1
|
Cui QW, Wang YQ, Ni JY, Liu ZQ, Li YF. Per- and polyfluoroalkyl substances (PFASs) inhibit larval metamorphosis by impairing larval muscle degeneration in the mussel Mytilus coruscus. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137152. [PMID: 39799677 DOI: 10.1016/j.jhazmat.2025.137152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs), including perfluorooctane sulfonate (PFOS) and its alternative 6:2 chlorinated polyfluoroalkyl ether sulfonate (F53B), are widely used in industries, leading to their presence in aquatic environments and potential adverse effects on marine organisms, particularly during early development. This study investigates the effects of PFOS and F53B on larval development and metamorphosis in Mytilus coruscus. Exposure to 4.7 and 39.2 μg/L PFOS and 1.2, 7.5, and 91.8 μg/L F53B significantly reduced larval metamorphosis compared to controls. PFOS and F53B exposure disrupted the normal degeneration of the larval velum and velum retractor muscles, essential for metamorphosis. Lower concentrations (1.2 and 7.5 μg/L) of F53B had a stronger inhibitory effect than 91.8 μg/L, suggesting F53B may act as an endocrine disruptor. Transcriptomic analysis revealed 801 differentially expressed genes in PFOS-exposed larvae and 2496 DEGs in F53B-exposed larvae, affecting pathways related to neural communication, cellular processes, and developmental signaling (e.g., Hedgehog, PI3K-AKT, Hippo, and MAPK). Real-time quantitative polymerase chain reaction confirmed the down-regulation of genes related to growth and development in both treatment groups, indicating suppressed growth and development. Our findings suggest that PFOS and F53B impacted larval metamorphosis and potentially altered the developmental trajectories of M. coruscus under environmental contamination scenarios. This study highlights the significant ecological implications of PFOS and F53B exposure on marine bivalve development, demonstrating their capacity to disrupt larval metamorphosis, thereby underscoring the potential risks these persistent pollutants pose to marine ecosystems and the early life stages of aquatic organisms.
Collapse
Affiliation(s)
- Qian-Wen Cui
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yu-Qing Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Ji-Yue Ni
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Zhi-Quan Liu
- School of Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| | - Yi-Feng Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
2
|
Zhang X, Wang QR, Wu Q, Gu J, Huang LH. Cytoplasmic FKBPs are involved in molting and metamorphosis through regulating the nuclear localization of EcR. INSECT SCIENCE 2024; 31:759-772. [PMID: 37822278 DOI: 10.1111/1744-7917.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023]
Abstract
Molting and metamorphosis are important physiological processes in insects that are tightly controlled by ecdysone receptor (EcR) through the 20-hydroxyecdysone (20E) signaling pathway. EcR is a steroid nuclear receptor (SR). Several FK506-binding proteins (FKBPs) have been identified from the mammal SR complex, and are thought to be involved in the subcellular trafficking of SR. However, their roles in insects are poorly understood. To explore whether FKBPs are involved in insect molting or metamorphosis, we injected an FKBP inhibitor (FK506) into a lepidopteran insect, Spodoptera litura, and found that molting was inhibited in 61.11% of the larvae, and that the time for larvae to pupate was significantly extended. A total of 10 FKBP genes were identified from the genome of S. litura and were clustered into 2 distinct groups, according to their subcellular localization, with FKBP13 and FKBP14 belonging to the endoplasmic reticulum (ER) group and with the other members belonging to the cytoplasmic (Cy) group. All the CyFKBPs were significantly upregulated in the prepupal or pupal stages, with the opposite being observed for the ER group members. FK506 completely blocked the transfer of EcR to the nucleus under 20E induction, and significantly downregulated the transcriptional expression of many 20E signaling genes. A similar phenomenon was observed after RNA interference of 2 CyFKBPs (FKBP45 and FKBP12b), but not for FKBP13. Taken together, our data indicate that the cytoplasmic FKBPs, especially FKBP45 and FKBP12b, mediate the nuclear localization of EcR, thereby regulating the 20E signaling and ultimately affecting molting and metamorphosis in insects.
