1
|
Habib SJ, Acebrón SP. Wnt signalling in cell division: from mechanisms to tissue engineering. Trends Cell Biol 2022; 32:1035-1048. [PMID: 35717422 DOI: 10.1016/j.tcb.2022.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/21/2023]
Abstract
Wnt signalling is an essential player in tissue formation, notably in the regulation of stem cell function. Wnt signalling is best known for its roles in G1/S progression. However, a complex Wnt programme that also mediates mitotic progression and asymmetric cell division (ACD) is emerging. Recent developments in this area have provided mechanistic insights as well as tools to engineer or target Wnt signalling for translational and therapeutic purposes. Here, we discuss the bidirectional relationship between Wnt activity and mitosis. We emphasise how various Wnt-dependent mechanisms control spindle dynamics, chromosome segregation, and ACD. Finally, we illustrate how knowledge about these mechanisms has been successfully employed in tissue engineering for regenerative medicine applications.
Collapse
Affiliation(s)
- Shukry J Habib
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7a, CH-1005 Lausanne, Switzerland.
| | - Sergio P Acebrón
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| |
Collapse
|
2
|
Hart M, Zulkipli I, Shrestha RL, Dang D, Conti D, Gul P, Kujawiak I, Draviam VM. MARK2/Par1b kinase present at centrosomes and retraction fibres corrects spindle off-centring induced by actin disassembly. Open Biol 2019; 9:180263. [PMID: 31238822 PMCID: PMC6597755 DOI: 10.1098/rsob.180263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tissue maintenance and development requires a directed plane of cell division. While it is clear that the division plane can be determined by retraction fibres that guide spindle movements, the precise molecular components of retraction fibres that control spindle movements remain unclear. We report MARK2/Par1b kinase as a novel component of actin-rich retraction fibres. A kinase-dead mutant of MARK2 reveals MARK2's ability to monitor subcellular actin status during interphase. During mitosis, MARK2's localization at actin-rich retraction fibres, but not the rest of the cortical membrane or centrosome, is dependent on its activity, highlighting a specialized spatial regulation of MARK2. By subtly perturbing the actin cytoskeleton, we reveal MARK2's role in correcting mitotic spindle off-centring induced by actin disassembly. We propose that MARK2 provides a molecular framework to integrate cortical signals and cytoskeletal changes in mitosis and interphase.
Collapse
Affiliation(s)
- Madeleine Hart
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK
| | - Ihsan Zulkipli
- 2 Department of Genetics, University of Cambridge , Cambridge , UK
| | | | - David Dang
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK.,3 Department of Informatics, King's College, London , London , UK
| | - Duccio Conti
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK
| | - Parveen Gul
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK
| | - Izabela Kujawiak
- 2 Department of Genetics, University of Cambridge , Cambridge , UK
| | - Viji M Draviam
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK
| |
Collapse
|
3
|
Stooke-Vaughan GA, Davidson LA, Woolner S. Xenopus as a model for studies in mechanical stress and cell division. Genesis 2017; 55. [PMID: 28095623 DOI: 10.1002/dvg.23004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 01/03/2023]
Abstract
We exist in a physical world, and cells within biological tissues must respond appropriately to both environmental forces and forces generated within the tissue to ensure normal development and homeostasis. Cell division is required for normal tissue growth and maintenance, but both the direction and rate of cell division must be tightly controlled to avoid diseases of over-proliferation such as cancer. Recent studies have shown that mechanical cues can cause mitotic entry and orient the mitotic spindle, suggesting that physical force could play a role in patterning tissue growth. However, to fully understand how mechanics guides cells in vivo, it is necessary to assess the interaction of mechanical strain and cell division in a whole tissue context. In this mini-review we first summarise the body of work linking mechanics and cell division, before looking at the advantages that the Xenopus embryo can offer as a model organism for understanding: (1) the mechanical environment during embryogenesis, and (2) factors important for cell division. Finally, we introduce a novel method for applying a reproducible strain to Xenopus embryonic tissue and assessing subsequent cell divisions.
