1
|
Poncelet G, Parolini L, Shimeld SM. A microfluidic chip for immobilization and imaging of Ciona intestinalis larvae. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:443-452. [PMID: 38847208 DOI: 10.1002/jez.b.23267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/17/2024] [Accepted: 05/21/2024] [Indexed: 10/05/2024]
Abstract
Sea squirts (Tunicata) are chordates and develop a swimming larva with a small and defined number of individually identifiable cells. This offers the prospect of connecting specific stimuli to behavioral output and characterizing the neural activity that links these together. Here, we describe the development of a microfluidic chip that allows live larvae of the sea squirt Ciona intestinalis to be immobilized and recorded. By generating transgenic larvae expressing GCaAMP6m in defined cells, we show that calcium ion levels can be recorded from immobilized larvae, while microfluidic control allows larvae to be exposed to specific waterborne stimuli. We trial this on sea water carrying increased levels of carbon dioxide, providing evidence that larvae can sense this gas.
Collapse
Affiliation(s)
| | - Lucia Parolini
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | |
Collapse
|
2
|
Chung J, Newman-Smith E, Kourakis MJ, Miao Y, Borba C, Medina J, Laurent T, Gallean B, Faure E, Smith WC. A single oscillating proto-hypothalamic neuron gates taxis behavior in the primitive chordate Ciona. Curr Biol 2023; 33:3360-3370.e4. [PMID: 37490920 PMCID: PMC10528541 DOI: 10.1016/j.cub.2023.06.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/05/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
Ciona larvae display a number of behaviors, including negative phototaxis. In negative phototaxis, the larvae first perform short spontaneous rhythmic casting swims. As larvae are cast in a light field, their photoreceptors are directionally shaded by an associated pigment cell, providing a phototactic cue. This then evokes an extended negative taxis swim. We report here that the larval forebrain of Ciona has a previously uncharacterized single slow-oscillating inhibitory neuron (neuron cor-assBVIN78) that projects to the midbrain, where it targets key interneurons of the phototaxis circuit known as the photoreceptor relay neurons. The anatomical location, gene expression, and oscillation of cor-assBVIN78 suggest homology to oscillating neurons of the vertebrate hypothalamus. Ablation of cor-assBVIN78 results in larvae showing extended phototaxis-like swims, even in the absence of phototactic cues. These results indicate that cor-assBVIN78 has a gating activity on phototaxis by projecting temporally oscillating inhibition to the photoreceptor relay neurons. However, in intact larvae, the frequency of cor-assBVIN78 oscillation does not match that of the rhythmic spontaneous swims, indicating that the troughs in oscillations do not themselves initiate swims but rather that cor-assBVIN78 may modulate the phototaxis circuit by filtering out low-level inputs while restricting them temporally to the troughs in inhibition.
Collapse
Affiliation(s)
- Janeva Chung
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Erin Newman-Smith
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Matthew J Kourakis
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Yishen Miao
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Cezar Borba
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Juan Medina
- College of Creative Studies, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Tao Laurent
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Benjamin Gallean
- Centre de Recherche de Biologie cellulaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Emmanuel Faure
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - William C Smith
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
3
|
Chung J, Newman-Smith E, Kourakis MJ, Miao Y, Borba C, Medina J, Laurent T, Gallean B, Faure E, Smith WC. A single oscillating proto-hypothalamic neuron gates taxis behavior in the primitive chordate Ciona. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538092. [PMID: 37162881 PMCID: PMC10168268 DOI: 10.1101/2023.04.24.538092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ciona larvae display a number of behaviors, including negative phototaxis. In negative phototaxis, the larvae first perform short spontaneous rhythmic casting swims. As larvae cast in a light field, their photoreceptors are directionally shaded by an associated pigment cell, providing a phototactic cue. This then evokes an extended negative taxis swim. We report here that the larval forebrain of Ciona has a previously uncharacterized single slow-oscillating inhibitory neuron (neuron cor-assBVIN78 ) that projects to the midbrain, where it targets key interneurons of the phototaxis circuit known as the photoreceptor relay neurons . The anatomical location, gene expression and oscillation of cor-assBVIN78 suggest homology to oscillating neurons of the vertebrate hypothalamus. Ablation of cor-assBVIN78 results in larvae showing extended phototaxis-like swims, but which occur in the absence of phototactic cues. These results indicate that cor-assBVIN78 has a gating activity on phototaxis by projecting temporally-oscillating inhibition to the photoreceptor relay neurons. However, in intact larvae the frequency of cor-assBVIN78 oscillation does not match that of the rhythmic spontaneous swims, indicating that the troughs in oscillations do not themselves initiate swims, but rather that cor-assBVIN78 may modulate the phototaxis circuit by filtering out low level inputs while restricting them temporally to the troughs in inhibition.
