenesis-induced mutations from background Single Nucleotide Polymorphisms in mutants isolated in Arabidopsis non-reference lines. In addition, we simulated bulked segregant mapping populations for identifying point mutations and monitored how the size of the mapping population and the sequencing depth affect mapping precision. Finally, we provide the computational basis of a protocol that we already used to map T-DNA insertions with paired-end Illumina-like reads, using very low sequencing depths and pooling several mutants together; this approach can also be used with single-end reads as well as to map any other insertional mutagen. All these simulations proved useful for designing experiments that allowed us to map several mutations in Arabidopsis.
Collapse
Affiliation(s)
- David Wilson-Sánchez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Samuel Daniel Lup
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Raquel Sarmiento-Mañús
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| |
Collapse
|
7
|
Kel I, Chang Z, Galluccio N, Romeo M, Beretta S, Diomede L, Mezzelani A, Milanesi L, Dieterich C, Merelli I. SPIRE, a modular pipeline for eQTL analysis of RNA-Seq data, reveals a regulatory hotspot controlling miRNA expression in C. elegans. MOLECULAR BIOSYSTEMS 2017; 12:3447-3458. [PMID: 27722582 DOI: 10.1039/c6mb00453a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The interpretation of genome-wide association study is difficult, as it is hard to understand how polymorphisms can affect gene regulation, in particular for trans-regulatory elements located far from their controlling gene. Using RNA or protein expression data as phenotypes, it is possible to correlate their variations with specific genotypes. This technique is usually referred to as expression Quantitative Trait Loci (eQTLs) analysis and only few packages exist for the integration of genotype patterns and expression profiles. In particular, tools are needed for the analysis of next-generation sequencing (NGS) data on a genome-wide scale, which is essential to identify eQTLs able to control a large number of genes (hotspots). Here we present SPIRE (Software for Polymorphism Identification Regulating Expression), a generic, modular and functionally highly flexible pipeline for eQTL processing. SPIRE integrates different univariate and multivariate approaches for eQTL analysis, paying particular attention to the scalability of the procedure in order to support cis- as well as trans-mapping, thus allowing the identification of hotspots in NGS data. In particular, we demonstrated how SPIRE can handle big association study datasets, reproducing published results and improving the identification of trans-eQTLs. Furthermore, we employed the pipeline to analyse novel data concerning the genotypes of two different C. elegans strains (N2 and Hawaii) and related miRNA expression data, obtained using RNA-Seq. A miRNA regulatory hotspot was identified in chromosome 1, overlapping the transcription factor grh-1, known to be involved in the early phases of embryonic development of C. elegans. In a follow-up qPCR experiment we were able to verify most of the predicted eQTLs, as well as to show, for a novel miRNA, a significant difference in the sequences of the two analysed strains of C. elegans. SPIRE is publicly available as open source software at , together with some example data, a readme file, supplementary material and a short tutorial.
Collapse
Affiliation(s)
- Ivan Kel
- Instituto di Tecnologie Biomediche - Consiglio Nazionale delle Ricerche, via F.lli Cervi 93, 20090, Segrate, Milano, Italy.
| | - Zisong Chang
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Robert-Rössle-Straße 10, 13125, Berlin, Germany.
| | - Nadia Galluccio
- Instituto di Tecnologie Biomediche - Consiglio Nazionale delle Ricerche, via F.lli Cervi 93, 20090, Segrate, Milano, Italy.
| | - Margherita Romeo
- Dipartimento di Biochimica e Farmacologia Molecolare, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via Giuseppe La Masa 19, Milan, Italy.
| | - Stefano Beretta
- Dipartimento di Informatica Sistemistica e Comunicazione, Università degli studi di Milano-Biccoca, Viale Sarca 336, 20125 Milano, Italy.
| | - Luisa Diomede
- Dipartimento di Biochimica e Farmacologia Molecolare, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via Giuseppe La Masa 19, Milan, Italy.
| | - Alessandra Mezzelani
- Instituto di Tecnologie Biomediche - Consiglio Nazionale delle Ricerche, via F.lli Cervi 93, 20090, Segrate, Milano, Italy.
| | - Luciano Milanesi
- Instituto di Tecnologie Biomediche - Consiglio Nazionale delle Ricerche, via F.lli Cervi 93, 20090, Segrate, Milano, Italy.
