1
|
Barger SR, Penfield L, Bahmanyar S. Nuclear envelope assembly relies on CHMP-7 in the absence of BAF-LEM-mediated hole closure. J Cell Sci 2023; 136:jcs261385. [PMID: 37795681 PMCID: PMC10668030 DOI: 10.1242/jcs.261385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Barrier-to-autointegration factor (BAF) protein is a DNA-binding protein that crosslinks chromatin to allow mitotic nuclear envelope (NE) assembly. The LAP2-emerin-MAN1 (LEM)-domain protein LEMD2 and ESCRT-II/III hybrid protein CHMP7 close NE holes surrounding spindle microtubules (MTs). BAF binds LEM-domain family proteins to repair NE ruptures in interphase, but whether BAF-LEM binding participates in NE hole closure around spindle MTs is not known. Here, we took advantage of the stereotypical event of NE formation in fertilized Caenorhabditis elegans oocytes to show that BAF-LEM binding and LEM-2-CHMP-7 have distinct roles in NE closure around spindle MTs. LEM-2 and EMR-1 (homologs of LEMD2 and emerin) function redundantly with BAF-1 (the C. elegans BAF protein) in NE closure. Compromising BAF-LEM binding revealed an additional role for EMR-1 in the maintenance of the NE permeability barrier. In the absence of BAF-LEM binding, LEM-2-CHMP-7 was required for NE assembly and embryo survival. The winged helix domain of LEM-2 recruits CHMP-7 to the NE in C. elegans and a LEM-2-independent nucleoplasmic pool of CHMP-7 also contributes to NE stability. Thus, NE hole closure surrounding spindle MTs requires redundant mechanisms that safeguard against failure in NE assembly to support embryogenesis.
Collapse
Affiliation(s)
- Sarah R. Barger
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511, USA
| | - Lauren Penfield
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511, USA
| | - Shirin Bahmanyar
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511, USA
| |
Collapse
|
2
|
Xu Z, Zhao J, Hong M, Zeng C, Guang S, Shi Y. Structural recognition of the mRNA 3' UTR by PUF-8 restricts the lifespan of C. elegans. Nucleic Acids Res 2021; 49:10082-10097. [PMID: 34478557 PMCID: PMC8464079 DOI: 10.1093/nar/gkab754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/31/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022] Open
Abstract
The molecular mechanisms of aging are unsolved fundamental biological questions. Caenorhabditis elegans is an ideal model organism for investigating aging. PUF-8, a PUF (Pumilio and FBF) protein in C. elegans, is crucial for germline development through binding with the 3′ untranslated regions (3′ UTR) in the target mRNAs. Recently, PUF-8 was reported to alter mitochondrial dynamics and mitophagy by regulating MFF-1, a mitochondrial fission factor, and subsequently regulated longevity. Here, we determined the crystal structure of the PUF domain of PUF-8 with an RNA substrate. Mutagenesis experiments were performed to alter PUF-8 recognition of its target mRNAs. Those mutations reduced the fertility and extended the lifespan of C. elegans. Deep sequencing of total mRNAs from wild-type and puf-8 mutant worms as well as in vivo RNA Crosslinking and Immunoprecipitation (CLIP) experiments identified six PUF-8 regulated genes, which contain at least one PUF-binding element (PBE) at the 3′ UTR. One of the six genes, pqm-1, is crucial for lipid storage and aging process. Knockdown of pqm-1 could revert the lifespan extension of puf-8 mutant animals. We conclude that PUF-8 regulate the lifespan of C. elegans may not only via MFF but also via modulating pqm-1-related pathways.