Collapse
Affiliation(s)
- Janeva Chung
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA 93106
| | - Erin Newman-Smith
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA 93106
| | - Matthew J. Kourakis
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA 93106
| | - Yishen Miao
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA 93106
| | - Cezar Borba
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA 93106
| | - Juan Medina
- College of Creative Studies, University of California Santa Barbara, Santa Barbara, CA, USA 93106
| | - Tao Laurent
- Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, Université de Montpellier,CNRS, Montpellier, France
| | - Benjamin Gallean
- Centre de Recherche de Biologie cellulaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Emmanuel Faure
- Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, Université de Montpellier,CNRS, Montpellier, France
| | - William C Smith
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA 93106
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA 93106
| |
Collapse
|
4
|
Post-gastrulation transition from whole-body to tissue-specific intercellular calcium signaling in the appendicularian tunicate Oikopleuradioica. Dev Biol 2022; 492:37-46. [PMID: 36162551 DOI: 10.1016/j.ydbio.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/09/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022]
Abstract
We recently described calcium signaling in the appendicularian tunicate Oikopleura dioica during pre-gastrulation stages, and showed that regularly occurring calcium waves progress throughout the embryo in a characteristic spatiotemporal pattern from an initiation site in muscle lineage blastomeres (Mikhaleva et al., 2019). Here, we have extended our observations to the period spanning from gastrulation to post-hatching stages. We find that repetitive Ca2+ waves persist throughout this developmental window, albeit with a gradual increase in frequency. The initiation site of the waves shifts from muscle cells at gastrulation and early tailbud stages, to the central nervous system at late tailbud and post-hatching stages, indicating a transition from muscle-driven to neurally driven events as tail movements emerge. At these later stages, both the voltage gated Na + channel blocker tetrodotoxin (TTX) and the T-type Ca2+ channel blocker and nAChR antagonist mecamylamine eliminate tail movements. At late post-hatching stages, mecamylamine blocks Ca2+ signals in the muscles but not the central nervous system. Post-gastrulation Ca2+ signals also arise in epithelial cells, first in a haphazard pattern in scattered cells during tailbud stages, evolving after hatching into repetitive rostrocaudal waves with a different frequency than the nervous system-to-muscle waves, and insensitive to mecamylamine. The desynchronization of Ca2+ waves arising in different parts of the body indicates a shift from whole-body to tissue/organ-specific Ca2+ signaling dynamics as organogenesis occurs, with neurally driven Ca2+ signaling dominating at the later stages when behavior emerges.