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology and Department of Internal Medicine III, University of Heidelberg, Grabengasse 1, 69117 Heidelberg, Germany.
| | - Ivan Merelli
- Instituto di Tecnologie Biomediche - Consiglio Nazionale delle Ricerche, via F.lli Cervi 93, 20090, Segrate, Milano, Italy.
| |
Collapse
|
8
|
Doitsidou M, Jarriault S, Poole RJ. Next-Generation Sequencing-Based Approaches for Mutation Mapping and Identification in Caenorhabditis elegans. Genetics 2016; 204:451-474. [PMID: 27729495 PMCID: PMC5068839 DOI: 10.1534/genetics.115.186197] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/05/2016] [Indexed: 02/07/2023] Open
Abstract
The use of next-generation sequencing (NGS) has revolutionized the way phenotypic traits are assigned to genes. In this review, we describe NGS-based methods for mapping a mutation and identifying its molecular identity, with an emphasis on applications in Caenorhabditis elegans In addition to an overview of the general principles and concepts, we discuss the main methods, provide practical and conceptual pointers, and guide the reader in the types of bioinformatics analyses that are required. Owing to the speed and the plummeting costs of NGS-based methods, mapping and cloning a mutation of interest has become straightforward, quick, and relatively easy. Removing this bottleneck previously associated with forward genetic screens has significantly advanced the use of genetics to probe fundamental biological processes in an unbiased manner.
Collapse
Affiliation(s)
- Maria Doitsidou
- Centre for Integrative Physiology, University of Edinburgh, EH8 9XD, Scotland
| | - Sophie Jarriault
- L'Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR 7104/Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, 67404, France
| | - Richard J Poole
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, United Kingdom
| |
Collapse
|
9
|
Lee JH, Son MW, Kim KJ, Oh MH, Cho H, Lee HJ, Jang SH, Lee MS. Prognostic and Clinicopathological Significance of Transducer-Like Enhancer of Split 1 Expression in Gastric Cancer. J Gastric Cancer 2016; 16:21-7. [PMID: 27104023 PMCID: PMC4834617 DOI: 10.5230/jgc.2016.16.1.21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/22/2016] [Accepted: 01/28/2016] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Transducer-like enhancer of split 1 (TLE1) is a member of the Groucho/TLE family of transcriptional co-repressors that regulate the transcriptional activity of numerous genes. TLE1 is involved in the tumorigenesis of various tumors. We investigated the prognostic significance of TLE1 expression and its association with clinicopathological parameters in gastric cancer (GC) patients. MATERIALS AND METHODS Immunohistochemical analysis of six tissue microarrays was performed to examine TLE1 expression using 291 surgically resected GC specimens from the Soonchunhyang University Cheonan Hospital between July 2006 and December 2009. RESULTS In the non-neoplastic gastric mucosa, TLE1 expression was negative. In GC, 121 patients (41.6%) were positive for TLE1. The expression of TLE1 was significantly associated with male gender (P=0.021), less frequent lymphatic (P=0.017) or perineural invasion (P=0.029), intestinal type according to the Lauren classification (P=0.024), good histologic grade (P<0.001), early pathologic T-stage (P=0.012), and early American Joint Committee on Cancer stage (P=0.022). In the Kaplan-Meier analysis, the TLE1 expression was significantly associated with longer disease-free (P=0.022) and overall (P=0.001) survival rates. CONCLUSIONS We suggested that TLE1 expression is a good prognostic indicator in GCs.
Collapse
Affiliation(s)
- Ji-Hye Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Myoung-Won Son
- Department of General Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Kyung-Ju Kim
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Mee-Hye Oh
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Hyundeuk Cho
- Department of Pathology, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hyun Ju Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Si-Hyong Jang
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Moon Soo Lee
- Department of General Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| |
Collapse
|
10
|
De Paoli F, Copin C, Vanhoutte J, Derudas B, Vinod M, Zawadzki C, Susen S, Pattou F, Haulon S, Staels B, Eeckhoute J, Chinetti-Gbaguidi G. Transducin-like enhancer of split-1 is expressed and functional in human macrophages. FEBS Lett 2015; 590:43-52. [PMID: 26763127 DOI: 10.1002/1873-3468.12029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/21/2015] [Accepted: 11/22/2015] [Indexed: 12/22/2022]
Abstract
Macrophages display heterogeneous phenotypes, including the classical M1 proinflammatory and the alternative M2 anti-inflammatory polarization states. The transducin-like enhancer of split-1 (TLE1) is a transcriptional corepressor whose functions in macrophages have not been studied yet. We report that TLE1 is highly expressed in human alternative macrophages in vitro and in atherosclerotic plaques as well as in adipose tissue M1/M2 mixed macrophages. TLE1 silencing in alternative macrophages decreases the expression of the M2 markers IL-1Ra and IL-10, while it exacerbates TNFα and CCL3 induction by lipopolysaccharide. Hence, TLE1 is expressed in human macrophages where it has potential anti-inflammatory and alternative phenotype promoting properties.
