1
|
Kanamori A, Kitani R, Oota A, Hirano K, Myosho T, Kobayashi T, Kawamura K, Kato N, Ansai S, Kinoshita M. Wnt4a Is Indispensable for Genital Duct Elongation but Not for Gonadal Sex Differentiation in the Medaka, Oryzias latipes. Zoolog Sci 2023; 40:348-359. [PMID: 37818883 DOI: 10.2108/zs230050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/24/2023] [Indexed: 10/13/2023]
Abstract
In most vertebrates, the oviducts and sperm ducts are derived from the Müllerian ducts and Wolffian ducts, respectively. However, in teleosts, the genital ducts are formed by the posterior extension of gonads in both sexes. Whether the genital ducts of teleosts are newly evolved organs or variants of Müllerian ducts is an important question for understanding evolutionary mechanisms of morphogenesis. One of the genes essential for Müllerian duct formation in mice is Wnt4, which is expressed in the mesenchyme and induces invagination of the coelomic epithelium and its posterior elongation. Here, we addressed the above question by examining genital duct development in mutants of two Wnt4 genes in the medaka (wnt4a is orthologous to mouse Wnt4, and wnt4b is paralogous). The wnt4b mutants had a short body but were fertile with normal genital ducts. In contrast, both male and female wnt4a mutants had their posterior elongation of the gonads stopped within or just outside the coelom. The mutants retained the posterior parts of ovarian cavities or sperm duct primordia, which are potential target tissues of Wnt4a. The gonads of female scl mutants (unable to synthesize sex steroids) lacked these tissues and did not develop genital ducts. Medaka wnt4a was expressed in the mesenchyme ventral to the genital ducts in both sexes. Taken together, the data strongly suggest that the mouse Müllerian ducts and the medaka genital ducts share homologous developmental processes. Additionally, the wnt4a or wnt4b single mutants and the double mutants did not show sex-reversal, implying that both genes are dispensable for gonadal sex differentiation in the medaka.
Collapse
Affiliation(s)
- Akira Kanamori
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan,
| | - Ryota Kitani
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Atsuko Oota
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Koudai Hirano
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Taijun Myosho
- Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Tohru Kobayashi
- Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kouichi Kawamura
- Department of Marine Bioresources, Graduate School of Bioresources, Mie University, Mie 514-8507, Japan
| | - Naoyuki Kato
- Department of Environmental Science, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Satoshi Ansai
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Aichi 445-8585, Japan
- Graduate School of Life Sciences, Tohoku University, Miyagi 980-8577, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Zhang B, Qin G, Qu L, Zhang Y, Li C, Cang C, Lin Q. Wnt8a is one of the candidate genes that play essential roles in the elongation of the seahorse prehensile tail. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:416-426. [PMID: 37073259 PMCID: PMC10077196 DOI: 10.1007/s42995-021-00099-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/08/2021] [Indexed: 05/03/2023]
Abstract
Seahorses are a hallmark of specialized morphological features due to their elongated prehensile tail. However, the underlying genomic grounds of seahorse tail development remain elusive. Herein, we evaluated the roles of essential genes from the Wnt gene family for the tail developmental process in the lined seahorse (Hippocampus erectus). Comparative genomic analysis revealed that the Wnt gene family is conserved in seahorses. The expression profiles and in situ hybridization suggested that Wnt5a, Wnt8a, and Wnt11 may participate in seahorse tail development. Like in other teleosts, Wnt5a and Wnt11 were found to regulate the development of the tail axial mesoderm and tail somitic mesoderm, respectively. However, a significantly extended expression period of Wnt8a during seahorse tail development was observed. Signaling pathway analysis further showed that Wnt8a up-regulated the expression of the tail axial mesoderm gene (Shh), while interaction analysis indicated that Wnt8a could promote the expression of Wnt11. In summary, our results indicate that the special extended expression period of Wnt8a might promote caudal tail axis formation, which contributes to the formation of the elongated tail of the seahorse. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00099-7.
Collapse
Affiliation(s)
- Bo Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510275 China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510275 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510275 China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510275 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
| | - Lili Qu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026 China
| | - Yanhong Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510275 China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510275 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
| | - Chunyan Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510275 China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510275 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
| | - Chunlei Cang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026 China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510275 China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510275 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
3
|
Wu L, Li Y, Xu Y, Li Y, Wang L, Ma X, Liu H, Li X, Zhou L. Cloning and characterization of wnt4a gene in a natural triploid teleost, Qi river crucian carp (Carassius auratus). Gen Comp Endocrinol 2019; 277:104-111. [PMID: 30923007 DOI: 10.1016/j.ygcen.2019.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/09/2019] [Accepted: 03/24/2019] [Indexed: 10/27/2022]
Abstract
WNT4 (wingless-type MMTV integration site family, member 4) plays a key role in the ovarian differentiation and development in mammals. However, the possible roles of Wnt4 during gonadal differentiation and development need further clarification in teleosts. In this study, we cloned and characterized the full-length cDNA of Qi river crucian carp (Carassius auratus) wnt4a gene (CA-wnt4a). The cDNA of CA-wnt4a is 2337 bp, including the ORF of 1059 bp, encoding a putative protein with a transmembrane domain and a WNT family domain. Sequence and phylogenetic analyses revealed that the CA-Wnt4a identified is a genuine Wnt4a. Tissue distribution analysis showed that CA-wnt4a is expressed in all the tissues examined, including ovary. CA-wnt4a undergoes a stepwise increase in the embryonic stages, suggesting that CA-wnt4a might be involved in the early developmental stage. Ontogenic analysis demonstrated that CA-wnt4a expression is upregulated in the ovaries at 30-50 days after hatching (dah), the critical period of sex determination/differentiation in Qi river crucian carp. From 90 dah, the expression of CA-wnt4a was gradually downregulated in the developing ovaries. Immunohistochemistry demonstrated that CA-Wnt4a was expressed in the somatic and germ cells of the ovary by 30 dah, thereafter, positive signals of Wnt4a were detected in the somatic cells, oogonia and primary growth oocytes from 60 dah. In the sex-reversed testis induced by letrozole treatment, the expression level of CA-wnt4a was significantly downregulated. When CA-wnt4a expression was inhibited by injection of FH535 (an inhibitor of canonical Wnt/β-catenin signal pathway) in the ovaries, levels of cyp19a1a, foxl2 mRNA were significantly downregulated, while sox9b and cyp11c1 were upregulated, which suggested that together with Foxl2-leading estrogen pathway, CA-wnt4a signaling pathway might be involved in ovarian differentiation and repression of the male pathway gene expression in Qi river crucian carp.