Collapse
Affiliation(s)
- Xian Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qiao-Ran Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qian Wu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jun Gu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Li-Hua Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
3
|
Zhang N, Feng S, Duan S, Yin Y, Ullah H, Li H, Davaasambuu U, Wei S, Nong X, Zhang Z, Tu X, Wang G. LmFKBP24 interacts with LmEaster to inhibit the antifungal immunity of Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105515. [PMID: 37666582 DOI: 10.1016/j.pestbp.2023.105515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 09/06/2023]
Abstract
Locusta migratoria is one of the most destructive pests that threaten crop growth and food production security in China. Metarhizium anisopliae has been widely used to control locusts around the world. Previous laboratory studies have revealed that LmFKBP24 is significantly upregulated after M. anisopliae infection, suggesting that it may play a role in immune regulation, yet the mechanism remains largely unknown. To gain further insight, we conducted an RNA interference (RNAi) study to investigate the function of LmFKBP24 in the regulation of antifungal immunity and analyzed the expression patterns of immune-induced genes. Our research revealed that LmFKBP24 is activated and upregulated when locusts are infected by M. anisopliae, and it inhibits the expression of antimicrobial peptide (AMP) defensin in the downstream of Toll pathway by combining with LmEaster rather than LmCyPA, thus exerting an immunosuppressive effect. To further investigate this, we conducted yeast two-hybrid (Y2H) and pull down assays to identify the proteins interacting with LmFKBP24. Our results provided compelling evidence for revealing the immune mechanism of L. migratoria and uncovered an innovative target for the development of new biological pesticides. Furthermore, our research indicates that LmFKBP24 interacts with LmEaster through its intact structure, providing a strong foundation for further exploration.
Collapse
Affiliation(s)
- Neng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot 026000, China
| | - Shiqian Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Saiya Duan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yiting Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hidayat Ullah
- Department of Agriculture, The University of Swabi, Anbar-Swabi 23561, Khyber Pakhtunkhwa, Pakistan
| | - Hongmei Li
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Undarmaa Davaasambuu
- School of Agroecology, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia
| | - Shuhua Wei
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Xiangqun Nong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zehua Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiongbing Tu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot 026000, China
| | - Guangjun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot 026000, China.
| |
Collapse
|
4
|
Zhang N, Feng S, Tian Y, Zhuang L, Cha G, Duan S, Li H, Nong X, Zhang Z, Tu X, Wang G. Identification, characterization and spatiotemporal expression analysis of the FKBP family genes in Locusta migratoria. Sci Rep 2023; 13:4048. [PMID: 36899085 PMCID: PMC10006077 DOI: 10.1038/s41598-023-30889-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
FK506 binding proteins (FKBPs) are a highly-conserved group of proteins known to bind to FK506, an immunosuppressive drug. They play different physiological roles, including transcription regulation, protein folding, signal transduction and immunosuppression. A number of FKBP genes have been identified in eukaryotes; however, very little information about these genes has been reported in Locusta migratoria. Here, we identified and characterized 10 FKBP genes from L. migratoria. Phylogenetic analysis and comparison of domain architectures indicated that the LmFKBP family can be divided into two subfamilies and five subclasses. Developmental and tissue expression pattern analysis revealed that all LmFKBPs transcripts, including LmFKBP46, LmFKBP12, LmFKBP47, LmFKBP79, LmFKBP16, LmFKBP24, LmFKBP44b, LmFKBP53, were periodically expressed during different developmental stages and mainly expressed in the fat body, hemolymph, testis, and ovary. In brief, our work depicts a outline but panoramic picture of LmFKBP family in L. migratoria, and provides a solid foundation to further investigate the molecular functions of LmFKBPs.
Collapse
Affiliation(s)
- Neng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot, 026000, China
| | - Shiqian Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ye Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ling Zhuang
- Bayannur Forestry and Grassland Development Center, Bayannur, 015000, China
| | - Gan Cha
- Bayannur Forestry and Grassland Development Center, Bayannur, 015000, China
| | - Saiya Duan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongmei Li
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Xiangqun Nong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zehua Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiongbing Tu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot, 026000, China
| | - Guangjun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot, 026000, China.