Collapse
Affiliation(s)
- Federica De Paoli
- Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, University of Lille, France
| | - Corinne Copin
- Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, University of Lille, France
| | - Jonathan Vanhoutte
- Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, University of Lille, France
| | - Bruno Derudas
- Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, University of Lille, France
| | - Manjula Vinod
- Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, University of Lille, France
| | - Christophe Zawadzki
- Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, University of Lille, France
| | - Sophie Susen
- Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, University of Lille, France
| | | | | | - Bart Staels
- Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, University of Lille, France
| | - Jérome Eeckhoute
- Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, University of Lille, France
| | - Giulia Chinetti-Gbaguidi
- Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, University of Lille, France.,INSERM, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), 'Aging and Diabetes' team, University of Nice-Sophia Antipolis, France.,Clinical Chemistry Laboratory, University Hospital, Nice, France
| |
Collapse
|
11
|
Agarwal M, Kumar P, Mathew SJ. The Groucho/Transducin-like enhancer of split protein family in animal development. IUBMB Life 2015; 67:472-81. [PMID: 26172616 DOI: 10.1002/iub.1395] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 01/30/2023]
Abstract
Corepressors are proteins that cannot bind DNA directly but repress transcription by interacting with partner proteins. The Groucho/Transducin-Like Enhancer of Split (TLE) are a conserved family of corepressor proteins present in animals ranging from invertebrates such as Drosophila to vertebrates such as mice and humans. Groucho/TLE proteins perform important functions throughout the life span of animals, interacting with several pathways and regulating fundamental processes such as metabolism. However, these proteins have especially crucial functions in animal development, where they are required in multiple tissues in a temporally regulated manner. In this review, we summarize the functions of the Groucho/TLE proteins during animal development, emphasizing on specific tissues where they play essential roles.
Collapse
Affiliation(s)
- Megha Agarwal
- Regional Centre for Biotechnology, NCR Bio-Science Cluster, Faridabad, Haryana, India
| | - Pankaj Kumar
- Regional Centre for Biotechnology, NCR Bio-Science Cluster, Faridabad, Haryana, India
| | - Sam J Mathew
- Regional Centre for Biotechnology, NCR Bio-Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
12
|
Uehara T, Kage-Nakadai E, Yoshina S, Imae R, Mitani S. The Tumor Suppressor BCL7B Functions in the Wnt Signaling Pathway. PLoS Genet 2015; 11:e1004921. [PMID: 25569233 PMCID: PMC4287490 DOI: 10.1371/journal.pgen.1004921] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/24/2014] [Indexed: 01/05/2023] Open
Abstract
Human BCL7 gene family consists of BCL7A, BCL7B, and BCL7C. A number of clinical studies have reported that BCL7 family is involved in cancer incidence, progression, and development. Among them, BCL7B, located on chromosome 7q11.23, is one of the deleted genes in patients with Williams-Beuren syndrome. Although several studies have suggested that malignant diseases occurring in patients with Williams-Beuren syndrome are associated with aberrations in BCL7B, little is known regarding the function of this gene at the cellular level. In this study, we focused on bcl-7, which is the only homolog of BCL7 gene family in Caenorhabditis elegans, and analyzed bcl-7 deletion mutants. As a result, we found that bcl-7 is required for the asymmetric differentiation of epithelial seam cells, which have self-renewal properties as stem cells and divide asymmetrically through the WNT pathway. Distal tip cell development, which is regulated by the WNT pathway in Caenorhabditis elegans, was also affected in bcl-7-knockout mutants. Interestingly, bcl-7 mutants exhibited nuclear enlargement, reminiscent of the anaplastic features of malignant cells. Furthermore, in KATOIII human gastric cancer cells, BCL7B knockdown induced nuclear enlargement, promoted the multinuclei phenotype and suppressed cell death. In addition, this study showed that BCL7B negatively regulates the Wnt-signaling pathway and positively regulates the apoptotic pathway. Taken together, our data indicate that BCL7B/BCL-7 has some roles in maintaining the structure of nuclei and is involved in the modulation of multiple pathways, including Wnt and apoptosis. This study may implicate a risk of malignancies with BCL7B-deficiency, such as Williams-Beuren syndrome. BCL7B, a member of the human BCL7 gene family, is deleted in patients with Williams-Beuren syndrome. Although several clinical studies have suggested that malignant diseases occurring in patients with Williams-Beuren syndrome are associated with aberrations in BCL7B, little is known regarding the physiological function of this gene. Here, we show that bcl-7, the only homolog of BCL7 gene family in Caenorhabditis elegans, regulates asymmetric cell differentiation in somatic “stem-like” seam cells through at least the Wnt pathway and promotes the apoptotic pathway. In addition, bcl-7 deletion mutants show enlarged nuclei in epidermis and germ cells. Furthermore, in KATOIII human gastric cancer cells, BCL7B knockdown induces nuclear enlargement, as observed in Caenorhabditis elegans, and promotes the multinucleated phenotype, both of which are reminiscent of malignant diseases. BCL7B also negatively regulates the Wnt-signaling pathway and positively regulates the apoptotic pathway, similar to Caenorhabditis elegans. Altogether, this study may open the door for understanding the function of BCL7 family in cell differentiation and malignancies.