Collapse
|
5
|
Borba C, Kourakis MJ, Schwennicke S, Brasnic L, Smith WC. Fold Change Detection in Visual Processing. Front Neural Circuits 2021; 15:705161. [PMID: 34497492 PMCID: PMC8419522 DOI: 10.3389/fncir.2021.705161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Visual processing transforms the complexities of the visual world into useful information. Ciona, an invertebrate chordate and close relative of the vertebrates, has one of the simplest nervous systems known, yet has a range of visuomotor behaviors. This simplicity has facilitated studies linking behavior and neural circuitry. Ciona larvae have two distinct visuomotor behaviors - a looming shadow response and negative phototaxis. These are mediated by separate neural circuits that initiate from different clusters of photoreceptors, with both projecting to a CNS structure called the posterior brain vesicle (pBV). We report here that inputs from both circuits are processed to generate fold change detection (FCD) outputs. In FCD, the behavioral response scales with the relative fold change in input, but is invariant to the overall magnitude of the stimulus. Moreover, the two visuomotor behaviors have fundamentally different stimulus/response relationships - indicative of differing circuit strategies, with the looming shadow response showing a power relationship to fold change, while the navigation behavior responds linearly. Pharmacological modulation of the FCD response points to the FCD circuits lying outside of the visual organ (the ocellus), with the pBV being the most likely location. Consistent with these observations, the connectivity and properties of pBV interneurons conform to known FCD circuit motifs, but with different circuit architectures for the two circuits. The negative phototaxis circuit forms a putative incoherent feedforward loop that involves interconnecting cholinergic and GABAergic interneurons. The looming shadow circuit uses the same cholinergic and GABAergic interneurons, but with different synaptic inputs to create a putative non-linear integral feedback loop. These differing circuit architectures are consistent with the behavioral outputs of the two circuits. Finally, while some reports have highlighted parallels between the pBV and the vertebrate midbrain, suggesting a common origin for the two, others reports have disputed this, suggesting that invertebrate chordates lack a midbrain homolog. The convergence of visual inputs at the pBV, and its putative role in visual processing reported here and in previous publications, lends further support to the proposed common origin of the pBV and the vertebrate midbrain.
Collapse
Affiliation(s)
- Cezar Borba
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Matthew J Kourakis
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Shea Schwennicke
- College of Creative Studies, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Lorena Brasnic
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States.,Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - William C Smith
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States.,College of Creative Studies, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
6
|
Moreau M, Leclerc C, Néant I. [The saga of neural induction: almost a century of research]. Med Sci (Paris) 2020; 36:1018-1026. [PMID: 33151865 DOI: 10.1051/medsci/2020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Neural induction is a developmental process that allows cells from the ectoderm (the target tissue) to acquire a neural fate in response to signals coming from a specific adjacent embryonic region, the dorsal mesoderm (the inducing tissue). This process described in 1924 in amphibian embryos has not received a molecular explanation until the mid-1990s. Most of the work on neural induction has been carried out in amphibians. At these times, although the role played by the membrane of the target tissue had been suggested, no definitive work had been performed on the transduction of the neuralizing signal. Between 1990 and 2019 our aim was to decipher this transduction. We have underlined the necessary and sufficient role played by calcium signaling to induce ectoderm cells towards a neural fate from the activation of calcium channels to the direct transcription of early neural genes by calcium.
Collapse
Affiliation(s)
- Marc Moreau
- Centre de biologie du développement (CBD), Centre de biologie intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062, Toulouse, France
| | - Catherine Leclerc
- Centre de biologie du développement (CBD), Centre de biologie intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062, Toulouse, France
| | - Isabelle Néant
- Centre de biologie du développement (CBD), Centre de biologie intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062, Toulouse, France
| |
Collapse
|
7
|
Cellular identity and Ca 2+ signaling activity of the non-reproductive GnRH system in the Ciona intestinalis type A (Ciona robusta) larva. Sci Rep 2020; 10:18590. [PMID: 33122709 PMCID: PMC7596717 DOI: 10.1038/s41598-020-75344-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Tunicate larvae have a non-reproductive gonadotropin-releasing hormone (GnRH) system with multiple ligands and receptor heterodimerization enabling complex regulation. In Ciona intestinalis type A larvae, one of the gnrh genes, gnrh2, is conspicuously expressed in the motor ganglion and nerve cord, which are homologous structures to the hindbrain and spinal cord, respectively, of vertebrates. The gnrh2 gene is also expressed in the proto-placodal sensory neurons, which are the proposed homologue of vertebrate olfactory neurons. Tunicate larvae occupy a non-reproductive dispersal stage, yet the role of their GnRH system remains elusive. In this study, we investigated neuronal types of gnrh2-expressing cells in Ciona larvae and visualized the activity of these cells by fluorescence imaging using a calcium sensor protein. Some cholinergic neurons and dopaminergic cells express gnrh2, suggesting that GnRH plays a role in controlling swimming behavior. However, none of the gnrh2-expressing cells overlap with glycinergic or GABAergic neurons. A role in motor control is also suggested by a relationship between the activity of gnrh2-expressing cells and tail movements. Interestingly, gnrh2-positive ependymal cells in the nerve cord, known as a kind of glia cells, actively produced Ca2+ transients, suggesting that active intercellular signaling occurs in the glia cells of the nerve cord.