| |
Collapse
|
5
|
Kandasamy S, Couto K, Thackeray J. A docked mutation phenocopies dumpy oblique alleles via altered vesicle trafficking. PeerJ 2021; 9:e12175. [PMID: 34721959 PMCID: PMC8520396 DOI: 10.7717/peerj.12175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
The Drosophila extracellular matrix protein Dumpy (Dpy) is one of the largest proteins encoded by any animal. One class of dpy mutations produces a characteristic shortening of the wing blade known as oblique (dpyo ), due to altered tension in the developing wing. We describe here the characterization of docked (doc), a gene originally named because of an allele producing a truncated wing. We show that doc corresponds to the gene model CG5484, which encodes a homolog of the yeast protein Yif1 and plays a key role in ER to Golgi vesicle transport. Genetic analysis is consistent with a similar role for Doc in vesicle trafficking: docked alleles interact not only with genes encoding the COPII core proteins sec23 and sec13, but also with the SNARE proteins synaptobrevin and syntaxin. Further, we demonstrate that the strong similarity between the doc1 and dpyo wing phenotypes reflects a functional connection between the two genes; we found that various dpy alleles are sensitive to changes in dosage of genes encoding other vesicle transport components such as sec13 and sar1. Doc's effects on trafficking are not limited to Dpy; for example, reduced doc dosage disturbed Notch pathway signaling during wing blade and vein development. These results suggest a model in which the oblique wing phenotype in doc1 results from reduced transport of wild-type Dumpy protein; by extension, an additional implication is that the dpyo alleles can themselves be explained as hypomorphs.
Collapse
Affiliation(s)
- Suresh Kandasamy
- Department of Biology, Clark University, Worcester, Massachusetts, United States
| | - Kiley Couto
- Department of Biology, Clark University, Worcester, Massachusetts, United States
| | - Justin Thackeray
- Department of Biology, Clark University, Worcester, Massachusetts, United States
| |
Collapse
|
6
|
Llamas E, Torres‐Montilla S, Lee HJ, Barja MV, Schlimgen E, Dunken N, Wagle P, Werr W, Zuccaro A, Rodríguez‐Concepción M, Vilchez D. The intrinsic chaperone network of Arabidopsis stem cells confers protection against proteotoxic stress. Aging Cell 2021; 20:e13446. [PMID: 34327811 PMCID: PMC8373342 DOI: 10.1111/acel.13446] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 01/21/2023] Open
Abstract
The biological purpose of plant stem cells is to maintain themselves while providing new pools of differentiated cells that form organs and rejuvenate or replace damaged tissues. Protein homeostasis or proteostasis is required for cell function and viability. However, the link between proteostasis and plant stem cell identity remains unknown. In contrast to their differentiated counterparts, we find that root stem cells can prevent the accumulation of aggregated proteins even under proteotoxic stress conditions such as heat stress or proteasome inhibition. Notably, root stem cells exhibit enhanced expression of distinct chaperones that maintain proteome integrity. Particularly, intrinsic high levels of the T-complex protein-1 ring complex/chaperonin containing TCP1 (TRiC/CCT) complex determine stem cell maintenance and their remarkable ability to suppress protein aggregation. Overexpression of CCT8, a key activator of TRiC/CCT assembly, is sufficient to ameliorate protein aggregation in differentiated cells and confer resistance to proteotoxic stress in plants. Taken together, our results indicate that enhanced proteostasis mechanisms in stem cells could be an important requirement for plants to persist under extreme environmental conditions and reach extreme long ages. Thus, proteostasis of stem cells can provide insights to design and breed plants tolerant to environmental challenges caused by the climate change.
