1
|
Shah PW, Reinberger T, Hashmi S, Aherrahrou Z, Erdmann J. MRAS in coronary artery disease-Unchartered territory. IUBMB Life 2024; 76:300-312. [PMID: 38251784 DOI: 10.1002/iub.2805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/03/2023] [Indexed: 01/23/2024]
Abstract
Genome-wide association studies (GWAS) have identified coronary artery disease (CAD) susceptibility locus on chromosome 3q22.3. This locus contains a cluster of several genes that includes muscle rat sarcoma virus (MRAS). Common MRAS variants are also associated with CAD causing risk factors such as hypertension, dyslipidemia, obesity, and type II diabetes. The MRAS gene is an oncogene that encodes a membrane-bound small GTPase. It is involved in a variety of signaling pathways, regulating cell differentiation and cell survival (mitogen-activated protein kinase [MAPK]/extracellular signal-regulated kinase and phosphatidylinositol 3-kinase) as well as acute phase response signaling (tumor necrosis factor [TNF] and interleukin 6 [IL6] signaling). In this review, we will summarize the role of genetic MRAS variants in the etiology of CAD and its comorbidities with the focus on tissue distribution of MRAS isoforms, cell type/tissue specificity, and mode of action of single nucleotide variants in MRAS associated complex traits. Finally, we postulate that CAD risk variants in the MRAS locus are specific to smooth muscle cells and lead to higher levels of MRAS, particularly in arterial and cardiac tissue, resulting in MAPK-dependent tissue hypertrophy or hyperplasia.
Collapse
Affiliation(s)
- Pashmina Wiqar Shah
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Lübeck, Germany
- University Heart Center Lübeck, Lübeck, Germany
| | - Tobias Reinberger
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Lübeck, Germany
- University Heart Center Lübeck, Lübeck, Germany
| | - Satwat Hashmi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Lübeck, Germany
- University Heart Center Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Lübeck, Germany
- University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
2
|
Adachi Y, Kimura R, Hirade K, Yanase S, Nishioka Y, Kasuga N, Yamaguchi R, Ebi H. Scribble mis-localization induces adaptive resistance to KRAS G12C inhibitors through feedback activation of MAPK signaling mediated by YAP-induced MRAS. NATURE CANCER 2023; 4:829-843. [PMID: 37277529 DOI: 10.1038/s43018-023-00575-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/08/2023] [Indexed: 06/07/2023]
Abstract
Tumor cells evade targeted drugs by rewiring their genetic and epigenetic networks. Here, we identified that inhibition of MAPK signaling rapidly induces an epithelial-to-mesenchymal transition program by promoting re-localization of an apical-basal polarity protein, Scribble, in oncogene-addicted lung cancer models. Mis-localization of Scribble suppressed Hippo-YAP signaling, leading to YAP nuclear translocation. Furthermore, we discovered that a RAS superfamily protein MRAS is a direct target of YAP. Treatment with KRAS G12C inhibitors induced MRAS expression, which formed a complex with SHOC2, precipitating feedback activation of MAPK signaling. Abrogation of YAP activation or MRAS induction enhanced the efficacy of KRAS G12C inhibitor treatment in vivo. These results highlight a role for protein localization in the induction of a non-genetic mechanism of resistance to targeted therapies in lung cancer. Furthermore, we demonstrate that induced MRAS expression is a key mechanism of adaptive resistance following KRAS G12C inhibitor treatment.
Collapse
Affiliation(s)
- Yuta Adachi
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Ryo Kimura
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Kentaro Hirade
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Shogo Yanase
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Yuki Nishioka
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Natsumi Kasuga
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiromichi Ebi
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan.