Collapse
Affiliation(s)
- Zheng Xu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Jie Zhao
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Minjie Hong
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Chenming Zeng
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Shouhong Guang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Yunyu Shi
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| |
Collapse
|
3
|
Ow MC, Nichitean AM, Hall SE. Somatic aging pathways regulate reproductive plasticity in Caenorhabditis elegans. eLife 2021; 10:e61459. [PMID: 34236316 PMCID: PMC8291976 DOI: 10.7554/elife.61459] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 06/26/2021] [Indexed: 01/21/2023] Open
Abstract
In animals, early-life stress can result in programmed changes in gene expression that can affect their adult phenotype. In C. elegans nematodes, starvation during the first larval stage promotes entry into a stress-resistant dauer stage until environmental conditions improve. Adults that have experienced dauer (postdauers) retain a memory of early-life starvation that results in gene expression changes and reduced fecundity. Here, we show that the endocrine pathways attributed to the regulation of somatic aging in C. elegans adults lacking a functional germline also regulate the reproductive phenotypes of postdauer adults that experienced early-life starvation. We demonstrate that postdauer adults reallocate fat to benefit progeny at the expense of the parental somatic fat reservoir and exhibit increased longevity compared to controls. Our results also show that the modification of somatic fat stores due to parental starvation memory is inherited in the F1 generation and may be the result of crosstalk between somatic and reproductive tissues mediated by the germline nuclear RNAi pathway.
Collapse
Affiliation(s)
- Maria C Ow
- Department of Biology, Syracuse UniversitySyracuseUnited States
| | | | - Sarah E Hall
- Department of Biology, Syracuse UniversitySyracuseUnited States
| |
Collapse
|
4
|
Vishnupriya R, Thomas L, Wahba L, Fire A, Subramaniam K. PLP-1 is essential for germ cell development and germline gene silencing in Caenorhabditis elegans. Development 2020; 147:dev.195578. [PMID: 33051256 DOI: 10.1242/dev.195578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
The germline genome is guarded against invading foreign genetic elements by small RNA-dependent gene-silencing pathways. Components of these pathways localize to, or form distinct aggregates in the vicinity of, germ granules. These components and their dynamics in and out of granules are currently being intensively studied. Here, we report the identification of PLP-1, a Caenorhabditis elegans protein related to the human single-stranded nucleic acid-binding protein Pur-alpha, as a component of germ granules in C. elegans We show that PLP-1 is essential for silencing different types of transgenes in the germ line and for suppressing the expression of several endogenous genes controlled by the germline gene-silencing pathways. Our results reveal that PLP-1 functions downstream of small RNA biogenesis during initiation of gene silencing. Based on these results and the earlier findings that Pur-alpha proteins interact with both RNA and protein, we propose that PLP-1 couples certain RNAs with their protein partners in the silencing complex. PLP-1 orthologs localized on RNA granules may similarly contribute to germline gene silencing in other organisms.
Collapse
Affiliation(s)
- Rajaram Vishnupriya
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Linitha Thomas
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Lamia Wahba
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kuppuswamy Subramaniam
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| |
Collapse
|
5
|
Wang X, Voronina E. Diverse Roles of PUF Proteins in Germline Stem and Progenitor Cell Development in C. elegans. Front Cell Dev Biol 2020; 8:29. [PMID: 32117964 PMCID: PMC7015873 DOI: 10.3389/fcell.2020.00029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/14/2020] [Indexed: 01/05/2023] Open
Abstract
Stem cell development depends on post-transcriptional regulation mediated by RNA-binding proteins (RBPs) (Zhang et al., 1997; Forbes and Lehmann, 1998; Okano et al., 2005; Ratti et al., 2006; Kwon et al., 2013). Pumilio and FBF (PUF) family RBPs are highly conserved post-transcriptional regulators that are critical for stem cell maintenance (Wickens et al., 2002; Quenault et al., 2011). The RNA-binding domains of PUF proteins recognize a family of related sequence motifs in the target mRNAs, yet individual PUF proteins have clearly distinct biological functions (Lu et al., 2009; Wang et al., 2018). The C. elegans germline is a simple and powerful model system for analyzing regulation of stem cell development. Studies in C. elegans uncovered specific physiological roles for PUFs expressed in the germline stem cells ranging from control of proliferation and differentiation to regulation of the sperm/oocyte decision. Importantly, recent studies started to illuminate the mechanisms behind PUF functional divergence. This review summarizes the many roles of PUF-8, FBF-1, and FBF-2 in germline stem and progenitor cells (SPCs) and discusses the factors accounting for their distinct biological functions. PUF proteins are conserved in evolution, and insights into PUF-mediated regulation provided by the C. elegans model system are likely relevant for other organisms.
