1
|
Dhanjal DS, Singh R, Sharma V, Nepovimova E, Adam V, Kuca K, Chopra C. Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine. Curr Med Chem 2024; 31:1646-1690. [PMID: 37138422 DOI: 10.2174/0929867330666230503144619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Sharma
- Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd., Gurugram, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
2
|
Niu N, Ye J, Hu Z, Zhang J, Wang Y. Regulative Roles of Metabolic Plasticity Caused by Mitochondrial Oxidative Phosphorylation and Glycolysis on the Initiation and Progression of Tumorigenesis. Int J Mol Sci 2023; 24:ijms24087076. [PMID: 37108242 PMCID: PMC10139088 DOI: 10.3390/ijms24087076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
One important feature of tumour development is the regulatory role of metabolic plasticity in maintaining the balance of mitochondrial oxidative phosphorylation and glycolysis in cancer cells. In recent years, the transition and/or function of metabolic phenotypes between mitochondrial oxidative phosphorylation and glycolysis in tumour cells have been extensively studied. In this review, we aimed to elucidate the characteristics of metabolic plasticity (emphasizing their effects, such as immune escape, angiogenesis migration, invasiveness, heterogeneity, adhesion, and phenotypic properties of cancers, among others) on tumour progression, including the initiation and progression phases. Thus, this article provides an overall understanding of the influence of abnormal metabolic remodeling on malignant proliferation and pathophysiological changes in carcinoma.
Collapse
Affiliation(s)
- Nan Niu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
- College of Physics and Optoelectronic Engineering, Canghai Campus of Shenzhen University, Shenzhen 518060, China
| | - Jinfeng Ye
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Zhangli Hu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Junbin Zhang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Yun Wang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
3
|
FULKA H, LOI P, PALAZZESE L, BENC M, FULKA, Jr. J. Nucleus reprogramming/remodeling through selective enucleation (SE) of immature oocytes and zygotes: a nucleolus point of view. J Reprod Dev 2022; 68:165-172. [PMID: 35431279 PMCID: PMC9184824 DOI: 10.1262/jrd.2022-004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is now approximately 25 years since the sheep Dolly, the first cloned mammal where the somatic cell nucleus from an adult donor was used for transfer, was born. So far, somatic cell
nucleus transfer, where G1-phase nuclei are transferred into cytoplasts obtained by enucleation of mature metaphase II (MII) oocytes followed by the activation of the reconstructed cells, is
the most efficient approach to reprogram/remodel the differentiated nucleus. In general, in an enucleated oocyte (cytoplast), the nuclear envelope (NE, membrane) of an injected somatic cell
nucleus breaks down and chromosomes condense. This condensation phase is followed, after subsequent activation, by chromatin decondensation and formation of a pseudo-pronucleus (i) whose
morphology should resemble the natural postfertilization pronuclei (PNs). Thus, the volume of the transferred nuclei increases considerably by incorporating the content released from the
germinal vesicles (GVs). In parallel, the transferred nucleus genes must be reset and function similarly as the relevant genes in normal embryo reprogramming. This, among others, covers the
relevant epigenetic modifications and the appropriate organization of chromatin in pseudo-pronuclei. While reprogramming in SCNT is often discussed, the remodeling of transferred nuclei is
much less studied, particularly in the context of the developmental potential of SCNT embryos. It is now evident that correct reprogramming mirrors appropriate remodeling. At the same time,
it is widely accepted that the process of rebuilding the nucleus following SCNT is instrumental to the overall success of this procedure. Thus, in our contribution, we will mostly focus on
the remodeling of transferred nuclei. In particular, we discuss the oocyte organelles that are essential for the development of SCNT embryos.
Collapse
Affiliation(s)
- Helena FULKA
- Institute of Experimental Medicine, Prague, Czech Republic
| | - Pasqualino LOI
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Luca PALAZZESE
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Michal BENC
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Slovak Republic
| | | |
Collapse
|
4
|
Venit T, El Said NH, Mahmood SR, Percipalle P. A dynamic actin-dependent nucleoskeleton and cell identity. J Biochem 2021; 169:243-257. [PMID: 33351909 DOI: 10.1093/jb/mvaa133] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Actin is an essential regulator of cellular functions. In the eukaryotic cell nucleus, actin regulates chromatin as a bona fide component of chromatin remodelling complexes, it associates with nuclear RNA polymerases to regulate transcription and is involved in co-transcriptional assembly of nascent RNAs into ribonucleoprotein complexes. Actin dynamics are, therefore, emerging as a major regulatory factor affecting diverse cellular processes. Importantly, the involvement of actin dynamics in nuclear functions is redefining the concept of nucleoskeleton from a rigid scaffold to a dynamic entity that is likely linked to the three-dimensional organization of the nuclear genome. In this review, we discuss how nuclear actin, by regulating chromatin structure through phase separation may contribute to the architecture of the nuclear genome during cell differentiation and facilitate the expression of specific gene programs. We focus specifically on mitochondrial genes and how their dysregulation in the absence of actin raises important questions about the role of cytoskeletal proteins in regulating chromatin structure. The discovery of a novel pool of mitochondrial actin that serves as 'mitoskeleton' to facilitate organization of mtDNA supports a general role for actin in genome architecture and a possible function of distinct actin pools in the communication between nucleus and mitochondria.