Collapse
Affiliation(s)
- Ernesto Llamas
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Salvador Torres‐Montilla
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB Bellaterra Barcelona Spain
| | - Hyun Ju Lee
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - María Victoria Barja
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB Bellaterra Barcelona Spain
| | - Elena Schlimgen
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Nick Dunken
- Cluster of Excellence on Plant Sciences (CEPLAS) Institute for Plant Sciences University of Cologne Cologne Germany
| | - Prerana Wagle
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Wolfgang Werr
- Developmental Biology Biocenter University of Cologne Cologne Germany
| | - Alga Zuccaro
- Cluster of Excellence on Plant Sciences (CEPLAS) Institute for Plant Sciences University of Cologne Cologne Germany
| | - Manuel Rodríguez‐Concepción
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB Bellaterra Barcelona Spain
- Institute for Plant Molecular and Cell Biology (IBMCP) CSIC‐UPV Valencia Spain
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
- Center for Molecular Medicine Cologne (CMMC) University of Cologne Cologne Germany
- Faculty of Medicine University Hospital Cologne Cologne Germany
| |
Collapse
|
7
|
Souto-Maior C, Serrano Negron YL, Harbison ST. Natural selection on sleep duration in Drosophila melanogaster. Sci Rep 2020; 10:20652. [PMID: 33244154 PMCID: PMC7691507 DOI: 10.1038/s41598-020-77680-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022] Open
Abstract
Sleep is ubiquitous across animal species, but why it persists is not well understood. Here we observe natural selection act on Drosophila sleep by relaxing bi-directional artificial selection for extreme sleep duration for 62 generations. When artificial selection was suspended, sleep increased in populations previously selected for short sleep. Likewise, sleep decreased in populations previously selected for long sleep when artificial selection was relaxed. We measured the corresponding changes in the allele frequencies of genomic variants responding to artificial selection. The allele frequencies of these variants reversed course in response to relaxed selection, and for short sleepers, the changes exceeded allele frequency changes that would be expected under random genetic drift. These observations suggest that the variants are causal polymorphisms for sleep duration responding to natural selection pressure. These polymorphisms may therefore pinpoint the most important regions of the genome maintaining variation in sleep duration.
Collapse
Affiliation(s)
- Caetano Souto-Maior
- Laboratory of Systems Genetics, Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, MD, USA
| | - Yazmin L Serrano Negron
- Laboratory of Systems Genetics, Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, MD, USA
| | - Susan T Harbison
- Laboratory of Systems Genetics, Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
8
|
Genz B, Coleman MA, Irvine KM, Kutasovic JR, Miranda M, Gratte FD, Tirnitz-Parker JEE, Olynyk JK, Calvopina DA, Weis A, Cloonan N, Robinson H, Hill MM, Al-Ejeh F, Ramm GA. Overexpression of miRNA-25-3p inhibits Notch1 signaling and TGF-β-induced collagen expression in hepatic stellate cells. Sci Rep 2019; 9:8541. [PMID: 31189969 PMCID: PMC6561916 DOI: 10.1038/s41598-019-44865-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 05/23/2019] [Indexed: 02/06/2023] Open
Abstract
During chronic liver injury hepatic stellate cells (HSCs), the principal source of extracellular matrix in the fibrotic liver, transdifferentiate into pro-fibrotic myofibroblast-like cells - a process potentially regulated by microRNAs (miRNAs). Recently, we found serum miRNA-25-3p (miR-25) levels were upregulated in children with Cystic Fibrosis (CF) without liver disease, compared to children with CF-associated liver disease and healthy individuals. Here we examine the role of miR-25 in HSC biology. MiR-25 was detected in the human HSC cell line LX-2 and in primary murine HSCs, and increased with culture-induced activation. Transient overexpression of miR-25 inhibited TGF-β and its type 1 receptor (TGFBR1) mRNA expression, TGF-β-induced Smad2 phosphorylation and subsequent collagen1α1 induction in LX-2 cells. Pull-down experiments with biotinylated miR-25 revealed Notch signaling (co-)activators ADAM-17 and FKBP14 as miR-25 targets in HSCs. NanoString analysis confirmed miR-25 regulation of Notch- and Wnt-signaling pathways. Expression of Notch signaling pathway components and endogenous Notch1 signaling was downregulated in miR-25 overexpressing LX-2 cells, as were components of Wnt signaling such as Wnt5a. We propose that miR-25 acts as a negative feedback anti-fibrotic control during HSC activation by reducing the reactivity of HSCs to TGF-β-induced collagen expression and modulating the cross-talk between Notch, Wnt and TGF-β signaling.