Collapse
Affiliation(s)
- Limin Wu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Yongjing Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Yufeng Xu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Yanfeng Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Lei Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xiao Ma
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Huifen Liu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
4
|
Identification of Loci Controlling the Dwarfism Trait in the White Sailfin Molly ( Poecilia latipinna) Using Genome-Wide Association Studies Based on Genotyping-By-Sequencing. Genes (Basel) 2019; 10:genes10060418. [PMID: 31151300 PMCID: PMC6628085 DOI: 10.3390/genes10060418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/17/2019] [Accepted: 05/27/2019] [Indexed: 11/26/2022] Open
Abstract
Dwarfism is a condition defined by low harvest weight in fish, but also results in strange body figures which may have potential for the selective breeding of new ornamental fish strains. The objectives of this study are to reveal the physiological causes of dwarfism and identify the genetic loci controlling this trait in the white sailfin molly. Skeletons of dwarf and normal sailfin mollies were observed by X-ray radioscopy and skeletal staining. Genome-wide association studies based on genotyping-by-sequencing (n = 184) were used to map candidate genomic regions associated with the dwarfism trait. Quantitative real-time PCR was performed to determine the expression level of candidate genes in normal (n = 8) and dwarf (n = 8) sailfin mollies. We found that the dwarf sailfin molly has a short and dysplastic spine in comparison to the normal fish. Two regions, located at NW_015112742.1 and NW_015113621.1, were significantly associated with the dwarfism trait. The expression level of three candidate genes, ADAMTS like 1, Larp7 and PPP3CA, were significantly different between the dwarf and normal sailfin mollies in the hepatopancreas, with PPP3CA also showing significant differences in the vertebrae and Larp7 showing significant differences in the muscle. This study identified genomic regions and candidate genes associated with the dwarfism trait in the white sailfin molly and would provide a reference to determine dwarf-causing variations.
Collapse
|
5
|
The sp7 gene is required for maturation of osteoblast-lineage cells in medaka (Oryzias latipes) vertebral column development. Dev Biol 2017; 431:252-262. [PMID: 28899668 DOI: 10.1016/j.ydbio.2017.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/19/2017] [Accepted: 09/04/2017] [Indexed: 01/16/2023]
Abstract
Sp7 is a zinc finger transcription factor that is essential for osteoblast differentiation in mammals. To verify the characteristic features of osteoblast-lineage cells in teleosts, we established medaka sp7 mutants using a transcription activator-like effector nuclease (TALEN) genome editing system. These mutants showed severe defects in the formation of skeletal structures. In particular, the neural and the hemal arches were not formed, although the chordal centra were formed. Analysis of the transgenic medaka revealed that sp7 mutant had normal distribution of type X collagen a1 a (col10a1a)-positive osteoblast-like cells around the centrum and at the proximal region of the vertebral arch. The sp7 mutant phenotype could be rescued by exogenous sp7 expression in col10a1a-positive cells, as well as in sp7-positive osteoblast cells. Furthermore, runx2-positive osteoblast progenitors were observed on the vertebral arches, but not on the centrum, during vertebral column development. In addition, these osteoblast progenitors differentiated into the col10a1a-positive cells. In sp7 mutant, the runx2-positive cells were normally distributed at the region of unformed vertebral arch but failed to differentiate into col10a1a-positive cells. These results indicate that osteoblast-lineage cells undergo two distinct differentiation processes during development of the vertebral arch and the centrum. Nevertheless, our results verified that sp7 gene expression in osteoblast-lineage cells is required for differentiation into mature osteoblasts to form the vertebral column and other skeletal structures.
Collapse
|
6
|
Seki S, Kusano K, Lee S, Iwasaki Y, Yagisawa M, Ishida M, Hiratsuka T, Sasado T, Naruse K, Yoshizaki G. Production of the medaka derived from vitrified whole testes by germ cell transplantation. Sci Rep 2017; 7:43185. [PMID: 28256523 PMCID: PMC5335710 DOI: 10.1038/srep43185] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/19/2017] [Indexed: 11/14/2022] Open
Abstract
The medaka (Oryzias latipes) is a teleost model distinguished from other model organisms by the presence of inbred strains, wild stocks, and related species. Cryopreservation guarantees preservation of these unique biological resources. However, because of their large size, cryopreservation techniques for their eggs and embryos have not been established. In the present study, we established a methodology to produce functional gametes from cryopreserved testicular cells (TCs). Whole testes taken from medaka were cryopreserved by vitrification. After thawing, the cells dissociated from cryopreserved testicular tissues were intraperitoneally transplanted into sterile triploid hatchlings. Some cells, presumably spermatogonial stem cells, migrated into the genital ridges of recipients and resulted in the production of eggs or sperm, based on sex of the recipient. Mating of recipients resulted in successful production of cryopreserved TC-derived offspring. We successfully produced individuals from the Kaga inbred line, an endangered wild population in Tokyo, and a sub-fertile mutant (wnt4b−/−) from cryopreserved their TCs. This methodology facilitates semi-permanent preservation of various medaka strains.