Collapse
Affiliation(s)
- Georgina A Stooke-Vaughan
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Lance A Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Sarah Woolner
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
4
|
Barber KR, Tanquary J, Bush K, Shaw A, Woodson M, Sherman M, Wairkar YP. Active zone proteins are transported via distinct mechanisms regulated by Par-1 kinase. PLoS Genet 2017; 13:e1006621. [PMID: 28222093 PMCID: PMC5340405 DOI: 10.1371/journal.pgen.1006621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/07/2017] [Accepted: 02/08/2017] [Indexed: 11/24/2022] Open
Abstract
Disruption of synapses underlies a plethora of neurodevelopmental and neurodegenerative disease. Presynaptic specialization called the active zone plays a critical role in the communication with postsynaptic neuron. While the role of many proteins at the active zones in synaptic communication is relatively well studied, very little is known about how these proteins are transported to the synapses. For example, are there distinct mechanisms for the transport of active zone components or are they all transported in the same transport vesicle? Is active zone protein transport regulated? In this report we show that overexpression of Par-1/MARK kinase, a protein whose misregulation has been implicated in Autism spectrum disorders (ASDs) and neurodegenerative disorders, lead to a specific block in the transport of an active zone protein component- Bruchpilot at Drosophila neuromuscular junctions. Consistent with a block in axonal transport, we find a decrease in number of active zones and reduced neurotransmission in flies overexpressing Par-1 kinase. Interestingly, we find that Par-1 acts independently of Tau-one of the most well studied substrates of Par-1, revealing a presynaptic function for Par-1 that is independent of Tau. Thus, our study strongly suggests that there are distinct mechanisms that transport components of active zones and that they are tightly regulated. Synapses consist of pre- and postsynaptic partners. Proper function of active zones, a presynaptic component of synapse, is essential for efficacious neuronal communication. Disruption of neuronal communication is an early sign of both neurodevelopmental as well as neurodegenerative diseases. Since proteins that reside in active zones are used so frequently during the neuronal communication, they must be constantly replenished to maintain active zones. Axonal transport of these proteins plays an important role in replenishing these vital components necessary for the health of active zones. However, the mechanisms that transport components of active zones are not well understood. Our data suggest that there are distinct mechanisms that transport various active zone cargoes and this process is likely regulated by kinases. Further, our data show that disruption in the transport of one such active zone components causes reduced neuronal communication emphasizing the importance of the process of axonal transport of active zone protein(s) for neuronal communication. Understanding the processes that govern the axonal transport of active zone components will help dissect the initial stages of pathogenesis in both neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Kara R. Barber
- George and Cynthia Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States of America
- Neuroscience Graduate Program, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Julia Tanquary
- Summer Undergraduate Research Program, UTMB, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Keegan Bush
- George and Cynthia Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States of America
- Neuroscience Graduate Program, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Amanda Shaw
- George and Cynthia Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States of America
- Neuroscience Graduate Program, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Michael Woodson
- Sealy Center for Structural Biology, UTMB, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Michael Sherman
- Sealy Center for Structural Biology, UTMB, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Yogesh P. Wairkar
- George and Cynthia Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States of America
- Neuroscience Graduate Program, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States of America
- * E-mail:
| |
Collapse
|
5
|
Li J, Chatzeli L, Panousopoulou E, Tucker AS, Green JBA. Epithelial stratification and placode invagination are separable functions in early morphogenesis of the molar tooth. Development 2016; 143:670-81. [PMID: 26755699 PMCID: PMC4760321 DOI: 10.1242/dev.130187] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/30/2015] [Indexed: 01/06/2023]
Abstract
Ectodermal organs, which include teeth, hair follicles, mammary ducts, and glands such as sweat, mucous and sebaceous glands, are initiated in development as placodes, which are epithelial thickenings that invaginate and bud into the underlying mesenchyme. These placodes are stratified into a basal and several suprabasal layers of cells. The mechanisms driving stratification and invagination are poorly understood. Using the mouse molar tooth as a model for ectodermal organ morphogenesis, we show here that vertical, stratifying cell divisions are enriched in the forming placode and that stratification is cell division dependent. Using inhibitor and gain-of-function experiments, we show that FGF signalling is necessary and sufficient for stratification but not invagination as such. We show that, instead, Shh signalling is necessary for, and promotes, invagination once suprabasal tissue is generated. Shh-dependent suprabasal cell shape suggests convergent migration and intercalation, potentially accounting for post-stratification placode invagination to bud stage. We present a model in which FGF generates suprabasal tissue by asymmetric cell division, while Shh triggers cell rearrangement in this tissue to drive invagination all the way to bud formation. Summary: During tooth development in mice, FGF-dependent vertical cell divisions thicken the tooth placode while Shh drives cell rearrangements that cause invagination.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Craniofacial Development & Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Lemonia Chatzeli
- Department of Craniofacial Development & Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Eleni Panousopoulou
- Department of Craniofacial Development & Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Abigail S Tucker
- Department of Craniofacial Development & Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Jeremy B A Green
- Department of Craniofacial Development & Stem Cell Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
6
|
Abstract
Polarization of early embryos along cell contact patterns—referred to in this paper as radial polarization—provides a foundation for the initial cell fate decisions and morphogenetic movements of embryogenesis. Although polarity can be established through distinct upstream mechanisms in Caenorhabditis elegans, Xenopus laevis, and mouse embryos, in each species, it results in the restriction of PAR polarity proteins to contact-free surfaces of blastomeres. In turn, PAR proteins influence cell fates by affecting signaling pathways, such as Hippo and Wnt, and regulate morphogenetic movements by directing cytoskeletal asymmetries.