Collapse
Affiliation(s)
- Tomas Venit
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates
| | - Nadine Hosny El Said
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates
| | - Syed Raza Mahmood
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates.,Department of Biology, New York University, 100 Washington Square East, 1009 Silver Center, New York, NY 10003, USA
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 114 18 Stockholm, Sweden
| |
Collapse
|
5
|
Alberio R, Wolf E. 25th ANNIVERSARY OF CLONING BY SOMATIC-CELL NUCLEAR TRANSFER: Nuclear transfer and the development of genetically modified/gene edited livestock. Reproduction 2021; 162:F59-F68. [PMID: 34096507 PMCID: PMC8240728 DOI: 10.1530/rep-21-0078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022]
Abstract
The birth and adult development of 'Dolly' the sheep, the first mammal produced by the transfer of a terminally differentiated cell nucleus into an egg, provided unequivocal evidence of nuclear equivalence among somatic cells. This ground-breaking experiment challenged a long-standing dogma of irreversible cellular differentiation that prevailed for over a century and enabled the development of methodologies for reversal of differentiation of somatic cells, also known as nuclear reprogramming. Thanks to this new paradigm, novel alternatives for regenerative medicine in humans, improved animal breeding in domestic animals and approaches to species conservation through reproductive methodologies have emerged. Combined with the incorporation of new tools for genetic modification, these novel techniques promise to (i) transform and accelerate our understanding of genetic diseases and the development of targeted therapies through creation of tailored animal models, (ii) provide safe animal cells, tissues and organs for xenotransplantation, (iii) contribute to the preservation of endangered species, and (iv) improve global food security whilst reducing the environmental impact of animal production. This review discusses recent advances that build on the conceptual legacy of nuclear transfer and – when combined with gene editing – will have transformative potential for medicine, biodiversity and sustainable agriculture. We conclude that the potential of these technologies depends on further fundamental and translational research directed at improving the efficiency and safety of these methods.
Collapse
Affiliation(s)
- Ramiro Alberio
- School of Biosciences University of Nottingham, Nottingham, UK
| | - Eckhard Wolf
- Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| |
Collapse
|
6
|
Alle Q, Le Borgne E, Milhavet O, Lemaitre JM. Reprogramming: Emerging Strategies to Rejuvenate Aging Cells and Tissues. Int J Mol Sci 2021; 22:3990. [PMID: 33924362 PMCID: PMC8070588 DOI: 10.3390/ijms22083990] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is associated with a progressive and functional decline of all tissues and a striking increase in many "age-related diseases". Although aging has long been considered an inevitable process, strategies to delay and potentially even reverse the aging process have recently been developed. Here, we review emerging rejuvenation strategies that are based on reprogramming toward pluripotency. Some of these approaches may eventually lead to medical applications to improve healthspan and longevity.
Collapse
Affiliation(s)
- Quentin Alle
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (Q.A.); (E.L.B.)
| | - Enora Le Borgne
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (Q.A.); (E.L.B.)
| | - Ollivier Milhavet
- IRMB, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Jean-Marc Lemaitre
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (Q.A.); (E.L.B.)
| |
Collapse
|
7
|
Manipulating the Epigenome in Nuclear Transfer Cloning: Where, When and How. Int J Mol Sci 2020; 22:ijms22010236. [PMID: 33379395 PMCID: PMC7794987 DOI: 10.3390/ijms22010236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022] Open
Abstract
The nucleus of a differentiated cell can be reprogrammed to a totipotent state by exposure to the cytoplasm of an enucleated oocyte, and the reconstructed nuclear transfer embryo can give rise to an entire organism. Somatic cell nuclear transfer (SCNT) has important implications in animal biotechnology and provides a unique model for studying epigenetic barriers to successful nuclear reprogramming and for testing novel concepts to overcome them. While initial strategies aimed at modulating the global DNA methylation level and states of various histone protein modifications, recent studies use evidence-based approaches to influence specific epigenetic mechanisms in a targeted manner. In this review, we describe-based on the growing number of reports published during recent decades-in detail where, when, and how manipulations of the epigenome of donor cells and reconstructed SCNT embryos can be performed to optimize the process of molecular reprogramming and the outcome of nuclear transfer cloning.