Collapse
Affiliation(s)
- Shinsuke Seki
- Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita 010-8543, Japan.,Department of Marine Bioscience, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Kazunari Kusano
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Seungki Lee
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Yoshiko Iwasaki
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Masaru Yagisawa
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Mariko Ishida
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Tadashi Hiratsuka
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Takao Sasado
- Laboratory of Bioresources, National Institute for Basic Biology, 38 Saigo-naka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, 38 Saigo-naka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Goro Yoshizaki
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| |
Collapse
|
7
|
Wu X, Chen Q, Washio Y, Yokoi H, Suzuki T. Excess Retinoic Acid Induces Fusion of Centra by Degenerating Intervertebral Ligament Cells in Japanese flounder,Paralichthys olivaceus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 326:464-473. [DOI: 10.1002/jez.b.22717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/05/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Xiaoming Wu
- Laboratory of Marine Life Science and Genetics; Graduate School of Agricultural Science; Tohoku University; Sendai Japan
| | - Qiran Chen
- Laboratory of Marine Life Science and Genetics; Graduate School of Agricultural Science; Tohoku University; Sendai Japan
| | - Youhei Washio
- Fisheries Laboratory; Kindai University; Shirahama Wakayama Japan
| | - Hayato Yokoi
- Laboratory of Marine Life Science and Genetics; Graduate School of Agricultural Science; Tohoku University; Sendai Japan
| | - Tohru Suzuki
- Laboratory of Marine Life Science and Genetics; Graduate School of Agricultural Science; Tohoku University; Sendai Japan
| |
Collapse
|
8
|
Prathibha Y, Senthilkumaran B. Expression of wnt4/5 during reproductive cycle of catfish and wnt5 promoter analysis. J Endocrinol 2017; 232:1-13. [PMID: 27875264 DOI: 10.1530/joe-16-0104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 10/06/2016] [Indexed: 02/04/2023]
Abstract
Signaling molecules, Wnt4 and Wnt5, are essential for ovarian growth during developmental stages in mammals. Although these molecules were identified in several teleosts, their precise expression and role in reproductive processes have not yet been explored in any lower vertebrates. In view of this, using catfish, Clarias batrachus as an animal model, cloning and expression analysis of wnt4 and wnt5 were analyzed in different tissues, at various developmental stages, during ovarian reproductive cycle and after gonadotropin induction. These studies indicate a plausible influence of Wnts in ovarian development and recrudescence. Transcript and protein localization revealed their presence in peri-nucleolar, pre-vitellogenic, vitellogenic and follicular layer of post-vitellogenic oocytes. Synchronous expression of pax2 and wnt5 during the ovarian development and recrudescence of catfish led us to analyze the importance of putative binding element of Pax2 in the 5'-promoter motif of wnt5 Promoter activity of wnt5 was analyzed by luciferase assays after transfecting progressive deletion constructs in pGL3 basic vector into the mammalian cell lines (HEK 293 and CHO). The constructs having putative Pax2 motif showed high promoter activity compared with controls. Likewise, the constructs with site-directed mutagenesis showed increased activity after supplementing recombinant Pax2 indicating the prominence of this motif in wnt5 promoter, in vitro Electrophoretic gel mobility shift, supershift and chromatin immunoprecipitation assays confirmed the binding of Pax2 to its corresponding cis-acting element in the upstream of wnt5 This study is the first of its kind to report the critical transcriptional interaction of Pax2 on wnt5 vis-à-vis ovarian development in teleosts.
Collapse
Affiliation(s)
- Yarikipati Prathibha
- Department of Animal BiologySchool of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, Telangana, India
| | - Balasubramanian Senthilkumaran
- Department of Animal BiologySchool of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, Telangana, India
| |
Collapse
|
9
|
Acute transcriptional up-regulation specific to osteoblasts/osteoclasts in medaka fish immediately after exposure to microgravity. Sci Rep 2016; 6:39545. [PMID: 28004797 PMCID: PMC5177882 DOI: 10.1038/srep39545] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/24/2016] [Indexed: 12/22/2022] Open
Abstract
Bone loss is a serious problem in spaceflight; however, the initial action of microgravity has not been identified. To examine this action, we performed live-imaging of animals during a space mission followed by transcriptome analysis using medaka transgenic lines expressing osteoblast and osteoclast-specific promoter-driven GFP and DsRed. In live-imaging for osteoblasts, the intensity of osterix- or osteocalcin-DsRed fluorescence in pharyngeal bones was significantly enhanced 1 day after launch; and this enhancement continued for 8 or 5 days. In osteoclasts, the signals of TRAP-GFP and MMP9-DsRed were highly increased at days 4 and 6 after launch in flight. HiSeq from pharyngeal bones of juvenile fish at day 2 after launch showed up-regulation of 2 osteoblast- and 3 osteoclast- related genes. Gene ontology analysis for the whole-body showed that transcription of genes in the category “nucleus” was significantly enhanced; particularly, transcription-regulators were more up-regulated at day 2 than at day 6. Lastly, we identified 5 genes, c-fos, jun-B-like, pai-1, ddit4 and tsc22d3, which were up-regulated commonly in the whole-body at days 2 and 6, and in the pharyngeal bone at day 2. Our results suggested that exposure to microgravity immediately induced dynamic alteration of gene expression levels in osteoblasts and osteoclasts.
