1
|
Yamamoto M, Hayashi S, Honkura Y, Hirano-Kawamoto A, Katori Y, Murakami G, Rodríguez-Vázquez JF, Abe S. Nasal capsule ossification: A histological study using human foetuses to find an association between the foetus and adult morphologies of the nasal wall. J Anat 2023; 243:517-533. [PMID: 36998216 PMCID: PMC10439375 DOI: 10.1111/joa.13867] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 04/01/2023] Open
Abstract
Recent molecular biology studies have revealed the process of nasal capsule determination. We aimed to create a fate map showing the association between the adult and embryonic components of the nasal wall and nasal capsule derivatives. We examined paraffin-embedded histological sections between 15 mid-term (9-16 weeks) and 12 near-term (27-40 weeks) foetuses. Until 15 weeks, membranous ossification occurred 'along' the capsular cartilage, contributing to the formation of the vomer, maxilla and bony nasal septum as well as the nasal, frontal and lacrimal bones. After 15 weeks, a wide lateral part of the capsule became thin and fragmented, and degenerative cartilage was observed near the lacrimal bone, in the three conchae, and at the inferolateral end of the capsule sandwiched between the maxilla and palatine bone. The disappearing cartilages appeared to be replaced by nearby membranous bones. This type of membranous ossification did not appear to use the capsular cartilage as a 'mould', although the perichondrium may have a role in inducing ossification. Calcified cartilage indicated endochondral ossification in the inferior concha until 15 weeks and, later, at the bases of three conchae and around the future sphenoid sinus (i.e. the concha sphenoidalis). The capsular cartilage extended antero-superiorly over the frontal bone and inserted into the nasal bone. At 40 weeks, the capsular cartilage remained in the cribriform plate and at the inferolateral end along the palatine bone. Consequently, less guidance from the nasal capsule seemed to provide great individual variation in the shape of the wide anterolateral wall of the nasal cavity.
Collapse
Affiliation(s)
| | - Shogo Hayashi
- Department of Anatomy, Division of Basic Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Yohei Honkura
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ai Hirano-Kawamoto
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukio Katori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Gen Murakami
- Division of Internal Medicine, Cupid Clinic, Iwamizawa, Japan
| | | | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
2
|
Baldwin MC, Zarudnaya D, Liu ZJ, Herring SW. The nasal septum and midfacial growth. Anat Rec (Hoboken) 2023. [PMID: 36965023 DOI: 10.1002/ar.25214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/27/2023]
Abstract
The nasal septum is the only element of the chondrocranium which never completely ossifies. The persistence of this nonarticular cartilage has given rise to a variety of theories concerning cranial mechanics and growth of the midface. Previously, using pigs, we demonstrated that the septum is not a strut supporting the snout and that septal growth seems capable of stretching the overlying nasofrontal suture, a major contributor to snout elongation. Here we investigate whether abnormalities of the septum are implicated in cases of midfacial hypoplasia, in which growth of the midface is inadequate. Mild midfacial hypoplasia is common in domestic pig breeds and often severe in the Yucatan minipig, a popular laboratory breed. Normal-snouted and midfacial hypoplastic heads of standard (farm mixed breed) and minipigs ranging in age from perinatal to 12 months were dissected, imaged by CT, and/or prepared for histology. Even at birth, Yucatan minipigs with midfacial hypoplasia exhibited greater caudal ossification than normal; the ventral cartilaginous sphenoidal "tail" was diminished or missing. In addition, cells that morphologically appeared to have divided recently were less numerous than in newborn standard pigs. Juvenile Yucatan minipigs lacked caudal cartilaginous growth zones almost completely. In standard newborns, the ventral caudal septum was more replicative than the dorsal, but this trend was not seen in Yucatan newborns. In conclusion, accelerated maturation of the caudal septum was associated with midfacial hypoplasia, a further indication that the septum, particularly its ventral portion, is important for midfacial elongation.