Collapse
Affiliation(s)
- Tomoko Uehara
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Eriko Kage-Nakadai
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Rieko Imae
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan; Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| |
Collapse
|
13
|
TLE1 promotes EMT in A549 lung cancer cells through suppression of E-cadherin. Biochem Biophys Res Commun 2014; 455:277-84. [PMID: 25446087 DOI: 10.1016/j.bbrc.2014.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 12/24/2022]
Abstract
The Groucho transcriptional corepressor TLE1 protein has recently been shown to be a putative lung specific oncogene, but its underlying oncogenic activity in lung cancer has not been fully elucidated. In this report, we investigated whether TLE1 regulates lung cancer aggressiveness using the human lung adenocarcinoma cell line A549 as a model system. Through a combination of genetic approaches, we found that TLE1 potentiates epithelial-to-mesenchymal transition (EMT) in A549 cells in part through suppression of the tumor suppressor gene E-cadherin. Exogenous expression of TLE1 in A549 cells resulted in heightened EMT phenotypes (enhanced fibroblastoid morphology and increased cell migratory potential) and in molecular alterations characteristic of EMT (downregulation of the epithelial marker E-cadherin and upregulation of the mesenchymal marker Vimentin). Conversely, downregulation of endogenous TLE1 expression in these cells resulted in reversal of basal EMT characterized by a cuboidal-like epithelial cell phenotype, reduced cell motility, and upregulated E-cadherin expression. Mechanistic studies showed that TLE1 suppresses E-cadherin expression at the transcriptional level in part by recruiting histone deacetylase (HDAC) activity to the E-cadherin promoter. Consistently, the HDAC inhibitor TSA partially reversed the TLE1-induced E-cadherin downregulation and cell migration, suggesting a role for HDACs in TLE1-mediated transcriptional repression of E-cadherin and EMT function. These findings uncover a novel role of TLE1 in regulating EMT in A549 cells through its repressive effect on E-cadherin and provide a mechanism for TLE1 oncogenic activity in lung cancer.
Collapse
|
14
|
Hu PJ. Whole genome sequencing and the transformation of C. elegans forward genetics. Methods 2014; 68:437-40. [PMID: 24874788 DOI: 10.1016/j.ymeth.2014.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 11/16/2022] Open
Abstract
Forward genetics has been an undeniably powerful approach in Caenorhabditis elegans and other model organisms. However, the trek from mutant isolation to identification of the causative molecular lesion can be time-consuming and fraught with obstacles. This has changed with the advent of whole genome sequencing (WGS). The widespread availability of high-throughput sequencing technology, coupled with the increasing affordability of WGS, has enabled the routine use of WGS in the analysis of forward genetic screens. The noteworthy development of one-step mapping/sequencing approaches has largely eliminated the bottleneck of conventional high-resolution mapping, greatly accelerating the journey from mutagenesis to gene discovery. By enabling the use of increasingly complex and diverse genetic backgrounds as substrates for mutagenesis, WGS is expanding the landscape of biological problems that can be interrogated using forward genetic approaches in C. elegans and other organisms.