Collapse
Affiliation(s)
- Berit Genz
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Mater Research, Translational Research Institute, Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Miranda A Coleman
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Mater Research, Translational Research Institute, Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jamie R Kutasovic
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Personalised Medicine Team, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mariska Miranda
- Personalised Medicine Team, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Francis D Gratte
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Janina E E Tirnitz-Parker
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - John K Olynyk
- Department of Gastroenterology & Hepatology, Fiona Stanley Fremantle Hospital Group, Murdoch, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Diego A Calvopina
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Anna Weis
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicole Cloonan
- Genomic Biology Lab, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Harley Robinson
- Precision & Systems Biomedicine, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michelle M Hill
- Precision & Systems Biomedicine, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Fares Al-Ejeh
- Personalised Medicine Team, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Grant A Ramm
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. .,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
9
|
Ghartey-Kwansah G, Li Z, Feng R, Wang L, Zhou X, Chen FZ, Xu MM, Jones O, Mu Y, Chen S, Bryant J, Isaacs WB, Ma J, Xu X. Comparative analysis of FKBP family protein: evaluation, structure, and function in mammals and Drosophila melanogaster. BMC DEVELOPMENTAL BIOLOGY 2018; 18:7. [PMID: 29587629 PMCID: PMC5870485 DOI: 10.1186/s12861-018-0167-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/12/2018] [Indexed: 12/19/2022]
Abstract
Background FK506-binding proteins (FKBPs) have become the subject of considerable interest in several fields, leading to the identification of several cellular and molecular pathways in which FKBPs impact prenatal development and pathogenesis of many human diseases. Main body This analysis revealed differences between how mammalian and Drosophila FKBPs mechanisms function in relation to the immunosuppressant drugs, FK506 and rapamycin. Differences that could be used to design insect-specific pesticides. (1) Molecular phylogenetic analysis of FKBP family proteins revealed that the eight known Drosophila FKBPs share homology with the human FKBP12. This indicates a close evolutionary relationship, and possible origination from a common ancestor. (2) The known FKBPs contain FK domains, that is, a prolyl cis/trans isomerase (PPIase) domain that mediates immune suppression through inhibition of calcineurin. The dFKBP59, CG4735/Shutdown, CG1847, and CG5482 have a Tetratricopeptide receptor domain at the C-terminus, which regulates transcription and protein transportation. (3) FKBP51 and FKBP52 (dFKBP59), along with Cyclophilin 40 and protein phosphatase 5, function as Hsp90 immunophilin co-chaperones within steroid receptor-Hsp90 heterocomplexes. These immunophilins are potential drug targets in pathways associated with normal physiology and may be used to treat a variety of steroid-based diseases by targeting exocytic/endocytic cycling and vesicular trafficking. (4) By associating with presinilin, a critical component of the Notch signaling pathway, FKBP14 is a downstream effector of Notch activation at the membrane. Meanwhile, Shutdown associates with transposons in the PIWI-interacting RNA pathway, playing a crucial role in both germ cells and ovarian somas. Mutations in or silencing of dFKBPs lead to early embryonic lethality in Drosophila. Therefore, further understanding the mechanisms of FK506 and rapamycin binding to immunophilin FKBPs in endocrine, cardiovascular, and neurological function in both mammals and Drosophila would provide prospects in generating unique, insect specific therapeutics targeting the above cellular signaling pathways. Conclusion This review will evaluate the functional roles of FKBP family proteins, and systematically summarize the similarities and differences between FKBP proteins in Drosophila and Mammals. Specific therapeutics targeting cellular signaling pathways will also be discussed.
Collapse
Affiliation(s)
- George Ghartey-Kwansah
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Zhongguang Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Rui Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Liyang Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Xin Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China.,Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Meng Meng Xu
- Department of Pharmacology, Duke University Medical Center, Durham, NC, USA
| | - Odell Jones
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yulian Mu
- State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Joseph Bryant
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Jianjie Ma
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Xuehong Xu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China. .,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China.