Collapse
|
10
|
Takeyama K, Chatani M, Inohaya K, Kudo A. TGFβ-2 signaling is essential for osteoblast migration and differentiation during fracture healing in medaka fish. Bone 2016; 86:68-78. [PMID: 26947892 DOI: 10.1016/j.bone.2016.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 01/15/2023]
Abstract
TGFβ is known as a canonical coupling factor based on its effects on bone formation and bone resorption. There are 3 different isoforms of it related to bone metabolism in mammals. TGFβ function in vivo is complicated, and each isoform shows a different function. Since TGFβs are secreted during inflammation accompanied by the release of latent TGFβ from inside of the bones where they are stored in the extracellular matrix, TGFβ function is potentially related to fracture healing. Although a few reports examined the TGFβ expression during fracture healing, the function of TGFβ in this process is poorly understood. To investigate TGFβ function during fracture healing in vivo, we used the fracture healing model of the medaka fish, which enabled us to observe the behavior and function of living cells in response to a bone-specific injury. RNA in-situ hybridization analysis showed that only tgfβ-2 of the 4 TGFβ isoforms in medaka was expressed in the bone-forming region. To examine the TGFβ-2 function for bone formation by osteoblasts, we used a medaka transgenic line, Tg (type X collagen: GFP); and the results revealed that type X collagen-positive immature osteoblasts migrated to the fracture site and differentiated to osterix-positive osteoblasts. However, only a few type X collagen-positive osteoblasts exhibited BrdU incorporation after the fracture. Then we inhibited TGFβ signaling by using a chemical TGFβ receptor kinase inhibitor (SB431542), and demonstrated that inhibition of TGFβ strongly impaired osteoblast migration and differentiation. In addition, this TGFβ inhibitor reduced the RANKL expression and caused a delay of osteoclast differentiation. Our findings thus demonstrated that TGFβ-2 functioned specifically during fracture healing to stimulate the migration of osteoblasts as well as the differentiation of osteoblasts and osteoclasts.
Collapse
Affiliation(s)
- Kazuhiro Takeyama
- Department of Biological Information, Tokyo Institute of Technology, Yokohama 226-8501, Japan; Japan Society for the Promotion of Science, Tokyo 102-8472, Japan
| | - Masahiro Chatani
- Department of Biological Information, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Keiji Inohaya
- Department of Biological Information, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Akira Kudo
- Department of Biological Information, Tokyo Institute of Technology, Yokohama 226-8501, Japan.
| |
Collapse
|
11
|
Kaneko T, Freeha K, Wu X, Mogi M, Uji S, Yokoi H, Suzuki T. Role of notochord cells and sclerotome-derived cells in vertebral column development in fugu, Takifugu rubripes: histological and gene expression analyses. Cell Tissue Res 2016; 366:37-49. [DOI: 10.1007/s00441-016-2404-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/30/2016] [Indexed: 10/21/2022]
|
12
|
Osteoblast and osteoclast behaviors in the turnover of attachment bones during medaka tooth replacement. Dev Biol 2015; 409:370-81. [PMID: 26658319 DOI: 10.1016/j.ydbio.2015.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 11/26/2015] [Accepted: 12/02/2015] [Indexed: 01/14/2023]
Abstract
Tooth replacement in polyphyodont is a well-organized system for maintenance of homeostasis of teeth, containing the dynamic structural change in skeletal tissues such as the attachment bone, which is the supporting element of teeth. Histological analyses have revealed the character of tooth replacement, however, the cellular mechanism of how skeletal tissues are modified during tooth replacement is largely unknown. Here, we showed the important role of osteoblasts for controlling osteoclasts to modify the attachment bone during tooth replacement in medaka pharyngeal teeth, coupled with an osterix-DsRed/TRAP-GFP transgenic line to visualize osteoblasts and osteoclasts. In the turnover of the row of attachment bones, these bones were resorbed at the posterior side where most developed functional teeth were located, and generated at the anterior side where teeth were newly erupted, which caused continuous tooth replacement. In the cellular analysis, osteoclasts and osteoblasts were located at attachment bones separately, since mature osteoclasts were localized at the resorbing side and osteoblasts gathered at the generating side. To demonstrate the role of osteoclasts in tooth replacement, we established medaka made deficient in c-fms-a by TALEN. c-fms-a deficient medaka showed hyperplasia of attachment bones along with reduced bone resorption accompanied by a low number of TRAP-positive osteoclasts, indicating an important role of osteoclasts in the turnover of attachment bones. Furthermore, nitroreductase-mediated osteoblast-specific ablation induced disappearance of osteoclasts, indicating that osteoblasts were essential for maintenance of osteoclasts for the proper turnover. Taken together, our results suggested that the medaka attachment bone provides the model to understand the cellular mechanism for tooth replacement, and that osteoblasts act in the coordination of bone morphology by supporting osteoclasts.