Collapse
Affiliation(s)
- Patrick J Hu
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Institute of Gerontology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
15
|
Hobert O. Development of left/right asymmetry in the Caenorhabditis elegans nervous system: From zygote to postmitotic neuron. Genesis 2014; 52:528-43. [DOI: 10.1002/dvg.22747] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/23/2014] [Accepted: 01/28/2014] [Indexed: 01/23/2023]
Affiliation(s)
- Oliver Hobert
- Department of Biochemistry and Molecular Biophysics; Howard Hughes Medical Institute, Columbia University Medical Center; New York New York
| |
Collapse
|
16
|
GRG5/AES interacts with T-cell factor 4 (TCF4) and downregulates Wnt signaling in human cells and zebrafish embryos. PLoS One 2013; 8:e67694. [PMID: 23840876 PMCID: PMC3698143 DOI: 10.1371/journal.pone.0067694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 05/22/2013] [Indexed: 12/27/2022] Open
Abstract
Transcriptional control by TCF/LEF proteins is crucial in key developmental processes such as embryo polarity, tissue architecture and cell fate determination. TCFs associate with β-catenin to activate transcription in the presence of Wnt signaling, but in its absence act as repressors together with Groucho-family proteins (GRGs). TCF4 is critical in vertebrate intestinal epithelium, where TCF4-β-catenin complexes are necessary for the maintenance of a proliferative compartment, and their abnormal formation initiates tumorigenesis. However, the extent of TCF4-GRG complexes' roles in development and the mechanisms by which they repress transcription are not completely understood. Here we characterize the interaction between TCF4 and GRG5/AES, a Groucho family member whose functional relationship with TCFs has been controversial. We map the core GRG interaction region in TCF4 to a 111-amino acid fragment and show that, in contrast to other GRGs, GRG5/AES-binding specifically depends on a 4-amino acid motif (LVPQ) present only in TCF3 and some TCF4 isoforms. We further demonstrate that GRG5/AES represses Wnt-mediated transcription both in human cells and zebrafish embryos. Importantly, we provide the first evidence of an inherent repressive function of GRG5/AES in dorsal-ventral patterning during early zebrafish embryogenesis. These results improve our understanding of TCF-GRG interactions, have significant implications for models of transcriptional repression by TCF-GRG complexes, and lay the groundwork for in depth direct assessment of the potential role of Groucho-family proteins in both normal and abnormal development.
Collapse
|
17
|
PDF-1 neuropeptide signaling modulates a neural circuit for mate-searching behavior in C. elegans. Nat Neurosci 2012; 15:1675-82. [PMID: 23143519 PMCID: PMC3509246 DOI: 10.1038/nn.3253] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/01/2012] [Indexed: 12/20/2022]
Abstract
Appetitive behaviors require complex decision-making, involving the integration of environmental stimuli and physiological needs. C. elegans mate searching is a male-specific exploratory behavior regulated by two competing needs: food versus reproductive appetite. Here we show that the Pigment Dispersing Factor Receptor (PDFR-1) modulates the circuit that encodes the male reproductive drive promoting male exploration upon mate-deprivation. PDFR-1 and its ligand PDF-1 stimulate mate searching in the male but not in the hermaphrodite. pdf-1 is required in the gender-shared interneuron AIM and the receptor acts in internal and external environment-sensing neurons of the shared nervous system (URY, PQR and PHA) to produce mate-searching behavior. Thus, the pdf-1/pdfr-1 pathway functions in non sex-specific neurons to produce a male-specific, goal-oriented exploratory behavior. Our results indicate that secretin neuropeptidergic signaling plays an ancient role in regulating motivational internal states.
Collapse
|
18
|
Abstract
Whole genome sequencing (WGS) allows researchers to pinpoint genetic differences between individuals and significantly shortcuts the costly and time-consuming part of forward genetic analysis in model organism systems. Currently, the most effort-intensive part of WGS is the bioinformatic analysis of the relatively short reads generated by second generation sequencing platforms. We describe here a novel, easily accessible and cloud-based pipeline, called CloudMap, which greatly simplifies the analysis of mutant genome sequences. Available on the Galaxy web platform, CloudMap requires no software installation when run on the cloud, but it can also be run locally or via Amazon's Elastic Compute Cloud (EC2) service. CloudMap uses a series of predefined workflows to pinpoint sequence variations in animal genomes, such as those of premutagenized and mutagenized Caenorhabditis elegans strains. In combination with a variant-based mapping procedure, CloudMap allows users to sharply define genetic map intervals graphically and to retrieve very short lists of candidate variants with a few simple clicks. Automated workflows and extensive video user guides are available to detail the individual analysis steps performed (http://usegalaxy.org/cloudmap). We demonstrate the utility of CloudMap for WGS analysis of C. elegans and Arabidopsis genomes and describe how other organisms (e.g., Zebrafish and Drosophila) can easily be accommodated by this software platform. To accommodate rapid analysis of many mutants from large-scale genetic screens, CloudMap contains an in silico complementation testing tool that allows users to rapidly identify instances where multiple alleles of the same gene are present in the mutant collection. Lastly, we describe the application of a novel mapping/WGS method ("Variant Discovery Mapping") that does not rely on a defined polymorphic mapping strain, and we integrate the application of this method into CloudMap. CloudMap tools and documentation are continually updated at http://usegalaxy.org/cloudmap.