Collapse
Affiliation(s)
- Michael C Baldwin
- Department of Oral Health Sciences, University of Washington, Box 357475, Seattle, Washington, 98195, USA
| | - Diana Zarudnaya
- Department of Oral Health Sciences, University of Washington, Box 357475, Seattle, Washington, 98195, USA
| | - Zi-Jun Liu
- Department of Orthodontics, University of Washington, Box 357446, Seattle, Washington, 98195, USA
| | - Susan W Herring
- Department of Orthodontics, University of Washington, Box 357446, Seattle, Washington, 98195, USA
| |
Collapse
|
3
|
Murillo-Rincón AP, Kaucka M. Insights Into the Complexity of Craniofacial Development From a Cellular Perspective. Front Cell Dev Biol 2020; 8:620735. [PMID: 33392208 PMCID: PMC7775397 DOI: 10.3389/fcell.2020.620735] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
The head represents the most complex part of the body and a distinctive feature of the vertebrate body plan. This intricate structure is assembled during embryonic development in the four-dimensional process of morphogenesis. The head integrates components of the central and peripheral nervous system, sensory organs, muscles, joints, glands, and other specialized tissues in the framework of a complexly shaped skull. The anterior part of the head is referred to as the face, and a broad spectrum of facial shapes across vertebrate species enables different feeding strategies, communication styles, and diverse specialized functions. The face formation starts early during embryonic development and is an enormously complex, multi-step process regulated on a genomic, molecular, and cellular level. In this review, we will discuss recent discoveries that revealed new aspects of facial morphogenesis from the time of the neural crest cell emergence till the formation of the chondrocranium, the primary design of the individual facial shape. We will focus on molecular mechanisms of cell fate specification, the role of individual and collective cell migration, the importance of dynamic and continuous cellular interactions, responses of cells and tissues to generated physical forces, and their morphogenetic outcomes. In the end, we will examine the spatiotemporal activity of signaling centers tightly regulating the release of signals inducing the formation of craniofacial skeletal elements. The existence of these centers and their regulation by enhancers represent one of the core morphogenetic mechanisms and might lay the foundations for intra- and inter-species facial variability.
Collapse
Affiliation(s)
| | - Marketa Kaucka
- Max Planck Research Group Craniofacial Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
4
|
Yang LM, Ornitz DM. Sculpting the skull through neurosensory epithelial-mesenchymal signaling. Dev Dyn 2018; 248:88-97. [PMID: 30117627 DOI: 10.1002/dvdy.24664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/16/2022] Open
Abstract
The vertebrate skull is a complex structure housing the brain and specialized sensory organs, including the eye, the inner ear, and the olfactory system. The close association between bones of the skull and the sensory organs they encase has posed interesting developmental questions about how the tissues scale with one another. Mechanisms that regulate morphogenesis of the skull are hypothesized to originate in part from the encased neurosensory organs. Conversely, the developing skull is hypothesized to regulate the growth of neurosensory organs, through mechanical forces or molecular signaling. Here, we review studies of epithelial-mesenchymal interactions during inner ear and olfactory system development that may coordinate the growth of the two sensory organs with their surrounding bone. We highlight recent progress in the field and provide evidence that mechanical forces arising from bone growth may affect olfactory epithelium development. Developmental Dynamics 248:88-97, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lu M Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
5
|
Yoon J, Lee JH. A Case of Congenital Defect of the Lateral Crus of the Lower Lateral Cartilage. JOURNAL OF RHINOLOGY 2018. [DOI: 10.18787/jr.2018.25.1.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Jin Yoon
- Department of Otolaryngology-Head and Neck Surgery, Institute of Wonkwang Medical Science, College of Medicine, Wonkwang University, Iksan, Korea
| | - Jae Hoon Lee
- Department of Otolaryngology-Head and Neck Surgery, Institute of Wonkwang Medical Science, College of Medicine, Wonkwang University, Iksan, Korea
| |
Collapse
|
6
|
Bran GM, Riedel F. Dome Reconstruction in a Rare Case of Alar Cartilage Agenesis of the Middle and Lateral Crura. Aesthetic Plast Surg 2016; 40:685-9. [PMID: 27323959 DOI: 10.1007/s00266-016-0669-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 06/06/2016] [Indexed: 11/29/2022]
Abstract
UNLABELLED Congenital deformities of the nasal cartilage are extremely rare. Often, they remain undiscovered until an open approach is completed during rhinoplasty. We present a case of unilateral congenital agenesis of the middle and lateral crura of the alar cartilage. A new concept for dome reconstruction using conchal cartilage is introduced. Additionally, current concepts of embryology are summarized, which will help understanding the pathophysiology of such rare deformities. LEVEL OF EVIDENCE V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Gregor M Bran
- HNO-Zentrum Rhein-Neckar, Goethestrasse 16A, 68161, Mannheim, Germany.