| |
Collapse
|
10
|
Bonner JM, Boulianne GL. Diverse structures, functions and uses of FK506 binding proteins. Cell Signal 2017; 38:97-105. [DOI: 10.1016/j.cellsig.2017.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 02/08/2023]
|
11
|
Lu M, Miao Y, Qi L, Bai M, Zhang J, Feng Y. RNAi-Mediated Downregulation of FKBP14 Suppresses the Growth of Human Ovarian Cancer Cells. Oncol Res 2017; 23:267-74. [PMID: 27131312 PMCID: PMC7838629 DOI: 10.3727/096504016x14549667333963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
FKBP14 belongs to the family of FK506-binding proteins (FKBPs). Altered expression of FKBPs has been reported in several malignancies. This study aimed to reveal the expression profile of FKBP14 in ovarian cancer and evaluate whether FKBP14 is a molecular target for cancer therapy. We found that the FKBP14 mRNA level was significantly higher in ovarian cancer tissues than in normal tissues. FKBP14 expression was then knocked down in two ovarian cancer cell lines, SKOV3 and HO8910 cells, by a lentiviral short hairpin RNA (shRNA) delivery system. Reduced expression of FKBP14 markedly impaired the proliferative ability of ovarian cancer cells. Additionally, ovarian cancer cells infected with FKBP14 shRNA lentivirus tended to arrest in the G0/G1 phase and undergo apoptosis. Moreover, knockdown of FKBP14 induced cell apoptosis via increasing the ratio of Bax to Bcl-2. These results indicated that FKBP14 might be a diagnostic marker for ovarian cancer and could be a potential molecular target for the therapy of ovarian cancer.
Collapse
Affiliation(s)
- Meng Lu
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
12
|
Wang R, Fang H, Fang Q. Downregulation of FKBP14 by RNA interference inhibits the proliferation, adhesion and invasion of gastric cancer cells. Oncol Lett 2017; 13:2811-2816. [PMID: 28454471 DOI: 10.3892/ol.2017.5781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/19/2017] [Indexed: 01/08/2023] Open
Abstract
FK506 binding protein (FBBP) 14 belongs to the family of FKBPs. Altered expression of FKBPs are observed in several malignancies. The present study aimed to explore the expression and biological function of FKBP14 in gastric cancer. FKBP14 expression levels in 40 gastric cancer samples and matched control samples were evaluated using quantitative polymerase chain reaction. Cell proliferation was evaluated using Cell Counting kit-8 assay. A cell adhesion and a Transwell assay were performed to detect cell adhesion and invasion. Protein expression was determined using western blot analysis. It was found that FKBP14 expression in gastric cancer tissues was elevated compared with normal tissues. Silencing of FKBP14 expression in the gastric cancer MKN-45 and AGS cell lines, which have a higher expression level of FKBP14 compared with four other gastric cancer cell lines, significantly inhibited cellular proliferation, adhesion and invasion. In addition, the protein levels of proliferating cell nuclear antigen, matrix metalloproteinase 2 and the epithelial-mesenchymal-transition (EMT) markers β-catenin, Snail1 and Twist were repressed in gastric cancer cells with FKBP14 silenced. In conclusion, FKBP14 may act as an oncogene by suppressing cellular proliferation, adhesion and invasion and EMT in gastric carcinogenesis. FKBP14 may be a diagnosis marker and potential therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Laboratory, People's Hospital of Pudong New Area of Shanghai, Shanghai 201299, P.R. China
| | - Hua Fang
- Department of Laboratory, People's Hospital of Pudong New Area of Shanghai, Shanghai 201299, P.R. China
| | - Qin Fang
- Department of Hyperbaric Oxygen, People's Hospital of Pudong New Area of Shanghai, Shanghai 201299, P.R. China
| |
Collapse
|
13
|
Blair LJ, Baker JD, Sabbagh JJ, Dickey CA. The emerging role of peptidyl-prolyl isomerase chaperones in tau oligomerization, amyloid processing, and Alzheimer's disease. J Neurochem 2015; 133:1-13. [PMID: 25628064 DOI: 10.1111/jnc.13033] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/12/2014] [Accepted: 01/05/2015] [Indexed: 12/20/2022]
Abstract
Peptidyl-prolyl cis/trans isomerases (PPIases), a unique family of molecular chaperones, regulate protein folding at proline residues. These residues are abundant within intrinsically disordered proteins, like the microtubule-associated protein tau. Tau has been shown to become hyperphosphorylated and accumulate as one of the two main pathological hallmarks in Alzheimer's disease, the other being amyloid beta (Ab). PPIases, including Pin1, FK506-binding protein (FKBP) 52, FKBP51, and FKBP12, have been shown to interact with and regulate tau biology. This interaction is particularly important given the numerous proline-directed phosphorylation sites found on tau and the role phosphorylation has been found to play in pathogenesis. This regulation then affects downstream aggregation and oligomerization of tau. However, many PPIases have yet to be explored for their effects on tau biology, despite the high likelihood of interaction based on proline content. Moreover, Pin1, FKBP12, FKBP52, cyclophilin (Cyp) A, CypB, and CypD have been shown to also regulate Ab production or the toxicity associated with Ab pathology. Therefore, PPIases directly and indirectly regulate pathogenic protein multimerization in Alzheimer's disease and represent a family rich in targets for modulating the accumulation and toxicity.