Collapse
|
8
|
Trpc1 as the Missing Link Between the Bmp and Ca 2+ Signalling Pathways During Neural Specification in Amphibians. Sci Rep 2019; 9:16049. [PMID: 31690785 PMCID: PMC6831629 DOI: 10.1038/s41598-019-52556-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/16/2019] [Indexed: 12/19/2022] Open
Abstract
In amphibians, the inhibition of bone morphogenetic protein (BMP) in the dorsal ectoderm has been proposed to be responsible for the first step of neural specification, called neural induction. We previously demonstrated that in Xenopus laevis embryos, the BMP signalling antagonist, noggin, triggers an influx of Ca2+ through voltage-dependent L-type Ca2+ channels (LTCCs), mainly via CaV1.2, and we showed that this influx constitutes a necessary and sufficient signal for triggering the expression of neural genes. However, the mechanism linking the inhibition of BMP signalling with the activation of LTCCs remained unknown. Here, we demonstrate that the transient receptor potential canonical subfamily member 1, (Trpc1), is an intermediate between BMP receptor type II (BMPRII) and the CaV1.2 channel. We show that noggin induces a physical interaction between BMPRII and Trpc1 channels. This interaction leads to the activation of Trpc1 channels and to an influx of cations, which depolarizes the plasma membrane up to a threshold sufficient to activate Cav1.2. Together, our results demonstrate for the first time that during neural induction, Ca2+ entry through the CaV1.2 channel results from the noggin-induced interaction between Trpc1 and BMPRII.
Collapse
|
9
|
Kourakis MJ, Borba C, Zhang A, Newman-Smith E, Salas P, Manjunath B, Smith WC. Parallel visual circuitry in a basal chordate. eLife 2019; 8:44753. [PMID: 30998184 PMCID: PMC6499539 DOI: 10.7554/elife.44753] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/11/2019] [Indexed: 12/28/2022] Open
Abstract
A common CNS architecture is observed in all chordates, from vertebrates to basal chordates like the ascidian Ciona. Ciona stands apart among chordates in having a complete larval connectome. Starting with visuomotor circuits predicted by the Ciona connectome, we used expression maps of neurotransmitter use with behavioral assays to identify two parallel visuomotor circuits that are responsive to different components of visual stimuli. The first circuit is characterized by glutamatergic photoreceptors and responds to the direction of light. These photoreceptors project to cholinergic motor neurons, via two tiers of cholinergic interneurons. The second circuit responds to changes in ambient light and mediates an escape response. This circuit uses GABAergic photoreceptors which project to GABAergic interneurons, and then to cholinergic interneurons. Our observations on the behavior of larvae either treated with a GABA receptor antagonist or carrying a mutation that eliminates photoreceptors indicate the second circuit is disinhibitory.