- Universitäts-HNO-Klinik Mannheim, Universität Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Frank Riedel
- HNO-Zentrum Rhein-Neckar, Goethestrasse 16A, 68161, Mannheim, Germany
- Universitäts-HNO-Klinik Mannheim, Universität Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
7
|
Benítez-Burraco A, Lattanzi W, Murphy E. Language Impairments in ASD Resulting from a Failed Domestication of the Human Brain. Front Neurosci 2016; 10:373. [PMID: 27621700 PMCID: PMC5002430 DOI: 10.3389/fnins.2016.00373] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders entailing social and cognitive deficits, including marked problems with language. Numerous genes have been associated with ASD, but it is unclear how language deficits arise from gene mutation or dysregulation. It is also unclear why ASD shows such high prevalence within human populations. Interestingly, the emergence of a modern faculty of language has been hypothesized to be linked to changes in the human brain/skull, but also to the process of self-domestication of the human species. It is our intention to show that people with ASD exhibit less marked domesticated traits at the morphological, physiological, and behavioral levels. We also discuss many ASD candidates represented among the genes known to be involved in the “domestication syndrome” (the constellation of traits exhibited by domesticated mammals, which seemingly results from the hypofunction of the neural crest) and among the set of genes involved in language function closely connected to them. Moreover, many of these genes show altered expression profiles in the brain of autists. In addition, some candidates for domestication and language-readiness show the same expression profile in people with ASD and chimps in different brain areas involved in language processing. Similarities regarding the brain oscillatory behavior of these areas can be expected too. We conclude that ASD may represent an abnormal ontogenetic itinerary for the human faculty of language resulting in part from changes in genes important for the “domestication syndrome” and, ultimately, from the normal functioning of the neural crest.
Collapse
Affiliation(s)
| | - Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| |
Collapse
|
8
|
Miyashita T. Fishing for jaws in early vertebrate evolution: a new hypothesis of mandibular confinement. Biol Rev Camb Philos Soc 2015; 91:611-57. [DOI: 10.1111/brv.12187] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Tetsuto Miyashita
- Department of Biological Sciences; University of Alberta; Edmonton Alberta T6G 2E9 Canada
| |
Collapse
|
9
|
Krejčí E, Kodet O, Szabo P, Borský J, Smetana K, Grim M, Dvořánková B. In vitro differences of neonatal and later postnatal keratinocytes and dermal fibroblasts. Physiol Res 2014; 64:561-9. [PMID: 25470521 DOI: 10.33549/physiolres.932893] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Skin healing process is postnatally always associated with scarring of various extent. Based on the clinical experience of plastic surgeons, the healing after lip cleft reconstruction is surprisingly almost scar-less when it is carried out within a few first days after birth. This phenomenon is not seen in delayed cases. In order to decipher causative mechanism, we have isolated and studied principal cell populations, keratinocytes and fibroblast, from residual tissue samples after reconstructive operation (N=39) performed at various age (0-9 years). These cells play the pivotal role in the healing and that is why we focused on description of their phenotype and also functionality with respect to age. We have identified a population of remarkably small cells in explants from newborns (day 0-10). These small cells were strongly positive for markers of low differentiated keratinocytes, keratin-8 and -19, and moreover also for vimentin. In the explants cultures from older babies this population was missing. Fibroblasts from newborns and older patients differed namely in terms of nestin expression and also in the production of extracellular matrix components. We conclude that in vitro described properties of keratinocytes and fibroblasts in newborns could participate on the almost scar-less wound healing in earliest neonatal period.
Collapse
Affiliation(s)
- E Krejčí
- Institute of Anatomy, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
10
|
Gitton Y, Narboux-Nême N, Levi G. Transitory expression of Dlx5 and Dlx6 in maxillary arch epithelial precursors is essential for upper jaw morphogenesis. F1000Res 2013; 2:261. [PMID: 25339984 PMCID: PMC4193393 DOI: 10.12688/f1000research.2-261.v3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2014] [Indexed: 01/23/2023] Open
Abstract
Asymmetric, articulated jaws are characteristic of most vertebrate species; they derive from the first pharyngeal arch (PA1) which generates both maxillary and mandibular components. PA1 is colonized by cranial neural crest cells (CNCCs) which give rise to most bones and tendons of the jaws. The elements formed by different CNCCs contingents are specified by the combinatorial expression of
Dlx genes.