Collapse
Affiliation(s)
- Laura J Blair
- Department of Molecular Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida, USA
| | | | | | | |
Collapse
|
14
|
The Ubiquitin-Proteasome System and Molecular Chaperone Deregulation in Alzheimer's Disease. Mol Neurobiol 2015; 53:905-931. [PMID: 25561438 DOI: 10.1007/s12035-014-9063-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/09/2014] [Indexed: 12/18/2022]
Abstract
One of the shared hallmarks of neurodegenerative diseases is the accumulation of misfolded proteins. Therefore, it is suspected that normal proteostasis is crucial for neuronal survival in the brain and that the malfunction of this mechanism may be the underlying cause of neurodegenerative diseases. The accumulation of amyloid plaques (APs) composed of amyloid-beta peptide (Aβ) aggregates and neurofibrillary tangles (NFTs) composed of misfolded Tau proteins are the defining pathological markers of Alzheimer's disease (AD). The accumulation of these proteins indicates a faulty protein quality control in the AD brain. An impaired ubiquitin-proteasome system (UPS) could lead to negative consequences for protein regulation, including loss of function. Another pivotal mechanism for the prevention of misfolded protein accumulation is the utilization of molecular chaperones. Molecular chaperones, such as heat shock proteins (HSPs) and FK506-binding proteins (FKBPs), are highly involved in protein regulation to ensure proper folding and normal function. In this review, we elaborate on the molecular basis of AD pathophysiology using recent data, with a particular focus on the role of the UPS and molecular chaperones as the defensive mechanism against misfolded proteins that have prion-like properties. In addition, we propose a rational therapy approach based on this mechanism.
Collapse
|
15
|
Schiene-Fischer C. Multidomain Peptidyl Prolyl cis/trans Isomerases. Biochim Biophys Acta Gen Subj 2014; 1850:2005-16. [PMID: 25445709 DOI: 10.1016/j.bbagen.2014.11.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Peptidyl prolyl cis/trans isomerases (PPIases) assist the folding and restructuring of client proteins by catalysis of the slow rotational motion of peptide bonds preceding a proline residue. Catalysis is performed by relatively small, distinct protein domains of 10 to 18kDa for all PPIase families. PPIases are involved in a wide variety of physiological and pathophysiological processes like signal transduction, cell differentiation, apoptosis as well as viral, bacterial and parasitic infection. SCOPE OF REVIEW There are multidomain PPIases consisting of one to up to four catalytic domains of the respective PPIase family supplemented by N- or C-terminal extensions. This review examines the biochemical and functional properties of the members of the PPIase class of enzymes which contain additional protein domains with defined biochemical functions. MAJOR CONCLUSIONS The versatile domain architecture of multidomain PPIases is important for the control of enzyme specificity and organelle-specific targeting, the establishment of molecular connections and hence the coordination of PPIase functions across the cellular network. GENERAL SIGNIFICANCE Accessory domains covalently linked to a PPIase domain supply an additional layer of control to the catalysis of prolyl isomerization in specific client proteins. Understanding these control mechanisms will provide new insights into the physiological mode of action of the multidomain PPIases and their ability to form therapeutic targets. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Cordelia Schiene-Fischer
- Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany.