- Division of Advanced Cancer Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| |
Collapse
|
3
|
Zheng YL, Su X, Chen YM, Guo JB, Song G, Yang Z, Chen PJ, Wang XQ. microRNA-Based Network and Pathway Analysis for Neuropathic Pain in Rodent Models. Front Mol Biosci 2022; 8:780730. [PMID: 35096965 PMCID: PMC8794747 DOI: 10.3389/fmolb.2021.780730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/27/2021] [Indexed: 12/03/2022] Open
Abstract
Neuropathic pain (NP) is poorly managed, and in-depth mechanisms of gene transcriptome alterations in NP pathogenesis are not yet fully understood. To determine microRNA-related molecular mechanisms of NP and their transcriptional regulation in NP, PubMed, Embase, Web of Science and CINAHL Complete (EBSCO) were searched from inception to April 2021. Commonly dysregulated miRNAs in NP were assessed. The putative targets of these miRNAs were determined using TargetScan, Funrich, Cytoscape and String database. A total of 133 literatures containing miRNA profiles studies and experimentally verify studies were included. Venn analysis, target gene prediction analysis and functional enrichment analysis indicated several miRNAs (miR-200b-3p, miR-96, miR-182, miR-183, miR-30b, miR-155 and miR-145) and their target genes involved in known relevant pathways for NP. Targets on transient receptor potential channels, voltage-gated sodium channels and voltage-gated calcium channels may be harnessed for pain relief. A further delineation of signal processing and modulation in neuronal ensembles is key to achieving therapeutic success in future studies.
Collapse
Affiliation(s)
- Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xuan Su
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu-Meng Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Jia-Bao Guo
- The Second School of Clinical Medical, Xuzhou Medical University, Xuzhou, China
| | - Ge Song
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Yang
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- *Correspondence: Pei-Jie Chen, ; Xue-Qiang Wang,
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- *Correspondence: Pei-Jie Chen, ; Xue-Qiang Wang,
| |
Collapse
|
4
|
Motta M, Sagi-Dain L, Krumbach OHF, Hahn A, Peleg A, German A, Lissewski C, Coppola S, Pantaleoni F, Kocherscheid L, Altmüller F, Schanze D, Logeswaran T, Chahrokh-Zadeh S, Munzig A, Nakhaei-Rad S, Cavé H, Ahmadian MR, Tartaglia M, Zenker M. Activating MRAS mutations cause Noonan syndrome associated with hypertrophic cardiomyopathy. Hum Mol Genet 2021; 29:1772-1783. [PMID: 31108500 DOI: 10.1093/hmg/ddz108] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
The RASopathies are a group of genetic syndromes caused by upregulated RAS signaling. Noonan syndrome (NS), the most common entity among the RASopathies, is characterized mainly by short stature, cardiac anomalies and distinctive facial features. Mutations in multiple RAS-MAPK pathway-related genes have been associated with NS and related phenotypes. We describe two unrelated patients presenting with hypertrophic cardiomyopathy (HCM) and dysmorphic features suggestive of NS. One of them died in the neonatal period because of cardiac failure. Targeted sequencing revealed de novo MRAS variants, c.203C > T (p.Thr68Ile) and c.67G > C (p.Gly23Arg) as causative events. MRAS has only recently been related to NS based on the observation of two unrelated affected individuals with de novo variants involving the same codons here found mutated. Gly23 and Thr68 are highly conserved residues, and the corresponding codons are known hotspots for RASopathy-associated mutations in other RAS proteins. Functional analyses documented high level of activation of MRAS mutants due to impaired GTPase activity, which was associated with constitutive plasma membrane targeting, prolonged localization in non-raft microdomains, enhanced binding to PPP1CB and SHOC2 protein, and variably increased MAPK and PI3K-AKT activation. This report provides additional evidence that a narrow spectrum of activating mutations in MRAS represents another rare cause of NS, and that MRAS has to be counted among the RASopathy genes predisposing to HCM. Moreover, our findings further emphasize the relevance of the MRAS-SHOC2-PPP1CB axis in the control of MAPK signaling, and the contribution of both MAPK and PI3K-AKT pathways in MRAS functional upregulation.