Collapse
Affiliation(s)
- Xiaobo Wang
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| |
Collapse
|
6
|
The longevity-promoting factor, TCER-1, widely represses stress resistance and innate immunity. Nat Commun 2019; 10:3042. [PMID: 31316054 PMCID: PMC6637209 DOI: 10.1038/s41467-019-10759-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 05/29/2019] [Indexed: 01/01/2023] Open
Abstract
Stress resistance and longevity are positively correlated but emerging evidence indicates that they are physiologically distinct. Identifying factors with distinctive roles in these processes is challenging because pro-longevity genes often enhance stress resistance. We demonstrate that TCER-1, the Caenorhabditis elegans homolog of human transcription elongation and splicing factor, TCERG1, has opposite effects on lifespan and stress resistance. We previously showed that tcer-1 promotes longevity in germline-less C. elegans and reproductive fitness in wild-type animals. Surprisingly, tcer-1 mutants exhibit exceptional resistance against multiple stressors, including infection by human opportunistic pathogens, whereas, TCER-1 overexpression confers immuno-susceptibility. TCER-1 inhibits immunity only during fertile stages of life. Elevating its levels ameliorates the fertility loss caused by infection, suggesting that TCER-1 represses immunity to augment fecundity. TCER-1 acts through repression of PMK-1 as well as PMK-1-independent factors critical for innate immunity. Our data establish key roles for TCER-1 in coordinating immunity, longevity and fertility, and reveal mechanisms that distinguish length of life from functional aspects of aging. Resistance to stress is often associated with increased longevity. Using the model organism C. elegans the authors here show that TCER-1 enhances lifespan while at the same time increasing sensitivity to a number of biotic and abiotic stressors.
Collapse
|
7
|
Kumar GA, Subramaniam K. PUF-8 facilitates homologous chromosome pairing by promoting proteasome activity during meiotic entry in C. elegans. Development 2018. [PMID: 29540500 DOI: 10.1242/dev.163949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pairing of homologous chromosomes is essential for genetic recombination during gametogenesis. In many organisms, chromosome ends are attached to cytoplasmic dynein, and dynein-driven chromosomal movements facilitate the pairing process. Factors that promote or control the cytoskeletal tethering of chromosomes are largely unknown. Here, we show that the conserved RNA-binding protein PUF-8 facilitates the tethering and pairing processes in the C. elegans germline by promoting proteasome activity. We have isolated a hypomorphic allele of pas-1, which encodes a proteasome core subunit, and find that the homologous chromosomes fail to pair in the puf-8; pas-1 double mutant due to failure of chromosome tethering. Our results reveal that the puf-8; pas-1 meiotic defects are caused by the loss of proteasome activity. The axis component HTP-3 accumulates prematurely in the double mutant, and reduction of its activity partially suppresses some of the puf-8; pas-1 meiotic defects, suggesting that HTP-3 might be an important target of the proteasome in promoting early meiotic events. In summary, our results reveal a role for the proteasome in chromosome tethering and identify PUF-8 as a regulator of proteasome activity during early meiosis.
Collapse
Affiliation(s)
- Ganga Anil Kumar
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India.,Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Kuppuswamy Subramaniam
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| |
Collapse
|
8
|
Subasic D, Stoeger T, Eisenring S, Matia-González AM, Imig J, Zheng X, Xiong L, Gisler P, Eberhard R, Holtackers R, Gerber AP, Pelkmans L, Hengartner MO. Post-transcriptional control of executioner caspases by RNA-binding proteins. Genes Dev 2017; 30:2213-2225. [PMID: 27798844 PMCID: PMC5088569 DOI: 10.1101/gad.285726.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/16/2016] [Indexed: 12/03/2022]
Abstract
In this study, Subasic et al. investigated the post-transcriptional control of caspases. The authors describe four conserved RNA-binding proteins (RBPs) that sequentially repress the CED-3 caspase in distinct regions of the C. elegans germline and identify seven RBPs that regulate human caspase-3 expression and/or activation, suggesting that translational inhibition of executioner caspases by RBPs might be a general strategy used widely across the animal kingdom to control apoptosis. Caspases are key components of apoptotic pathways. Regulation of caspases occurs at several levels, including transcription, proteolytic processing, inhibition of enzymatic function, and protein degradation. In contrast, little is known about the extent of post-transcriptional control of caspases. Here, we describe four conserved RNA-binding proteins (RBPs)—PUF-8, MEX-3, GLD-1, and CGH-1—that sequentially repress the CED-3 caspase in distinct regions of the Caenorhabditis elegans germline. We demonstrate that GLD-1 represses ced-3 mRNA translation via two binding sites in its 3′ untranslated region (UTR), thereby ensuring a dual control of unwanted cell death: at the level of p53/CEP-1 and at the executioner caspase level. Moreover, we identified seven RBPs that regulate human caspase-3 expression and/or activation, including human PUF-8, GLD-1, and CGH-1 homologs PUM1, QKI, and DDX6. Given the presence of unusually long executioner caspase 3′ UTRs in many metazoans, translational control of executioner caspases by RBPs might be a strategy used widely across the animal kingdom to control apoptosis.