Collapse
Affiliation(s)
- Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, the Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, New York University School of Medicine, New York, NY 10016 Helen L. and Martin S. Kimmel Center for Biology and Medicine, the Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
7
|
Spindle orientation processes in epithelial growth and organisation. Semin Cell Dev Biol 2014; 34:124-32. [PMID: 24997348 DOI: 10.1016/j.semcdb.2014.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/30/2014] [Accepted: 06/16/2014] [Indexed: 02/08/2023]
Abstract
This review focuses on the role of orientated cell division (OCD) in two aspects of epithelial growth, namely layer formation and growth in the epithelial plane. Epithelial stratification is invariably associated with fate asymmetric cell divisions. We discuss this through the example of epidermal stratification where cell division plane regulation facilitates concomitant thickening and cell differentiation. Embryonic neuroepithelia are considered as a special case of epithelial stratification. We highlight early ectodermal layer specification, which sets the epidermal versus neuronal fates, as well as later neurogenesis in vertebrates and mammals. We also discuss the heart epicardium as an example of coordinating OCDs with delamination and subsequent differentiation. Epithelial planar growth is examined both in the context of uniform growth, such as in Xenopus epiboly, the Drosophila wing disc and the mammalian intestinal crypt as well as in anisotropic growth, or elongation, such as Drosophila and vertebrate axial elongation and the mouse palate. Coupling between growth perpendicular to and within epithelial planes is recognised, but so are exceptions, as is the often passive role of spindle orientation sometimes hitherto considered to be an active driver of directional growth.
Collapse
|
8
|
Polarized Wnt Signaling Regulates Ectodermal Cell Fate in Xenopus. Dev Cell 2014; 29:250-7. [DOI: 10.1016/j.devcel.2014.03.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 03/05/2014] [Accepted: 03/21/2014] [Indexed: 11/21/2022]
|
9
|
Sjöqvist M, Antfolk D, Ferraris S, Rraklli V, Haga C, Antila C, Mutvei A, Imanishi SY, Holmberg J, Jin S, Eriksson JE, Lendahl U, Sahlgren C. PKCζ regulates Notch receptor routing and activity in a Notch signaling-dependent manner. Cell Res 2014; 24:433-50. [PMID: 24662486 DOI: 10.1038/cr.2014.34] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 12/17/2013] [Accepted: 12/20/2013] [Indexed: 12/23/2022] Open
Abstract
Activation of Notch signaling requires intracellular routing of the receptor, but the mechanisms controlling the distinct steps in the routing process is poorly understood. We identify PKCζ as a key regulator of Notch receptor intracellular routing. When PKCζ was inhibited in the developing chick central nervous system and in cultured myoblasts, Notch-stimulated cells were allowed to undergo differentiation. PKCζ phosphorylates membrane-tethered forms of Notch and regulates two distinct routing steps, depending on the Notch activation state. When Notch is activated, PKCζ promotes re-localization of Notch from late endosomes to the nucleus and enhances production of the Notch intracellular domain, which leads to increased Notch activity. In the non-activated state, PKCζ instead facilitates Notch receptor internalization, accompanied with increased ubiquitylation and interaction with the endosomal sorting protein Hrs. Collectively, these data identify PKCζ as a key regulator of Notch trafficking and demonstrate that distinct steps in intracellular routing are differentially modulated depending on Notch signaling status.