Collapse
|
19
|
Brunquell C, Biliran H, Jennings S, Ireland SK, Chen R, Ruoslahti E. TLE1 is an anoikis regulator and is downregulated by Bit1 in breast cancer cells. Mol Cancer Res 2012; 10:1482-95. [PMID: 22952044 DOI: 10.1158/1541-7786.mcr-12-0144] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
TLE1 is a Groucho-related transcriptional repressor protein that exerts survival and antiapoptotic function in several cellular systems and has been implicated in the pathogenesis of cancer. In the present study, we found that TLE1 is a regulator of anoikis in normal mammary epithelial and breast carcinoma cells. The induction of apoptosis following loss of cell attachment to the extracellular matrix (anoikis) in untransformed mammary epithelial MCF10A cells was associated with significant downregulation of TLE1 expression. Forced expression of exogenous TLE1 in these cells promoted resistance to anoikis. In breast cancer cells, TLE1 expression was significantly upregulated following detachment from the extracellular matrix. Genetic manipulation of TLE1 expression via overexpression and downregulation approaches indicated that TLE1 promotes the anoikis resistance and anchorage-independent growth of breast carcinoma cells. Mechanistically, we show that TLE1 inhibits the Bit1 anoikis pathway by reducing the formation of the proapoptotic Bit1-AES complex in part through sequestration of AES in the nucleus. The mitochondrial release of Bit1 during anoikis as well as exogenous expression of the cytoplasmic localized Bit1 or its cell death domain induced cytoplasmic translocation and degradation of nuclear TLE1 protein. These findings indicate a novel role for TLE1 in the maintenance of anoikis resistance in breast cancer cells. This conclusion is supported by an immunohistochemical analysis of a breast cancer tissue array illustrating that TLE1 is selectively upregulated in invasive breast tumors relative to noninvasive ductal carcinoma in situ and normal mammary epithelial tissues.
Collapse
Affiliation(s)
- Chris Brunquell
- Center for Nanomedicine, Sanford-Burnham Medical Research Institute, Santa Barbara, California, USA
| | | | | | | | | | | |
Collapse
|
20
|
Establishment of motor neuron-V3 interneuron progenitor domain boundary in ventral spinal cord requires Groucho-mediated transcriptional corepression. PLoS One 2012; 7:e31176. [PMID: 22363571 PMCID: PMC3281934 DOI: 10.1371/journal.pone.0031176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 01/03/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dorsoventral patterning of the developing spinal cord is important for the correct generation of spinal neuronal types. This process relies in part on cross-repressive interactions between specific transcription factors whose expression is regulated by Sonic hedgehog. Groucho/transducin-like Enhancer of split (TLE) proteins are transcriptional corepressors suggested to be recruited by at least certain Sonic hedgehog-controlled transcription factors to mediate the formation of spatially distinct progenitor domains within the ventral spinal cord. The aim of this study was to characterize the involvement of TLE in mechanisms regulating the establishment of the boundary between the most ventral spinal cord progenitor domains, termed pMN and p3. Because the pMN domain gives rise to somatic motor neurons while the p3 domain generates V3 interneurons, we also examined the involvement of TLE in the acquisition of these neuronal fates. METHODOLOGY AND PRINCIPAL FINDINGS A combination of in vivo loss- and gain-of-function studies in the developing chick spinal cord was performed to characterize the role of TLE in ventral progenitor domain formation. It is shown here that TLE overexpression causes increased numbers of p3 progenitors and promotes the V3 interneuron fate while suppressing the motor neuron fate. Conversely, dominant-inhibition of TLE increases the numbers of pMN progenitors and postmitotic motor neurons. CONCLUSION Based on these results, we propose that TLE is important to promote the formation of the p3 domain and subsequent generation of V3 interneurons.
Collapse
|
21
|
Abstract
Drosophila Groucho (Gro) is the founding member of a family of metazoan corepressors. Gro mediates repression through interactions with a myriad of DNA-binding repressor proteins to direct the silencing of genes involved in many developmental processes, including neurogenesis and patterning of the main body axis, as well as receptor tyrosine kinase/Ras/MAPK, Notch, Wingless (Wg)/Wnt, and Decapentaplegic (Dpp) signaling. Gro mediates repression by multiple molecular mechanisms, depending on the regulatory context. Because Gro is a broadly expressed nuclear factor, whereas its repressor partners display restricted temporal and spatial distribution, it was presumed that this corepressor played permissive rather than instructive roles in development. However, a wide range of studies demonstrates that this is not the case. Gro can sense and integrate many cellular inputs to modulate the expression of variety of genes, making it a versatile corepressor with crucial instructive roles in development and signaling.