Collapse
Affiliation(s)
- Deni Subasic
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland.,Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology, University of Zurich, 8057 Zurich, Switzerland
| | - Thomas Stoeger
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland.,Systems Biology PhD Program, Swiss Federal Institute of Technology, University of Zurich, 8057 Zurich, Switzerland
| | - Seline Eisenring
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Ana M Matia-González
- Faculty of Health and Medical Sciences, Department of Microbial and Cellular Sciences, University of Surrey, Stag Hill Campus, GU2 7XH Guildford, United Kingdom
| | - Jochen Imig
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Xue Zheng
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Lei Xiong
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Pascal Gisler
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Ralf Eberhard
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - René Holtackers
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - André P Gerber
- Faculty of Health and Medical Sciences, Department of Microbial and Cellular Sciences, University of Surrey, Stag Hill Campus, GU2 7XH Guildford, United Kingdom
| | - Lucas Pelkmans
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Michael O Hengartner
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
9
|
DAF-16 and TCER-1 Facilitate Adaptation to Germline Loss by Restoring Lipid Homeostasis and Repressing Reproductive Physiology in C. elegans. PLoS Genet 2016; 12:e1005788. [PMID: 26862916 PMCID: PMC4749232 DOI: 10.1371/journal.pgen.1005788] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 12/16/2015] [Indexed: 12/22/2022] Open
Abstract
Elimination of the proliferating germline extends lifespan in C. elegans. This phenomenon provides a unique platform to understand how complex metazoans retain metabolic homeostasis when challenged with major physiological perturbations. Here, we demonstrate that two conserved transcription regulators essential for the longevity of germline-less adults, DAF-16/FOXO3A and TCER-1/TCERG1, concurrently enhance the expression of multiple genes involved in lipid synthesis and breakdown, and that both gene classes promote longevity. Lipidomic analyses revealed that key lipogenic processes, including de novo fatty acid synthesis, triglyceride production, desaturation and elongation, are augmented upon germline removal. Our data suggest that lipid anabolic and catabolic pathways are coordinately augmented in response to germline loss, and this metabolic shift helps preserve lipid homeostasis. DAF-16 and TCER-1 also perform essential inhibitory functions in germline-ablated animals. TCER-1 inhibits the somatic gene-expression program that facilitates reproduction and represses anti-longevity genes, whereas DAF-16 impedes ribosome biogenesis. Additionally, we discovered that TCER-1 is critical for optimal fertility in normal adults, suggesting that the protein acts as a switch supporting reproductive fitness or longevity depending on the presence or absence of the germline. Collectively, our data offer insights into how organisms adapt to changes in reproductive status, by utilizing the activating and repressive functions of transcription factors and coordinating fat production and degradation. The balance between production and breakdown of fats is critical for health, especially during reproduction-related changes such as onset of puberty or menopause. However, little is known about how animals retain a balanced metabolism when undergoing major life events. Here, we have used a C. elegans mutant that successfully adapts to loss of reproductive cells to address this question. Our data suggest that the conserved proteins DAF-16/FOXO3A and TCER-1/TCERG1 mediate a coordinated increase in fat synthesis and degradation when the reproductive cells are lost. This coupling likely helps the animal to manage the lipids that would have been deposited in eggs as yolk, thus preventing metabolic disarray. These proteins also inhibit processes that would have normally supported reproduction. Together the activities of these transcription regulators allow the mutant to convert a debilitating loss of fertility into improved health and longevity. We also report that TCER-1 promotes reproductive health in normal adults, whereas when procreation is impeded, it switches roles to repress fertility and enhance lipid equilibrium. These observations offer insights into how complex organisms coordinate their metabolism to suit their reproductive needs.