Collapse
Affiliation(s)
- Marialetizia Motta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Lena Sagi-Dain
- The Human Genetic institute, Carmel Medical Center, Ruth and Bruce Rappaport Faculty of Medicine, Israel Institute of Technology, Haifa, Israel
| | - Oliver H F Krumbach
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Andreas Hahn
- Department of Child Neurology, University Hospital, Gießen, Germany
| | - Amir Peleg
- The Human Genetic institute, Carmel Medical Center, Ruth and Bruce Rappaport Faculty of Medicine, Israel Institute of Technology, Haifa, Israel
| | - Alina German
- Pediatric Department, Bnai-Zion Medical Center and Clalit Health Maintenance Organization, Haifa, Israel
| | | | - Simona Coppola
- National Centre for Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Pantaleoni
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | | | - Denny Schanze
- Institute of Human Genetics, University Hospital, Magdeburg, Germany
| | | | | | - Anna Munzig
- Center of Human Genetics and Laboratory Diagnostics, Martinsried, Germany
| | - Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Hélène Cavé
- Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Département de Génétique, 75019 Paris, France.,INSERM UMR 1131, Institut de Recherche Saint-Louis, Université de Paris, 75010 Paris, France
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Martin Zenker
- Institute of Human Genetics, University Hospital, Magdeburg, Germany
| |
Collapse
|
5
|
Endo T. M-Ras is Muscle-Ras, Moderate-Ras, Mineral-Ras, Migration-Ras, and Many More-Ras. Exp Cell Res 2020; 397:112342. [PMID: 33130177 DOI: 10.1016/j.yexcr.2020.112342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/23/2020] [Indexed: 11/19/2022]
Abstract
The Ras family of small GTPases comprises about 36 members in humans. M-Ras is related to classical Ras with regard to its regulators and effectors, but solely constitutes a subfamily among the Ras family members. Although classical Ras strongly binds Raf and highly activates the ERK pathway, M-Ras less strongly binds Raf and moderately but sustainedly activates the ERK pathway to induce neuronal differentiation. M-Ras also possesses specific effectors, including RapGEFs and the PP1 complex Shoc2-PP1c, which dephosphorylates Raf to activate the ERK pathway. M-Ras is highly expressed in the brain and plays essential roles in dendrite formation during neurogenesis, in contrast to the axon formation by R-Ras. M-Ras is also highly expressed in the bone and induces osteoblastic differentiation and transdifferentiation accompanied by calcification. Moreover, M-Ras elicits epithelial-mesenchymal transition-mediated collective and single cell migration through the PP1 complex-mediated ERK pathway activation. Activating missense mutations in the MRAS gene have been detected in Noonan syndrome, one of the RASopathies, and MRAS gene amplification occurs in several cancers. Furthermore, several SNPs in the MRAS gene are associated with coronary artery disease, obesity, and dyslipidemia. Therefore, M-Ras carries out a variety of cellular, physiological, and pathological functions. Further investigations may reveal more functions of M-Ras.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
6
|
Sui Z, Sun H, Weng Y, Zhang X, Sun M, Sun R, Zhao B, Liang Z, Zhang Y, Li C, Zhang L. Quantitative proteomics analysis of deer antlerogenic periosteal cells reveals potential bioactive factors in velvet antlers. J Chromatogr A 2020; 1609:460496. [DOI: 10.1016/j.chroma.2019.460496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/17/2019] [Accepted: 08/28/2019] [Indexed: 01/15/2023]
|
7
|
Jalvy S, Veschambre P, Fédou S, Rezvani HR, Thézé N, Thiébaud P. Leukemia inhibitory factor signaling in Xenopus embryo: Insights from gain of function analysis and dominant negative mutant of the receptor. Dev Biol 2019; 447:200-213. [DOI: 10.1016/j.ydbio.2018.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/05/2018] [Accepted: 12/18/2018] [Indexed: 01/19/2023]
|
8
|
Young LC, Rodriguez-Viciana P. MRAS: A Close but Understudied Member of the RAS Family. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a033621. [PMID: 29311130 DOI: 10.1101/cshperspect.a033621] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MRAS is the closest relative to the classical RAS oncoproteins and shares most regulatory and effector interactions. However, it also has unique functions, including its ability to function as a phosphatase regulatory subunit when in complex with SHOC2 and protein phosphatase 1 (PP1). This phosphatase complex regulates a crucial step in the activation cycle of RAF kinases and provides a key coordinate input required for efficient ERK pathway activation and transformation by RAS. MRAS mutations rarely occur in cancer but deregulated expression may play a role in tumorigenesis in some settings. Activating mutations in MRAS (as well as SHOC2 and PP1) do occur in the RASopathy Noonan syndrome, underscoring a key role for MRAS within the RAS-ERK pathway. MRAS also has unique roles in cell migration and differentiation and has properties consistent with a key role in the regulation of cell polarity. Further investigations should shed light on what remains a relatively understudied RAS family member.