Collapse
Affiliation(s)
- Wiam Turki-Judeh
- Department of Chemistry & Biochemistry and Molecular Biology Institute, University of California, Los Angeles, California, USA
| | | |
Collapse
|
22
|
Boulin T, Hobert O. From genes to function: the C. elegans genetic toolbox. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:114-37. [PMID: 23801671 DOI: 10.1002/wdev.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review aims to provide an overview of the technologies which make the nematode Caenorhabditis elegans an attractive genetic model system. We describe transgenesis techniques and forward and reverse genetic approaches to isolate mutants and clone genes. In addition, we discuss the new possibilities offered by genome engineering strategies and next-generation genome analysis tools.
Collapse
Affiliation(s)
- Thomas Boulin
- Department of Biology, Institut de Biologie de l'École Normale Supérieure, Paris, France.
| | | |
Collapse
|
23
|
Miller RR, Okkema PG. The Caenorhabditis elegans T-box factor MLS-1 requires Groucho co-repressor interaction for uterine muscle specification. PLoS Genet 2011; 7:e1002210. [PMID: 21852953 PMCID: PMC3154951 DOI: 10.1371/journal.pgen.1002210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 06/15/2011] [Indexed: 11/18/2022] Open
Abstract
T-box proteins are conserved transcription factors that play crucial roles in development of all metazoans; and, in humans, mutations affecting T-box genes are associated with a variety of congenital diseases and cancers. Despite the importance of this transcription factor family, very little is known regarding how T-box factors regulate gene expression. The Caenorhabditis elegans genome contains 21 T-box genes, and their characterized functions include cell fate specification in a variety of tissues. The C. elegans Tbx1 sub-family member MLS-1 functions during larval development to specify the fate of non-striated uterine muscles; and, in mls-1 mutants, uterine muscles are transformed to a vulval muscle fate. Here we demonstrate that MLS-1 function depends on binding to the Groucho-family co-repressor UNC-37. MLS-1 interacts with UNC-37 via a conserved eh1 motif, and the MLS-1 eh1 motif is necessary for MLS-1 to specify uterine muscle fate. Moreover, unc-37 loss-of-function produces uterine muscle to vulval muscle fate transformation similar to those observed in mls-1 mutants. Based on these results, we conclude that MLS-1 specifies uterine muscle fate by repressing target gene expression, and this function depends on interaction with UNC-37. Moreover, we suggest that MLS-1 shares a common mechanism for transcriptional repression with related T-box factors in other animal phyla.
Collapse
Affiliation(s)
- Raymond R Miller
- Department of Biological Sciences, Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | | |
Collapse
|
24
|
Poole RJ, Bashllari E, Cochella L, Flowers EB, Hobert O. A Genome-Wide RNAi Screen for Factors Involved in Neuronal Specification in Caenorhabditis elegans. PLoS Genet 2011; 7:e1002109. [PMID: 21698137 PMCID: PMC3116913 DOI: 10.1371/journal.pgen.1002109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 04/14/2011] [Indexed: 11/19/2022] Open
Abstract
One of the central goals of developmental neurobiology is to describe and understand the multi-tiered molecular events that control the progression of a fertilized egg to a terminally differentiated neuron. In the nematode Caenorhabditis elegans, the progression from egg to terminally differentiated neuron has been visually traced by lineage analysis. For example, the two gustatory neurons ASEL and ASER, a bilaterally symmetric neuron pair that is functionally lateralized, are generated from a fertilized egg through an invariant sequence of 11 cellular cleavages that occur stereotypically along specific cleavage planes. Molecular events that occur along this developmental pathway are only superficially understood. We take here an unbiased, genome-wide approach to identify genes that may act at any stage to ensure the correct differentiation of ASEL. Screening a genome-wide RNAi library that knocks-down 18,179 genes (94% of the genome), we identified 245 genes that affect the development of the ASEL neuron, such that the neuron is either not generated, its fate is converted to that of another cell, or cells from other lineage branches now adopt ASEL fate. We analyze in detail two factors that we identify from this screen: (1) the proneural gene hlh-14, which we find to be bilaterally expressed in the ASEL/R lineages despite their asymmetric lineage origins and which we find is required to generate neurons from several lineage branches including the ASE neurons, and (2) the COMPASS histone methyltransferase complex, which we find to be a critical embryonic inducer of ASEL/R asymmetry, acting upstream of the previously identified miRNA lsy-6. Our study represents the first comprehensive, genome-wide analysis of a single neuronal cell fate decision. The results of this analysis provide a starting point for future studies that will eventually lead to a more complete understanding of how individual neuronal cell types are generated from a single-cell embryo.