Collapse
|
10
|
Functional Consequences for Apoptosis by Transcription Elongation Regulator 1 (TCERG1)-Mediated Bcl-x and Fas/CD95 Alternative Splicing. PLoS One 2015; 10:e0139812. [PMID: 26462236 PMCID: PMC4604205 DOI: 10.1371/journal.pone.0139812] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 09/17/2015] [Indexed: 11/19/2022] Open
Abstract
Here, we present evidence for a specific role of the splicing-related factor TCERG1 in regulating apoptosis in live cells by modulating the alternative splicing of the apoptotic genes Bcl-x and Fas. We show that TCERG1 modulates Bcl-x alternative splicing during apoptosis and its activity in Bcl-x alternative splicing correlates with the induction of apoptosis, as determined by assessing dead cells, sub-G1-phase cells, annexin-V binding, cell viability, and cleavage of caspase-3 and PARP-1. Furthermore, the effect of TCERG1 on apoptosis involved changes in mitochondrial membrane permeabilization. We also found that depletion of TCERG1 reduces the expression of the activated form of the pro-apoptotic mitochondrial membrane protein Bak, which remains inactive by heterodimerizing with Bcl-xL, preventing the initial step of cytochrome c release in Bak-mediated mitochondrial apoptosis. In addition, we provide evidence that TCERG1 also participates in the death receptor-mediated apoptosis pathway. Interestingly, TCERG1 also modulates Fas/CD95 alternative splicing. We propose that TCERG1 sensitizes a cell to apoptotic agents, thus promoting apoptosis by regulating the alternative splicing of both the Bcl-x and Fas/CD95 genes. Our findings may provide a new link between the control of alternative splicing and the molecular events leading to apoptosis.
Collapse
|
11
|
Fischer SEJ, Pan Q, Breen PC, Qi Y, Shi Z, Zhang C, Ruvkun G. Multiple small RNA pathways regulate the silencing of repeated and foreign genes in C. elegans. Genes Dev 2014; 27:2678-95. [PMID: 24352423 PMCID: PMC3877757 DOI: 10.1101/gad.233254.113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gene segments from other organisms, such as viruses, are detected as foreign and targeted for silencing by RNAi pathways. A deep-sequencing map of the small RNA response to repeated transgenes introduced to Caenorhabditis elegans revealed that specific segments are targeted by siRNAs. Silencing of the foreign gene segments depends on an antiviral response that involves changes in active and silent chromatin modifications and altered levels of antisense siRNAs. Distinct Argonaute proteins target foreign genes for silencing or protection against silencing. We used a repeated transgene in a genome-wide screen to identify gene disruptions that enhance silencing of foreign genetic elements and identified 69 genes. These genes cluster in four groups based on overlapping sets of coexpressed genes, including a group of germline-expressed genes that are likely coregulated by the E2F transcription factor. Many of the gene inactivations enhance exogenous RNAi. About half of the 69 genes have roles in endogenous RNAi pathways that regulate diverse processes, including silencing of duplicated genes and transposons and chromosome segregation. Of these newly identified genes, several are required for siRNA biogenesis or stability in the oocyte-specific ERGO-1 pathway, including eri-12, encoding an interactor of the RNAi-defective protein RDE-10, and ntl-9/CNOT9, one of several CCR4/NOT complex genes that we identified. The conserved ARF-like small GTPase ARL-8 is required specifically for primary siRNA biogenesis or stability in the sperm-specific ALG-3/4 endogenous RNAi pathway.
Collapse
Affiliation(s)
- Sylvia E J Fischer
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Askjaer P, Galy V, Meister P. Modern Tools to Study Nuclear Pore Complexes and Nucleocytoplasmic Transport in Caenorhabditis elegans. Methods Cell Biol 2014; 122:277-310. [DOI: 10.1016/b978-0-12-417160-2.00013-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|