Collapse
|
13
|
Ibaraki H, Wu X, Uji S, Yokoi H, Sakai Y, Suzuki T. Transcriptome analysis of vertebral bone in the flounder, Paralichthys olivaceus (Teleostei, Pleuronectiformes), using Illumina sequencing. Mar Genomics 2015; 24 Pt 3:269-76. [PMID: 26452303 DOI: 10.1016/j.margen.2015.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 09/28/2015] [Accepted: 09/28/2015] [Indexed: 01/07/2023]
Abstract
The processes underlying vertebral development in teleosts and tetrapods differ markedly in a variety of ways. At present, the molecular basis of teleost vertebral development and growth is poorly understood. Understanding vertebral development at the molecular level is important for aquaculture to prevent vertebral anomalies that can arise from a variety of factors, including excess vitamin A (all-trans retinol, VA) in the diet. To facilitate studies on teloest vertebral development, we performed transcriptome analysis of four month old flounder, Paralichthys olivaceus, vertebrae using next-generation sequencing. Expression profile obtained demonstrates that some members of the hh, bmp, fgf, wnt gene families, and their receptors, hox, pax, sox, dlx and tbx gene families and ntl, which are known to function in notochord and somite development in embryos, are expressed in the vertebrae. It was also showed that in addition to the retinoic acid receptor (Rar), the vertebrae express alcohol dehydrogenase 1 and retinal dehydrogenase 2 which convert VA to all-trans-retinoic acid (RA). The assembled contigs also included cytochrome p450 family members, which inactivate RA, as well as phosphatidylcholine-retinol O-acetyltransferase, which converts VA to all-trans-retinyl ester, a stock form of VA. These data suggest that in teleost vertebrae, expression of various signals and transcription factors which function in the notochord and somite development is maintained until adult stage, and RA metabolism and signaling are active to regulate transcription of RA-responsible genes, such as hedgehog and hox genes. This is the first transcriptome analysis of teleost fish vertebrae.
Collapse
Affiliation(s)
- Harumi Ibaraki
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Xiaoming Wu
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Susumu Uji
- National Research Institute of Aquaculture, Farming Biology Division, Fisheries Research Agency, Mie 516-0193, Japan
| | - Hayato Yokoi
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Yoshifumi Sakai
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Tohru Suzuki
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan.
| |
Collapse
|
14
|
Murata Y, Yasuda T, Watanabe-Asaka T, Oda S, Mantoku A, Takeyama K, Chatani M, Kudo A, Uchida S, Suzuki H, Tanigaki F, Shirakawa M, Fujisawa K, Hamamoto Y, Terai S, Mitani H. Histological and Transcriptomic Analysis of Adult Japanese Medaka Sampled Onboard the International Space Station. PLoS One 2015; 10:e0138799. [PMID: 26427061 PMCID: PMC4591011 DOI: 10.1371/journal.pone.0138799] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/03/2015] [Indexed: 11/20/2022] Open
Abstract
To understand how humans adapt to the space environment, many experiments can be conducted on astronauts as they work aboard the Space Shuttle or the International Space Station (ISS). We also need animal experiments that can apply to human models and help prevent or solve the health issues we face in space travel. The Japanese medaka (Oryzias latipes) is a suitable model fish for studying space adaptation as evidenced by adults of the species having mated successfully in space during 15 days of flight during the second International Microgravity Laboratory mission in 1994. The eggs laid by the fish developed normally and hatched as juveniles in space. In 2012, another space experiment (“Medaka Osteoclast”) was conducted. Six-week-old male and female Japanese medaka (Cab strain osteoblast transgenic fish) were maintained in the Aquatic Habitat system for two months in the ISS. Fish of the same strain and age were used as the ground controls. Six fish were fixed with paraformaldehyde or kept in RNA stabilization reagent (n = 4) and dissected for tissue sampling after being returned to the ground, so that several principal investigators working on the project could share samples. Histology indicated no significant changes except in the ovary. However, the RNA-seq analysis of 5345 genes from six tissues revealed highly tissue-specific space responsiveness after a two-month stay in the ISS. Similar responsiveness was observed among the brain and eye, ovary and testis, and the liver and intestine. Among these six tissues, the intestine showed the highest space response with 10 genes categorized as oxidation–reduction processes (gene ontogeny term GO:0055114), and the expression levels of choriogenin precursor genes were suppressed in the ovary. Eleven genes including klf9, klf13, odc1, hsp70 and hif3a were upregulated in more than four of the tissues examined, thus suggesting common immunoregulatory and stress responses during space adaptation.
Collapse
Affiliation(s)
- Yasuhiko Murata
- Department of Radiation Biology, Graduate School of Medicine, Tohoku University, Miyagi, Japan
| | - Takako Yasuda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Tomomi Watanabe-Asaka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Akiko Mantoku
- Department of Biological Information, Graduated School of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Kazuhiro Takeyama
- Department of Biological Information, Graduated School of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Masahiro Chatani
- Department of Biological Information, Graduated School of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Akira Kudo
- Department of Biological Information, Graduated School of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
| | | | | | | | | | - Koichi Fujisawa
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Yoshihiko Hamamoto
- Department of Biomolecular Engineering, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- * E-mail: (HM); (ST)
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- * E-mail: (HM); (ST)
| |
Collapse
|
15
|
Microgravity promotes osteoclast activity in medaka fish reared at the international space station. Sci Rep 2015; 5:14172. [PMID: 26387549 PMCID: PMC4585676 DOI: 10.1038/srep14172] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/19/2015] [Indexed: 12/28/2022] Open
Abstract
The bone mineral density (BMD) of astronauts decreases specifically in the weight-bearing sites during spaceflight. It seems that osteoclasts would be affected by a change in gravity; however, the molecular mechanism involved remains unclear. Here, we show that the mineral density of the pharyngeal bone and teeth region of TRAP-GFP/Osterix-DsRed double transgenic medaka fish was decreased and that osteoclasts were activated when the fish were reared for 56 days at the international space station. In addition, electron microscopy observation revealed a low degree of roundness of mitochondria in osteoclasts. In the whole transcriptome analysis, fkbp5 and ddit4 genes were strongly up-regulated in the flight group. The fish were filmed for abnormal behavior; and, interestingly, the medaka tended to become motionless in the late stage of exposure. These results reveal impaired physiological function with a change in mechanical force under microgravity, which impairment was accompanied by osteoclast activation.