Collapse
Affiliation(s)
- Marika Sjöqvist
- 1] Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland [2] Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
| | - Daniel Antfolk
- 1] Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland [2] Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
| | - Saima Ferraris
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
| | - Vilma Rraklli
- Ludwig Institute for Cancer Research, Karolinska Institute, Box 240, SE-171 77 Stockholm, Sweden
| | - Cecilia Haga
- 1] Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland [2] Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
| | - Christian Antila
- 1] Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland [2] Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
| | - Anders Mutvei
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Johan Holmberg
- 1] Ludwig Institute for Cancer Research, Karolinska Institute, Box 240, SE-171 77 Stockholm, Sweden [2] Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Shaobo Jin
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - John E Eriksson
- 1] Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland [2] Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Cecilia Sahlgren
- 1] Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland [2] Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland [3] Department of Biomedical Engineering, Technical University of Eindhoven, 2612 Eindhoven, The Netherlands
| |
Collapse
|
10
|
Lázaro-Diéguez F, Cohen D, Fernandez D, Hodgson L, van Ijzendoorn SCD, Müsch A. Par1b links lumen polarity with LGN-NuMA positioning for distinct epithelial cell division phenotypes. ACTA ACUST UNITED AC 2013; 203:251-64. [PMID: 24165937 PMCID: PMC3812971 DOI: 10.1083/jcb.201303013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Columnar epithelia establish their luminal domains and their mitotic spindles parallel to the basal surface and undergo symmetric cell divisions in which the cleavage furrow bisects the apical domain. Hepatocyte lumina interrupt the lateral domain of neighboring cells perpendicular to two basal domains and their cleavage furrow rarely bifurcates the luminal domains. We determine that the serine/threonine kinase Par1b defines lumen position in concert with the position of the astral microtubule anchoring complex LGN-NuMA to yield the distinct epithelial division phenotypes. Par1b signaling via the extracellular matrix (ECM) in polarizing cells determined RhoA/Rho-kinase activity at cell-cell contact sites. Columnar MDCK and Par1b-depleted hepatocytic HepG2 cells featured high RhoA activity that correlated with robust LGN-NuMA recruitment to the metaphase cortex, spindle alignment with the substratum, and columnar organization. Reduced RhoA activity at the metaphase cortex in HepG2 cells and Par1b-overexpressing MDCK cells correlated with a single or no LGN-NuMA crescent, tilted spindles, and the development of lateral lumen polarity.
Collapse
Affiliation(s)
- Francisco Lázaro-Diéguez
- Department of Developmental and Molecular Biology and 2 Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | | | | | | | |
Collapse
|
11
|
Lu MS, Prehoda KE. A NudE/14-3-3 pathway coordinates dynein and the kinesin Khc73 to position the mitotic spindle. Dev Cell 2013; 26:369-80. [PMID: 23987511 DOI: 10.1016/j.devcel.2013.07.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/07/2013] [Accepted: 07/29/2013] [Indexed: 12/11/2022]
Abstract
Mitotic spindle position is controlled by interactions of cortical molecular motors with astral microtubules. In animal cells, Partner of Inscuteable (Pins) acts at the cortex to coordinate the activity of Dynein and Kinesin-73 (Khc73; KIF13B in mammals) to orient the spindle. Though the two motors move in opposite directions, their synergistic activity is required for robust Pins-mediated spindle orientation. Here, we identify a physical connection between Dynein and Khc73 that mediates cooperative spindle positioning. Khc73's motor and MBS domains link Pins to microtubule plus ends, while its stalk domain is necessary for Dynein activation and precise positioning of the spindle. A motif in the stalk domain binds, in a phospho-dependent manner, 14-3-3ζ, which dimerizes with 14-3-3ε. The 14-3-3ζ/ε heterodimer binds the Dynein adaptor NudE to complete the Dynein connection. The Khc73 stalk/14-3-3/NudE pathway defines a physical connection that coordinates the activities of multiple motor proteins to precisely position the spindle.