Collapse
Affiliation(s)
- Matthew J Kourakis
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - Cezar Borba
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Angela Zhang
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, United States
| | - Erin Newman-Smith
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States.,Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Priscilla Salas
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - B Manjunath
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - William C Smith
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States.,Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| |
Collapse
|
10
|
Shimai K, Kusakabe TG. The Use of cis-Regulatory DNAs as Molecular Tools. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [DOI: 10.1007/978-981-10-7545-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Akahoshi T, Hotta K, Oka K. Characterization of calcium transients during early embryogenesis in ascidians Ciona robusta (Ciona intestinalis type A) and Ciona savignyi. Dev Biol 2017; 431:205-214. [PMID: 28935526 DOI: 10.1016/j.ydbio.2017.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 11/26/2022]
Abstract
The calcium ion (Ca2+) is an important second messenger, and a rapid increase in Ca2+ level (Ca2+ transient) is involved in various aspects of embryogenesis. Although Ca2+ transients play an important role in early developmental stages, little is known about their dynamics throughout embryogenesis. Here, Ca2+ transients were characterized by visualizing Ca2+ dynamics in developing chordate embryos using a fluorescent protein-based Ca2+ indicator, GCaMP6s in combination with finely tuned microscopy. Ca2+ transients were detected in precursors of muscle cells in the late gastrula stage. In the neurula stage, repetitive Ca2+ transients were observed in left and right neurogenic cells, including visceral ganglion (VG) precursors, and the duration of Ca2+ transients was 39±4s. In the early tailbud stage, Ca2+ transients were observed in differentiating precursors of nerve cord neurons. A small population of VG precursors showed rhythmical Ca2+ transients with a duration of 22±4s, suggesting a central pattern generator (CPG) origin. At the mid tailbud stage, Ca2+transients were observed in a wide area of epidermal cells and named CTECs. The number and frequency of CTECs increased drastically in late tailbud stages, and the timing of the increase coincided with that of the relaxation of the tail bending. The experiment using Ca2+ chelator showed that the CTECs were largely depending on the extracellular Ca2+. The waveform analysis of Ca2+ transients revealed different features according to duration and frequency. The comprehensive characterization of Ca2+ transients during early ascidian embryogenesis will help our understanding of the role of Ca2+ signaling in chordate embryogenesis.
Collapse
Affiliation(s)
- Taichi Akahoshi
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Kohji Hotta
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.
| | - Kotaro Oka
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
12
|
The central nervous system of ascidian larvae. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:538-61. [DOI: 10.1002/wdev.239] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/05/2016] [Accepted: 04/09/2016] [Indexed: 11/07/2022]
|
13
|
Leclerc C, Haeich J, Aulestia FJ, Kilhoffer MC, Miller AL, Néant I, Webb SE, Schaeffer E, Junier MP, Chneiweiss H, Moreau M. Calcium signaling orchestrates glioblastoma development: Facts and conjunctures. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1447-59. [PMID: 26826650 DOI: 10.1016/j.bbamcr.2016.01.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 01/06/2023]
Abstract
While it is a relatively rare disease, glioblastoma multiform (GBM) is one of the more deadly adult cancers. Following current interventions, the tumor is never eliminated whatever the treatment performed; whether it is radiotherapy, chemotherapy, or surgery. One hypothesis to explain this poor outcome is the "cancer stem cell" hypothesis. This concept proposes that a minority of cells within the tumor mass share many of the properties of adult neural stem cells and it is these that are responsible for the growth of the tumor and its resistance to existing therapies. Accumulating evidence suggests that Ca(2+) might also be an important positive regulator of tumorigenesis in GBM, in processes involving quiescence, maintenance, proliferation, or migration. Glioblastoma tumors are generally thought to develop by co-opting pathways that are involved in the formation of an organ. We propose that the cells initiating the tumor, and subsequently the cells of the tumor mass, must hijack the different checkpoints that evolution has selected in order to prevent the pathological development of an organ. In this article, two main points are discussed. (i) The first is the establishment of a so-called "cellular society," which is required to create a favorable microenvironment. (ii) The second is that GBM can be considered to be an organism, which fights to survive and develop. Since GBM evolves in a limited space, its only chance of development is to overcome the evolutionary checkpoints. For example, the deregulation of the normal Ca(2+) signaling elements contributes to the progression of the disease. Thus, by manipulating the Ca(2+) signaling, the GBM cells might not be killed, but might be reprogrammed toward a new fate that is either easy to cure or that has no aberrant functioning. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
Affiliation(s)
- Catherine Leclerc
- Centre de Biologie du Développement, Université Toulouse 3, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France; CNRS UMR5547, Toulouse F31062, France.