Collapse
|
16
|
Chen H, Li S, Xiao L, Zhang Y, Li G, Liu X, Lin H. Wnt4 in protogynous hermaphroditic orange-spotted grouper (Epinephelus coioides): Identification and expression. Comp Biochem Physiol B Biochem Mol Biol 2015; 183:67-74. [DOI: 10.1016/j.cbpb.2015.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 01/08/2015] [Accepted: 01/10/2015] [Indexed: 01/08/2023]
|
17
|
Hu Q, Zhu Y, Liu Y, Wang N, Chen S. Cloning and characterization of wnt4a gene and evidence for positive selection in half-smooth tongue sole (Cynoglossus semilaevis). Sci Rep 2014; 4:7167. [PMID: 25418599 PMCID: PMC4241513 DOI: 10.1038/srep07167] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/03/2014] [Indexed: 01/02/2023] Open
Abstract
Wnt4 gene plays a role in developmental processes in mammals. However, little is known regarding its function in teleosts. We cloned and characterized the full-length half-smooth tongue sole (Cynoglossus semilaevis) wnt4a gene (CS-wnt4a). CS-wnt4a cDNA was 1746 bp in length encoding 353aa. CS-wnt4a expression level was highest in the testis, and gradually increased in the developing gonads until 1 year of age. In situ hybridization revealed that CS-wnt4a expression level was highest in stage II oocytes and sperm in the adult ovary and testis, respectively. CS-wnt4a expression level was significantly up-regulated in the gonads after exposure to high temperature. The level of methylation of the CS-wnt4a first exon was negatively correlated with the expression of CS-wnt4a. The branch-site model suggested that vertebrate wnt4a differed significantly from that of wnt4b, and that the selective pressures differed between ancestral aquatic and terrestrial organisms. Two positively selected sites were found in the ancestral lineages of teleost fish, but none in the ancestral lineages of mammals. One positively selected site was located on the α-helices of the 3D structure, the other on the random coil. Our results are of value for further study of the function of wnt4 and the mechanism of selection.
Collapse
Affiliation(s)
- Qiaomu Hu
- 1] Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China [2] Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ying Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China
| | - Yang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China
| | - Na Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China
| |
Collapse
|
18
|
In-vivo imaging of the fracture healing in medaka revealed two types of osteoclasts before and after the callus formation by osteoblasts. Dev Biol 2014; 394:292-304. [PMID: 25131195 DOI: 10.1016/j.ydbio.2014.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/28/2014] [Accepted: 08/09/2014] [Indexed: 11/22/2022]
Abstract
The fracture healing research, which has been performed in mammalian models not only for clinical application but also for bone metabolism, revealed that generally osteoblasts are induced to enter the fracture site before the induction of osteoclasts for bone remodeling. However, it remains unknown how and where osteoclasts and osteoblasts are induced, because it is difficult to observe osteoclasts and osteoblasts in a living animal. To answer these questions, we developed a new fracture healing model by using medaka. We fractured one side of lepidotrichia in a caudal fin ray without injuring the other soft tissues including blood vessels. Using the transgenic medaka in which osteoclasts and osteoblasts were visualized by GFP and DsRed, respectively, we found that two different types of functional osteoclasts were induced before and after osteoblast callus formation. The early-induced osteoclasts resorbed the bone fragments and the late-induced osteoclasts remodeled the callus. Both types of osteoclasts were induced near the surface on the blood vessels, while osteoblasts migrated from adjacent fin ray. Transmission electron microscopy revealed that no significant ruffled border and clear zone were observed in early-induced osteoclasts, whereas the late-induced osteoclasts had clear zones but did not have the typical ruffled border. In the remodeling of the callus, the expression of cox2 mRNA was up-regulated at the fracture site around vessels, and the inhibition of Cox2 impaired the induction of the late-induced osteoclasts, resulting in abnormal fracture healing. Finally, our developed medaka fracture healing model brings a new insight into the molecular mechanism for controlling cellular behaviors during the fracture healing.
Collapse
|
19
|
Iida Y, Hibiya K, Inohaya K, Kudo A. Eda/Edar signaling guides fin ray formation with preceding osteoblast differentiation, as revealed by analyses of the medaka all-fin less mutantafl. Dev Dyn 2014; 243:765-77. [DOI: 10.1002/dvdy.24120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yuuki Iida
- Department of Biological Information; Tokyo Institute of Technology; Yokohama Japan
| | - Kenta Hibiya
- Department of Biological Information; Tokyo Institute of Technology; Yokohama Japan
| | - Keiji Inohaya
- Department of Biological Information; Tokyo Institute of Technology; Yokohama Japan
| | - Akira Kudo
- Department of Biological Information; Tokyo Institute of Technology; Yokohama Japan
| |
Collapse
|
20
|
Ogino Y, Hirakawa I, Inohaya K, Sumiya E, Miyagawa S, Denslow N, Yamada G, Tatarazako N, Iguchi T. Bmp7 and Lef1 are the downstream effectors of androgen signaling in androgen-induced sex characteristics development in medaka. Endocrinology 2014; 155:449-62. [PMID: 24248458 DOI: 10.1210/en.2013-1507] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Androgens play key roles in the morphological specification of male type sex attractive and reproductive organs, whereas little is known about the developmental mechanisms of such secondary sex characters. Medaka offers a clue about sexual differentiation. They show a prominent masculine sexual character for appendage development, the formation of papillary processes in the anal fin, which has been induced in females by exogenous androgen exposure. This current study shows that the development of papillary processes is promoted by androgen-dependent augmentation of bone morphogenic protein 7 (Bmp7) and lymphoid enhancer-binding factor-1 (Lef1). Androgen receptor (AR) subtypes, ARα and ARβ, are expressed in the distal region of outgrowing bone nodules of developing papillary processes. Development of papillary processes concomitant with the induction of Bmp7 and Lef1 in the distal bone nodules by exposure to methyltestosterone was significantly suppressed by an antiandrogen, flutamide, in female medaka. When Bmp signaling was inhibited in methyltestosterone-exposed females by its inhibitor, dorsomorphin, Lef1 expression was suppressed accompanied by reduced proliferation in the distal bone nodules and retarded bone deposition. These observations indicate that androgen-dependent expressions of Bmp7 and Lef1 are required for the bone nodule outgrowth leading to the formation of these secondary sex characteristics in medaka. The formation of androgen-induced papillary processes may provide insights into the mechanisms regulating the specification of sexual features in vertebrates.