Collapse
Affiliation(s)
- Lucy C Young
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94158
| | - Pablo Rodriguez-Viciana
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
9
|
Thiébaud P, Garbay B, Auguste P, Sénéchal CL, Maciejewska Z, Fédou S, Gauthereau X, Costaglioli P, Thézé N. Overexpression of Leap2 impairs Xenopus embryonic development and modulates FGF and activin signals. Peptides 2016; 83:21-8. [PMID: 27335344 DOI: 10.1016/j.peptides.2016.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022]
Abstract
Besides its widely described function in the innate immune response, no other clear physiological function has been attributed so far to the Liver-Expressed-Antimicrobial-Peptide 2 (LEAP2). We used the Xenopus embryo model to investigate potentially new functions for this peptide. We identified the amphibian leap2 gene which is highly related to its mammalian orthologues at both structural and sequence levels. The gene is expressed in the embryo mostly in the endoderm-derived tissues. Accordingly it is induced in pluripotent animal cap cells by FGF, activin or a combination of vegT/β-catenin. Modulating leap2 expression level by gain-of-function strategy impaired normal embryonic development. When overexpressed in pluripotent embryonic cells derived from blastula animal cap explant, leap2 stimulated FGF while it reduced the activin response. Finally, we demonstrate that LEAP2 blocks FGF-induced migration of HUman Vascular Endothelial Cells (HUVEC). Altogether these findings suggest a model in which LEAP2 could act at the extracellular level as a modulator of FGF and activin signals, thus opening new avenues to explore it in relation with cellular processes such as cell differentiation and migration.
Collapse
Affiliation(s)
- Pierre Thiébaud
- Univ. Bordeaux, F-33076 Bordeaux, France; INSERM U1035, F-33076 Bordeaux, France
| | | | - Patrick Auguste
- Univ. Bordeaux, F-33076 Bordeaux, France; INSERM U1035, F-33076 Bordeaux, France
| | | | - Zuzanna Maciejewska
- Univ. Bordeaux, F-33076 Bordeaux, France; INSERM U1035, F-33076 Bordeaux, France
| | - Sandrine Fédou
- Univ. Bordeaux, F-33076 Bordeaux, France; INSERM U1035, F-33076 Bordeaux, France
| | - Xavier Gauthereau
- Univ. Bordeaux, F-33076 Bordeaux, France; CNRS UMS 3427, F-33076 Bordeaux, France
| | | | - Nadine Thézé
- Univ. Bordeaux, F-33076 Bordeaux, France; INSERM U1035, F-33076 Bordeaux, France.
| |
Collapse
|
10
|
Hammoud AA, Kirstein N, Mournetas V, Darracq A, Broc S, Blanchard C, Zeineddine D, Mortada M, Boeuf H. Murine Embryonic Stem Cell Plasticity Is Regulated through Klf5 and Maintained by Metalloproteinase MMP1 and Hypoxia. PLoS One 2016; 11:e0146281. [PMID: 26731538 PMCID: PMC4701481 DOI: 10.1371/journal.pone.0146281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022] Open
Abstract
Mouse embryonic stem cells (mESCs) are expanded and maintained pluripotent in vitro in the presence of leukemia inhibitory factor (LIF), an IL6 cytokine family member which displays pleiotropic functions, depending on both cell maturity and cell type. LIF withdrawal leads to heterogeneous differentiation of mESCs with a proportion of the differentiated cells apoptosising. During LIF withdrawal, cells sequentially enter a reversible and irreversible phase of differentiation during which LIF addition induces different effects. However the regulators and effectors of LIF-mediated reprogramming are poorly understood. By employing a LIF-dependent 'plasticity' test, that we set up, we show that Klf5, but not JunB is a key LIF effector. Furthermore PI3K signaling, required for the maintenance of mESC pluripotency, has no effect on mESC plasticity while displaying a major role in committed cells by stimulating expression of the mesodermal marker Brachyury at the expense of endoderm and neuroectoderm lineage markers. We also show that the MMP1 metalloproteinase, which can replace LIF for maintenance of pluripotency, mimics LIF in the plasticity window, but less efficiently. Finally, we demonstrate that mESCs maintain plasticity and pluripotency potentials in vitro under hypoxic/physioxic growth conditions at 3% O2 despite lower levels of Pluri and Master gene expression in comparison to 20% O2.
Collapse
Affiliation(s)
- Aya Abou Hammoud
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
- Lebanese University, Beyrouth, Liban
| | - Nina Kirstein
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
| | - Virginie Mournetas
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
| | - Anais Darracq
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
| | - Sabine Broc
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
| | - Camille Blanchard
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
| | | | | | - Helene Boeuf
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
- * E-mail:
| |
Collapse
|