| | - Jacques Haeich
- Laboratoire d'Innovation Thérapeutique, Laboratoire d'Excellence Médalis, UMR 7200 Université de Strasbourg / CNRS, 67412 Illkirch, France
| | - Francisco J Aulestia
- Centre de Biologie du Développement, Université Toulouse 3, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France
| | - Marie-Claude Kilhoffer
- Laboratoire d'Innovation Thérapeutique, Laboratoire d'Excellence Médalis, UMR 7200 Université de Strasbourg / CNRS, 67412 Illkirch, France
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, PR China
| | - Isabelle Néant
- Centre de Biologie du Développement, Université Toulouse 3, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France; CNRS UMR5547, Toulouse F31062, France
| | - Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, PR China
| | - Etienne Schaeffer
- IREBS UMR7242 ESBS, Pôle API, Parc d'Innovation d'Illkirch, 67412 Illkirch cedex, France
| | - Marie-Pierre Junier
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique (CNRS), UMR8246, Institut National de la Santé et de la Recherche Medicale (INSERM), U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Team Glial Plasticity, 7/9 Quai St Bernard, Paris, France
| | - Hervé Chneiweiss
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique (CNRS), UMR8246, Institut National de la Santé et de la Recherche Medicale (INSERM), U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Team Glial Plasticity, 7/9 Quai St Bernard, Paris, France
| | - Marc Moreau
- Centre de Biologie du Développement, Université Toulouse 3, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France; CNRS UMR5547, Toulouse F31062, France
| |
Collapse
|
14
|
Moreau M, Néant I, Webb SE, Miller AL, Riou JF, Leclerc C. Ca(2+) coding and decoding strategies for the specification of neural and renal precursor cells during development. Cell Calcium 2015; 59:75-83. [PMID: 26744233 DOI: 10.1016/j.ceca.2015.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/07/2015] [Accepted: 12/11/2015] [Indexed: 01/03/2023]
Abstract
During embryogenesis, a rise in intracellular Ca(2+) is known to be a widespread trigger for directing stem cells towards a specific tissue fate, but the precise Ca(2+) signalling mechanisms involved in achieving these pleiotropic effects are still poorly understood. In this review, we compare the Ca(2+) signalling events that appear to be one of the first steps in initiating and regulating both neural determination (neural induction) and kidney development (nephrogenesis). We have highlighted the necessary and sufficient role played by Ca(2+) influx and by Ca(2+) transients in the determination and differentiation of pools of neural or renal precursors. We have identified new Ca(2+) target genes involved in neural induction and we showed that the same Ca(2+) early target genes studied are not restricted to neural tissue but are also present in other tissues, principally in the pronephros. In this review, we also described a mechanism whereby the transcriptional control of gene expression during neurogenesis and nephrogenesis might be directly controlled by Ca(2+) signalling. This mechanism involves members of the Kcnip family such that a change in their binding properties to specific DNA sites is a result of Ca(2+) binding to EF-hand motifs. The different functions of Ca(2+) signalling during these two events illustrate the versatility of Ca(2+) as a second messenger.
Collapse
Affiliation(s)
- Marc Moreau
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse Cedex 04, France; CNRS UMR5547, Toulouse F31062, France
| | - Isabelle Néant
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse Cedex 04, France; CNRS UMR5547, Toulouse F31062, France
| | - Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, People's Republic of China
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, People's Republic of China; MBL, Woods Hole, MA, USA
| | - Jean-François Riou
- Université Pierre et Marie Curie-Paris VI, Equipe "Signalisation et Morphogenèse", UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France; CNRS, Equipe "Signalisation et Morphogenèse", UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France
| | - Catherine Leclerc
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse Cedex 04, France; CNRS UMR5547, Toulouse F31062, France.