Collapse
Affiliation(s)
- Yukiko Ogino
- Okazaki Institute for Integrative Bioscience (Y.O., I.H., E.S., S.M., T.I.), National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology (Y.O., I.H., E.S., S.M., T.I.), Faculty of Life Science, The Graduate University for Advanced Studies, Aichi 444-8787, Japan; Department of Biological Information (K.I.), Tokyo Institute of Technology, Yokohama 226-8501, Japan; Department of Physiological Sciences (N.D.), Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32611; Department of Developmental Genetics (G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; and National Institute for Environmental Studies (N.T.), Ibaraki, 305-8506, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shimada A, Kawanishi T, Kaneko T, Yoshihara H, Yano T, Inohaya K, Kinoshita M, Kamei Y, Tamura K, Takeda H. Trunk exoskeleton in teleosts is mesodermal in origin. Nat Commun 2013; 4:1639. [PMID: 23535660 PMCID: PMC3615485 DOI: 10.1038/ncomms2643] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/25/2013] [Indexed: 11/24/2022] Open
Abstract
The vertebrate mineralized skeleton is known to have first emerged as an exoskeleton that extensively covered the fossil jawless fish. The evolutionary origin of this exoskeleton has long been attributed to the emergence of the neural crest, but experimental evaluation for this is still poor. Here we determine the embryonic origin of scales and fin rays of medaka (teleost trunk exoskeletons) by applying long-term cell labelling methods, and demonstrate that both tissues are mesodermal in origin. Neural crest cells, however, fail to contribute to these tissues. This result suggests that the trunk neural crest has no skeletogenic capability in fish, instead highlighting the dominant role of the mesoderm in the evolution of the trunk skeleton. This further implies that the role of the neural crest in skeletogenesis has been predominant in the cephalic region from the early stage of vertebrate evolution. Trunk exoskeleton elements of non-tetrapods such as scales and fin rays are believed to derive from the neural crest. Shimada and colleagues use long-term cell labelling methods to show that these elements are actually derived from the mesoderm.
Collapse
Affiliation(s)
- Atsuko Shimada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Demilly A, Steinmetz P, Gazave E, Marchand L, Vervoort M. Involvement of the Wnt/β-catenin pathway in neurectoderm architecture in Platynereis dumerilii. Nat Commun 2013; 4:1915. [DOI: 10.1038/ncomms2915] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/19/2013] [Indexed: 12/14/2022] Open
|
23
|
Senthinathan B, Sousa C, Tannahill D, Keynes R. The generation of vertebral segmental patterning in the chick embryo. J Anat 2012; 220:591-602. [PMID: 22458512 PMCID: PMC3390512 DOI: 10.1111/j.1469-7580.2012.01497.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2012] [Indexed: 12/20/2022] Open
Abstract
We have carried out a series of experimental manipulations in the chick embryo to assess whether the notochord, neural tube and spinal nerves influence segmental patterning of the vertebral column. Using Pax1 expression in the somite-derived sclerotomes as a marker for segmentation of the developing intervertebral disc, our results exclude such an influence. In contrast to certain teleost species, where the notochord has been shown to generate segmentation of the vertebral bodies (chordacentra), these experiments indicate that segmental patterning of the avian vertebral column arises autonomously in the somite mesoderm. We suggest that in amniotes, the subdivision of each sclerotome into non-miscible anterior and posterior halves plays a critical role in establishing vertebral segmentation, and in maintaining left/right alignment of the developing vertebral elements at the body midline.
Collapse
Affiliation(s)
- Biruntha Senthinathan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
24
|
Willems B, Büttner A, Huysseune A, Renn J, Witten PE, Winkler C. Conditional ablation of osteoblasts in medaka. Dev Biol 2012; 364:128-37. [PMID: 22326228 DOI: 10.1016/j.ydbio.2012.01.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 12/10/2011] [Accepted: 01/19/2012] [Indexed: 01/10/2023]
Abstract
Different from tetrapods, teleost vertebral centra form without prior establishment of a cartilaginous scaffold, in two steps: First, mineralization of the notochord sheath establishes the vertebral centra. Second, sclerotome derived mesenchymal cells migrate around the notochord sheath. These cells differentiate into osteoblasts and deposit bone onto the mineralized notochord sheath in a process of intramembranous bone formation. In contrast, most skeletal elements of the cranial skeleton arise by chondral bone formation, with remarkably similar mechanisms in fish and tetrapods. To further investigate the role of osteoblasts during formation of the cranial and axial skeleton, we generated a transgenic osx:CFP-NTR medaka line which enables conditional ablation of osterix expressing osteoblasts. By expressing a bacterial nitroreductase (NTR) fused to Cyan Fluorescent Protein (CFP) under control of the osterix promoter these cells become sensitive towards Metronidazole (Mtz). Mtz treatment of stable osx:CFP-NTR transgenic medaka for several consecutive days led to significant loss of osteoblasts by apoptosis. Live staining of mineralized bone matrix revealed reduced ossification in head skeletal elements such as cleithrum and operculum, as well as in the vertebral arches. Interestingly in Mtz treated larvae, intervertebral spaces were missing and the notochord sheath was often continuously mineralized resulting in the fusion of centra. We therefore propose a dual role for osx-positive osteoblasts in fish. Besides a role in bone deposition, we suggest an additional border function during mineralization of the chordal centra. After termination of Mtz treatment, osteoblasts gradually reappeared, indicating regenerative properties in this cell lineage. Taken together, the osx:CFP-NTR medaka line represents a valuable tool to study osteoblast function and regeneration at different stages of development in whole vertebrate specimens in vivo.