Collapse
Affiliation(s)
- Michelle S Lu
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
12
|
Lu MS, Johnston CA. Molecular pathways regulating mitotic spindle orientation in animal cells. Development 2013; 140:1843-56. [PMID: 23571210 DOI: 10.1242/dev.087627] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Orientation of the cell division axis is essential for the correct development and maintenance of tissue morphology, both for symmetric cell divisions and for the asymmetric distribution of fate determinants during, for example, stem cell divisions. Oriented cell division depends on the positioning of the mitotic spindle relative to an axis of polarity. Recent studies have illuminated an expanding list of spindle orientation regulators, and a molecular model for how cells couple cortical polarity with spindle positioning has begun to emerge. Here, we review both the well-established spindle orientation pathways and recently identified regulators, focusing on how communication between the cell cortex and the spindle is achieved, to provide a contemporary view of how positioning of the mitotic spindle occurs.
Collapse
Affiliation(s)
- Michelle S Lu
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
13
|
Abstract
Cell polarization and cell division are two fundamental cellular processes. The mechanisms that establish and maintain cell polarity and the mechanisms by which cells progress through the cell cycle are now fairly well understood following decades of experimental work. There is also increasing evidence that the polarization state of a cell affects its proliferative properties. The challenge now is to understand how these two phenomena are mechanistically connected. The aim of the present chapter is to provide an overview of the evidence of cross-talk between apicobasal polarity and proliferation, and the current state of knowledge of the precise mechanism by which this cross-talk is achieved.
Collapse
|
14
|
Spindle position in symmetric cell divisions during epiboly is controlled by opposing and dynamic apicobasal forces. Dev Cell 2012; 22:775-87. [PMID: 22406140 PMCID: PMC3332010 DOI: 10.1016/j.devcel.2012.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 11/08/2011] [Accepted: 01/11/2012] [Indexed: 11/21/2022]
Abstract
Orientation of cell division is a vital aspect of tissue morphogenesis and growth. Asymmetric divisions generate cell fate diversity and epithelial stratification, whereas symmetric divisions contribute to tissue growth, spreading, and elongation. Here, we describe a mechanism for positioning the spindle in symmetric cell divisions of an embryonic epithelium. We show that during the early stages of epiboly, spindles in the epithelium display dynamic behavior within the plane of the epithelium but are kept firmly within this plane to give a symmetric division. This dynamic stability relies on balancing counteracting forces: an apically directed force exerted by F-actin/myosin-2 via active cortical flow and a basally directed force mediated by microtubules and myosin-10. When both forces are disrupted, spindle orientation deviates from the epithelial plane, and epithelial surface is reduced. We propose that this dynamic mechanism maintains symmetric divisions while allowing the quick adjustment of division plane to facilitate even tissue spreading.
Collapse
|
15
|
Thuret R, Papalopulu N. Following the fate of neural progenitors by homotopic/homochronic grafts in Xenopus embryos. Methods Mol Biol 2012; 916:203-215. [PMID: 22914943 DOI: 10.1007/978-1-61779-980-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The neural plate consists of neuroepithelial cells that serve as progenitors for the mature central nervous system. The neural plate is a highly regionalized structure, harboring neural progenitors with different programs of differentiation, due to signaling or intrinsic differences in their differentiation potential. In the frog neural plate, neural progenitors located in the deep or superficial layer differ in their ability to contribute to early (primary) neurogenesis but intercalate during neurulation. In order to understand the origins and mechanisms of this progenitor heterogeneity, it is necessary to be able to follow directly the fate of different progenitors. Here, we describe a fate mapping method, which is based on homotopic and homochronic grafts of labeled tissue to unlabeled, or differentially labeled, hosts. This method can be combined with immunohistochemical analysis with cell type specific markers, thus allowing one to determine the contribution that each early progenitor type makes to the differentiated nervous system. Such labeling can also be used to examine the morphogenetic movements that take place during neurulation.
Collapse
Affiliation(s)
- Raphaël Thuret
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
16
|
Chilov D, Sinjushina N, Rita H, Taketo MM, Mäkelä TP, Partanen J. Phosphorylated β-catenin localizes to centrosomes of neuronal progenitors and is required for cell polarity and neurogenesis in developing midbrain. Dev Biol 2011; 357:259-68. [DOI: 10.1016/j.ydbio.2011.06.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 05/16/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
|
17
|
Tabler JM, Yamanaka H, Green JBA. PAR-1 promotes primary neurogenesis and asymmetric cell divisions via control of spindle orientation. J Cell Sci 2010. [DOI: 10.1242/jcs.077776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|