| |
Collapse
|
15
|
Abdul-Wajid S, Morales-Diaz H, Khairallah SM, Smith WC. T-type Calcium Channel Regulation of Neural Tube Closure and EphrinA/EPHA Expression. Cell Rep 2015; 13:829-839. [PMID: 26489462 DOI: 10.1016/j.celrep.2015.09.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/06/2015] [Accepted: 09/11/2015] [Indexed: 10/22/2022] Open
Abstract
A major class of human birth defects arise from aberrations during neural tube closure (NTC). We report on a NTC signaling pathway requiring T-type calcium channels (TTCCs) that is conserved between primitive chordates (Ciona) and Xenopus. With loss of TTCCs, there is a failure to seal the anterior neural folds. Accompanying loss of TTCCs is an upregulation of EphrinA effectors. Ephrin signaling is known to be important in NTC, and ephrins can affect both cell adhesion and repulsion. In Ciona, ephrinA-d expression is downregulated at the end of neurulation, whereas, with loss of TTCC, ephrinA-d remains elevated. Accordingly, overexpression of ephrinA-d phenocopied TTCC loss of function, while overexpression of a dominant-negative Ephrin receptor was able to rescue NTC in a Ciona TTCC mutant. We hypothesize that signaling through TTCCs is necessary for proper anterior NTC through downregulation of ephrins, and possibly elimination of a repulsive signal.
Collapse
Affiliation(s)
- Sarah Abdul-Wajid
- Department of Molecular, Cell and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Heidi Morales-Diaz
- Department of Molecular, Cell and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Stephanie M Khairallah
- Department of Molecular, Cell and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - William C Smith
- Department of Molecular, Cell and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
16
|
Veeman M, Reeves W. Quantitative and in toto imaging in ascidians: working toward an image-centric systems biology of chordate morphogenesis. Genesis 2015; 53:143-59. [PMID: 25262824 PMCID: PMC4378666 DOI: 10.1002/dvg.22828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/20/2014] [Accepted: 09/25/2014] [Indexed: 12/16/2022]
Abstract
Developmental biology relies heavily on microscopy to image the finely controlled cell behaviors that drive embryonic development. Most embryos are large enough that a field of view with the resolution and magnification needed to resolve single cells will not span more than a small region of the embryo. Ascidian embryos, however, are sufficiently small that they can be imaged in toto with fine subcellular detail using conventional microscopes and objectives. Unlike other model organisms with particularly small embryos, ascidians have a chordate embryonic body plan that includes a notochord, hollow dorsal neural tube, heart primordium and numerous other anatomical details conserved with the vertebrates. Here we compare the size and anatomy of ascidian embryos with those of more traditional model organisms, and relate these features to the capabilities of both conventional and exotic imaging methods. We review the emergence of Ciona and related ascidian species as model organisms for a new era of image-based developmental systems biology. We conclude by discussing some important challenges in ascidian imaging and image analysis that remain to be solved.
Collapse
Affiliation(s)
- Michael Veeman
- Division of Biology, Kansas State University, Manhattan KS, USA
| | - Wendy Reeves
- Division of Biology, Kansas State University, Manhattan KS, USA
| |
Collapse
|
17
|
Exploiting the extraordinary genetic polymorphism of ciona for developmental genetics with whole genome sequencing. Genetics 2014; 197:49-59. [PMID: 24532781 DOI: 10.1534/genetics.114.161778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Studies in tunicates such as Ciona have revealed new insights into the evolutionary origins of chordate development. Ciona populations are characterized by high levels of natural genetic variation, between 1 and 5%. This variation has provided abundant material for forward genetic studies. In the current study, we make use of deep sequencing and homozygosity mapping to map spontaneous mutations in outbred populations. With this method we have mapped two spontaneous developmental mutants. In Ciona intestinalis we mapped a short-tail mutation with strong phenotypic similarity to a previously identified mutant in the related species Ciona savignyi. Our bioinformatic approach mapped the mutation to a narrow interval containing a single mutated gene, α-laminin3,4,5, which is the gene previously implicated in C. savignyi. In addition, we mapped a novel genetic mutation disrupting neural tube closure in C. savignyi to a T-type Ca(2+) channel gene. The high efficiency and unprecedented mapping resolution of our study is a powerful advantage for developmental genetics in Ciona, and may find application in other outbred species.
Collapse
|