| |
Collapse
|
16
|
Ishikawa Y, Bächinger HP. A substrate preference for the rough endoplasmic reticulum resident protein FKBP22 during collagen biosynthesis. J Biol Chem 2014; 289:18189-201. [PMID: 24821723 DOI: 10.1074/jbc.m114.561944] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of collagens occurs in the rough endoplasmic reticulum and requires a large numbers of molecular chaperones, foldases, and post-translational modification enzymes. Collagens contain a large number of proline residues that are post-translationally modified to 3-hydroxyproline or 4-hydroxyproline, and the rate-limiting step in formation of the triple helix is the cis-trans isomerization of peptidyl-proline bonds. This step is catalyzed by peptidyl-prolyl cis-trans isomerases. There are seven peptidyl-prolyl cis-trans isomerases in the rER, and so far, two of these enzymes, cyclophilin B and FKBP65, have been shown to be involved in collagen biosynthesis. The absence of either cyclophilin B or FKBP65 leads to a recessive form of osteogenesis imperfecta. The absence of FKBP22 leads to a kyphoscoliotic type of Ehlers-Danlos syndrome (EDS), and this type of EDS is classified as EDS type VI, which can also be caused by a deficiency in lysyl-hydroxylase 1. However, the lack of FKBP22 shows a wider spectrum of clinical phenotypes than the absence of lysyl-hydroxylase 1 and additionally includes myopathy, hearing loss, and aortic rupture. Here we show that FKBP22 catalyzes the folding of type III collagen and interacts with type III collagen, type VI collagen, and type X collagen, but not with type I collagen, type II collagen, or type V collagen. These restrictive interactions might help explain the broader phenotype observed in patients that lack FKBP22.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239 and the Research Department, Shriners Hospital for Children, Portland, Oregon 97239
| | - Hans Peter Bächinger
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239 and the Research Department, Shriners Hospital for Children, Portland, Oregon 97239
| |
Collapse
|
17
|
Murray ML, Yang M, Fauth C, Byers PH. FKBP14-related Ehlers-Danlos syndrome: Expansion of the phenotype to include vascular complications. Am J Med Genet A 2014; 164A:1750-5. [DOI: 10.1002/ajmg.a.36492] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/22/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Mitzi L. Murray
- Department of Pathology; University of Washington; Seattle Washington
- Department of Medicine (Medical Genetics); University of Washington; Seattle Washington
| | - Margaret Yang
- Department of Pathology; University of Washington; Seattle Washington
| | - Christine Fauth
- Division of Human Genetics; Innsbruck Medical University; Innsbruck Austria
| | - Peter H. Byers
- Department of Pathology; University of Washington; Seattle Washington
- Department of Medicine (Medical Genetics); University of Washington; Seattle Washington
| |
Collapse
|
18
|
Boudko SP, Ishikawa Y, Nix J, Chapman MS, Bächinger HP. Structure of human peptidyl-prolyl cis-trans isomerase FKBP22 containing two EF-hand motifs. Protein Sci 2013; 23:67-75. [PMID: 24272907 DOI: 10.1002/pro.2391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 11/09/2022]
Abstract
The FK506-binding protein (FKBP) family consists of proteins with a variety of protein-protein interaction domains and versatile cellular functions. It is assumed that all members are peptidyl-prolyl cis-trans isomerases with the enzymatic function attributed to the FKBP domain. Six members of this family localize to the mammalian endoplasmic reticulum (ER). Four of them, FKBP22 (encoded by the FKBP14 gene), FKBP23 (FKBP7), FKBP60 (FKBP9), and FKBP65 (FKBP10), are unique among all FKBPs as they contain the EF-hand motifs. Little is known about the biological roles of these proteins, but emerging genetics studies are attracting great interest to the ER resident FKBPs, as mutations in genes encoding FKBP10 and FKBP14 were shown to cause a variety of matrix disorders. Although the structural organization of the FKBP-type domain as well as of the EF-hand motif has been known for a while, it is difficult to conclude how these structures are combined and how it affects the protein functionality. We have determined a unique 1.9 Å resolution crystal structure for human FKBP22, which can serve as a prototype for other EF hand-containing FKBPs. The EF-hand motifs of two FKBP22 molecules form a dimeric complex with an elongated and predominantly hydrophobic cavity that can potentially be occupied by an aliphatic ligand. The FKBP-type domains are separated by a cleft and their putative active sites can catalyze isomerazation of two bonds within a polypeptide chain in extended conformation. These structural results are of prime interest for understanding biological functions of ER resident FKBPs containing EF-hand motifs.
Collapse
Affiliation(s)
- Sergei P Boudko
- Research Department, Shriners Hospital for Children, Portland, Oregon, 97239; Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon, 97239
| | | | | | | | | |
Collapse
|