Dlx5 and
Dlx6 are predominantly expressed by mandibular CNCCs. Analysis of the phenotype of
Dlx5 and
Dlx6 double mutant mice has suggested that they are necessary and sufficient to specify mandibular identity. Here, using 3D reconstruction, we show that inactivation of
Dlx5 and
Dlx6 does not only affect the mandibular arch, but results in the simultaneous transformation of mandibular and maxillary skeletal elements which assume a similar morphology with gain of symmetry. As
Dlx5- and
Dlx6-expressing cells are not found in the maxillary bud, we have examined the lineage of
Dlx5-expressing progenitors using an
in vivo genetic approach. We find that a contingent of cells deriving from epithelial precursors transiently expressing
Dlx5 participate in the formation of the maxillary arch. These cells are mostly located in the distal part of the maxillary arch and might derive from its lambdoidal junction with the olfactory pit. Our observations provide the first genetic demonstration of the ‘Hinge and Caps’ model[1]. We support the notion that ‘cap’ signals could originate from epithelial derivatives of
Dlx5-expressing progenitors which migrate and colonize the maxillary arch epithelium. Our results imply that Dlx5 and Dlx6 control upper and lower jaw morphogenesis through different coordinated mechanisms to generate functional, articulated jaws.
Collapse
Affiliation(s)
- Yorick Gitton
- Evolution des Régulations Endocriniennes, CNRS, UMR7221, Muséum National d'Histoire Naturelle, Paris, France
| | - Nicolas Narboux-Nême
- Evolution des Régulations Endocriniennes, CNRS, UMR7221, Muséum National d'Histoire Naturelle, Paris, France
| | - Giovanni Levi
- Evolution des Régulations Endocriniennes, CNRS, UMR7221, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
11
|
Kosins AM, Daniel RK, Sajjadian A, Helms J. Rhinoplasty: congenital deficiencies of the alar cartilage. Aesthet Surg J 2013; 33:799-808. [PMID: 23838255 DOI: 10.1177/1090820x13495692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Congenital deficiencies of the alar cartilages are rare and often visible at birth but can occasionally present later. OBJECTIVES The authors review the anatomical development and discuss the incidence and treatment of congenital defects within the alar cartilages seen in rhinoplasty cases. METHODS The charts of 869 consecutive patients who underwent open rhinoplasty were retrospectively reviewed, and 8 cases of congenital defects of the alar cartilage within the middle crura were identified. Intraoperative photographs were taken of the alar deformities, and each patient underwent surgical correction. To simplify analysis, a classification of the defects was developed. A division was a cleft in the continuity of the alar cartilage with the 2 ends separate. A gap was a true absence of cartilage ranging from 1 to 4 mm, which can be accurately assessed in unilateral cases. A segmental loss was a defect greater than 4 mm. RESULTS The 8 cases of deformity could be classified as 4 divisions, 3 gaps, and 1 segmental loss. None of the patients had a history of prior nasal trauma or nasal surgery. Six patients were women and 2 patients were men. In all cases, adequate projection and stability were achieved with a columellar strut. Asymmetry was minimized through concealer or tip grafts. There were no complications. CONCLUSIONS Surgeons performing rhinoplasty surgery will encounter and should be prepared to deal with unexpected congenital defects of the alar cartilage. These defects within the middle crura will require stabilization with a columellar strut and, often, coverage with a concealer tip graft. We speculate that the cause of these defects is a disruption of the hedgehog signals that may arrest the condensation or block the differentiation of the underlying neural crest cells.
Collapse
Affiliation(s)
- Aaron M Kosins
- Division of Plastic Surgery, School of Medicine, University of California-Irvine, CA, USA
| | | | | | | |
Collapse
|
12
|
Bhatt S, Diaz R, Trainor PA. Signals and switches in Mammalian neural crest cell differentiation. Cold Spring Harb Perspect Biol 2013; 5:5/2/a008326. [PMID: 23378583 DOI: 10.1101/cshperspect.a008326] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neural crest cells (NCCs) comprise a multipotent, migratory cell population that generates a diverse array of cell and tissue types during vertebrate development. These include cartilage and bone, tendons, and connective tissue, as well as neurons, glia, melanocytes, and endocrine and adipose cells; this remarkable lineage potential persists into adult life. Taken together with a limited capacity for self-renewal, neural crest cells bear the hallmarks of stem and progenitor cells and are considered to be synonymous with vertebrate evolution. The neural crest has provided a system for exploring the mechanisms that govern developmental processes such as morphogenetic induction, cell migration, and fate determination. Today, much of the focus on neural crest cells revolves around their stem cell-like characteristics and potential for use in regenerative medicine. A thorough understanding of the signals and switches that govern mammalian neural crest patterning is central to potential therapeutic application of these cells and better appreciation of the role that neural crest cells play in vertebrate evolution, development, and disease.
Collapse
Affiliation(s)
- Shachi Bhatt
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | |
Collapse
|