Collapse
Affiliation(s)
- Richard J. Poole
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York, United States of America
- * E-mail: (RJP); (OH)
| | - Enkelejda Bashllari
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York, United States of America
| | - Luisa Cochella
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York, United States of America
| | - Eileen B. Flowers
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York, United States of America
| | - Oliver Hobert
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York, United States of America
- * E-mail: (RJP); (OH)
| |
Collapse
|
25
|
A left/right asymmetric neuronal differentiation program is controlled by the Caenorhabditis elegans lsy-27 zinc-finger transcription factor. Genetics 2011; 188:753-9. [PMID: 21555395 PMCID: PMC3176537 DOI: 10.1534/genetics.111.129064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Functional diversification across the left/right axis is a common feature of many nervous systems. The genetic programs that control left/right asymmetric neuron function and gene expression in the nervous system are, however, poorly understood. We describe here the molecular characterization of two phenotypically similar mutant Caenorhabditis elegans strains in which left/right asymmetric gene expression programs of two gustatory neurons, called ASEL and ASER, are disrupted such that the differentiation program of the ASER neuron is derepressed in the ASEL neuron. We show that in one mutant strain the LIM homeobox gene lim-6 is defective whereas in another strain a novel member of a nematode-specific, fast-evolving family of C2H2 zinc-finger transcription factors, lsy-27, is mutated, as revealed by whole-genome sequencing. lsy-27 is broadly and exclusively expressed in the embryo and acts during the initiation, but not during the maintenance phase of ASE asymmetry control to assist in the initiation of lim-6 expression.
Collapse
|
26
|
Doitsidou M, Poole RJ, Sarin S, Bigelow H, Hobert O. C. elegans mutant identification with a one-step whole-genome-sequencing and SNP mapping strategy. PLoS One 2010; 5:e15435. [PMID: 21079745 PMCID: PMC2975709 DOI: 10.1371/journal.pone.0015435] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/07/2010] [Indexed: 01/09/2023] Open
Abstract
Whole-genome sequencing (WGS) is becoming a fast and cost-effective method to pinpoint molecular lesions in mutagenized genetic model systems, such as Caenorhabditis elegans. As mutagenized strains contain a significant mutational load, it is often still necessary to map mutations to a chromosomal interval to elucidate which of the WGS-identified sequence variants is the phenotype-causing one. We describe here our experience in setting up and testing a simple strategy that incorporates a rapid SNP-based mapping step into the WGS procedure. In this strategy, a mutant retrieved from a genetic screen is crossed with a polymorphic C. elegans strain, individual F2 progeny from this cross is selected for the mutant phenotype, the progeny of these F2 animals are pooled and then whole-genome-sequenced. The density of polymorphic SNP markers is decreased in the region of the phenotype-causing sequence variant and therefore enables its identification in the WGS data. As a proof of principle, we use this strategy to identify the molecular lesion in a mutant strain that produces an excess of dopaminergic neurons. We find that the molecular lesion resides in the Pax-6/Eyeless ortholog vab-3. The strategy described here will further reduce the time between mutant isolation and identification of the molecular lesion.
Collapse
Affiliation(s)
- Maria Doitsidou
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York, United States of America
- * E-mail: (MD); (OH)
| | - Richard J. Poole
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York, United States of America
| | - Sumeet Sarin
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York, United States of America
| | - Henry Bigelow
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York, United States of America
| | - Oliver Hobert
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York, United States of America
- * E-mail: (MD); (OH)
| |
Collapse
|
27
|
Analysis of multiple ethyl methanesulfonate-mutagenized Caenorhabditis elegans strains by whole-genome sequencing. Genetics 2010; 185:417-30. [PMID: 20439776 DOI: 10.1534/genetics.110.116319] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Whole-genome sequencing (WGS) of organisms displaying a specific mutant phenotype is a powerful approach to identify the genetic determinants of a plethora of biological processes. We have previously validated the feasibility of this approach by identifying a point-mutated locus responsible for a specific phenotype, observed in an ethyl methanesulfonate (EMS)-mutagenized Caenorhabditis elegans strain. Here we describe the genome-wide mutational profile of 17 EMS-mutagenized genomes as assessed with a bioinformatic pipeline, called MAQGene. Surprisingly, we find that while outcrossing mutagenized strains does reduce the total number of mutations, a striking mutational load is still observed even in outcrossed strains. Such genetic complexity has to be taken into account when establishing a causative relationship between genotype and phenotype. Even though unintentional, the 17 sequenced strains described here provide a resource of allelic variants in almost 1000 genes, including 62 premature stop codons, which represent candidate knockout alleles that will be of further use for the C. elegans community to study gene function.
Collapse
|