Collapse
Affiliation(s)
- Bernd Willems
- Department of Biological Sciences and NUS Centre for BioImaging Sciences (CBIS), National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
25
|
Nicol B, Guerin A, Fostier A, Guiguen Y. Ovary-predominant wnt4
expression during gonadal differentiation is not conserved in the rainbow trout (Oncorhynchus mykiss
). Mol Reprod Dev 2011; 79:51-63. [DOI: 10.1002/mrd.21404] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/10/2011] [Indexed: 11/07/2022]
|
26
|
To TT, Witten PE, Renn J, Bhattacharya D, Huysseune A, Winkler C. Rankl-induced osteoclastogenesis leads to loss of mineralization in a medaka osteoporosis model. Development 2011; 139:141-50. [PMID: 22096076 DOI: 10.1242/dev.071035] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Osteoclasts are macrophage-related bone resorbing cells of hematopoietic origin. Factors that regulate osteoclastogenesis are of great interest for investigating the pathology and treatment of bone diseases such as osteoporosis. In mammals, receptor activator of NF-κB ligand (Rankl) is a regulator of osteoclast formation and activation: its misexpression causes osteoclast stimulation and osteoporotic bone loss. Here, we report an osteoporotic phenotype that is induced by overexpression of Rankl in the medaka model. We generated transgenic medaka lines that express GFP under control of the cathepsin K promoter in osteoclasts starting at 12 days post-fertilization (dpf), or Rankl together with CFP under control of a bi-directional heat-shock promoter. Using long-term confocal time-lapse imaging of double and triple transgenic larvae, we monitored in vivo formation and activation of osteoclasts, as well as their interaction with osteoblasts. Upon Rankl induction, GFP-positive osteoclasts are first observed in the intervertebral regions and then quickly migrate to the surface of mineralized neural and haemal arches, as well as to the centra of the vertebral bodies. These osteoclasts are TRAP (tartrate-resistant acid phosphatase) and cathepsin K positive, mononuclear and highly mobile with dynamically extending protrusions. They are exclusively found in tight contact with mineralized matrix. Rankl-induced osteoclast formation resulted in severe degradation of the mineralized matrix in vertebral bodies and arches. In conclusion, our in vivo imaging approach confirms a conserved role of Rankl in osteoclastogenesis in teleost fish and provides new insight into the cellular interactions during bone resorption in an animal model that is useful for genetic and chemical screening.
Collapse
Affiliation(s)
- Thuy Thanh To
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | | | | | | | | | | |
Collapse
|
27
|
Cao L, Moriishi T, Miyazaki T, Iimura T, Hamagaki M, Nakane A, Tamamura Y, Komori T, Yamaguchi A. Comparative morphology of the osteocyte lacunocanalicular system in various vertebrates. J Bone Miner Metab 2011; 29:662-70. [PMID: 21499992 DOI: 10.1007/s00774-011-0268-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 03/15/2011] [Indexed: 11/27/2022]
Abstract
Osteocytes are embedded in the bone matrix, and they communicate with adjacent osteocytes, osteoblasts, and osteoclasts through the osteocyte lacunocanalicular system. Osteocytes are believed to be essential for the maintenance of bone homeostasis because they regulate mechanical sensing and mineral metabolism in mammalian bones; however, osteocyte morphology in other vertebrates has not been well documented. We conducted a comparative study on the morphology of osteocytes and the lacunocanalicular system of the following vertebrates: two teleost fishes [medaka (Oryzias latipes), and zebrafish (Danio rerio)], three amphibians [African clawed frog (Xenopus laevis), black-spotted pond frog (Rana nigromaculata), and Japanese fire-bellied newt (Cynops pyrrhogaster)], two reptiles [four-toed tortoise (Testudo horsfieldii) and green iguana (Iguana iguana)], and two mammals (laboratory mouse C57BL6 and human). The distribution of the osteocyte lacunocanalicular system in all these animals was investigated using the modified silver staining and the fluorescein-conjugated phalloidin staining methods. Bones of medaka had few osteocytes (acellular bone). Bones of zebrafish contained osteocytes (cellular bone) but had a poorly developed osteocyte lacunocanalicular system. Bones of Xenopus laevis, a freshwater species, and of other amphibians, reptiles, and mammals contained numerous osteocytes and a well-developed lacunocanalicular system. The present study indicates that development of the osteocyte lacunocanalicular system differs between teleost fishes and land vertebrates, but this pattern is not directly related to aquatic habitat.
Collapse
Affiliation(s)
- Lei Cao
- Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Tokyo 113-8549, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|