Collapse
|
8
|
Zuo Y, Song M, Li H, Chen X, Cao P, Zheng L, Cao G. Analysis of the Epigenetic Signature of Cell Reprogramming by Computational DNA Methylation Profiles. Curr Bioinform 2020. [DOI: 10.2174/1574893614666190919103752] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
DNA methylation plays an important role in the reprogramming process.
Understanding the underlying molecular mechanism of reprogramming is crucial for answering
fundamental questions regarding the transition of cell identity.
Methods:
In this study, based on the genome-wide DNA methylation data from different cell lines,
comparative methylation profiles were proposed to identify the epigenetic signature of cell
reprogramming.
Results:
The density profile of CpG methylation showed that pluripotent cells are more polarized
than Human Dermal Fibroblasts (HDF) cells. The heterogeneity of iPS has a greater deviation in
the DNA hypermethylation pattern. The result of regional distribution showed that the differential
CpG sites between pluripotent cells and HDFs tend to accumulate in the gene body and CpG shelf
regions, whereas the internal differential methylation CpG sites (DMCs) of three types of
pluripotent cells tend to accumulate in the TSS1500 region. Furthermore, a series of endogenous
markers of cell reprogramming were identified based on the integrative analysis, including focal
adhesion, pluripotency maintenance and transcription regulation. The calcium signaling pathway
was detected as one of the signatures between NT cells and iPS cells. Finally, the regional bias of
DNA methylation for key pluripotency factors was discussed. Our studies provide new insight into
the barrier identification of cell reprogramming.
Conclusion:
Our studies analyzed some epigenetic markers and barriers of nuclear reprogramming,
hoping to provide new insight into understanding the underlying molecular mechanism
of reprogramming.
Collapse
Affiliation(s)
- Yongchun Zuo
- The College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Mingmin Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Hanshuang Li
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Xing Chen
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Pengbo Cao
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Lei Zheng
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Guifang Cao
- The College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
9
|
Cai L, Jeong YW, Jin YX, Lee JY, Jeong YI, Hwang KC, Hyun SH, Hwang WS. Effects of human recombinant granulocyte-colony stimulating factor treatment during in vitro culture on porcine pre-implantation embryos. PLoS One 2020; 15:e0230247. [PMID: 32182268 PMCID: PMC7077850 DOI: 10.1371/journal.pone.0230247] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/25/2020] [Indexed: 11/22/2022] Open
Abstract
Granulocyte-colony stimulating factor (G-CSF), a pleiotropic cytokine, belongs to the hematopoietic growth factor family. Recent studies have reported that G-CSF is a predictive biomarker of oocyte and embryo developmental competence in humans. The aim of our study was to determine whether CSF3 and its receptor (CSF3R) were expressed in porcine maternal reproductive tissues (oviduct and uterus), cumulus cells, and embryos and to investigate the effects of human recombinant G-CSF (hrG-CSF) supplementation during in vitro culture (IVC) on the developmental competence of pre-implantation embryos. To do this, we first performed reverse-transcription polymerase chain reaction (RT-PCR). Second, we performed parthenogenetic activation (PA), in vitro fertilization (IVF), and somatic cell nuclear transfer (SCNT) to evaluate the embryonic developmental potential after hrG-CSF supplementation based on various concentrations (0 ng/mL, 10 ng/mL, 50 ng/mL, and 100 ng/mL) and durations (Un-treated, Days 0–3, Days 4–7, and Days 0–7) of IVC. Finally, we examined transcriptional levels of several marker genes in blastocysts. The results of our study showed that CSF3 transcript was present in all samples we assessed. CSF3-R was also detected, except in cumulus cells and blastocysts from PA. Furthermore, 10 ng/mL and Days 0–7 were the optimal concentration and duration for the viability of in vitro embryonic development, especially for SCNT-derived embryos. The rate of blastocyst formation and the total cell number of blastocysts were significantly enhanced, while the number and index of apoptotic nuclei were significantly decreased in optimal condition groups compared to others. Moreover, the transcriptional levels of anti-apoptotis- (BCL2), proliferation- (PCNA), and pluripotency- (POU5F1) related genes were dramatically upregulated. In conclusion, for the first time, we demonstrated that CSF3 and CSF3R were expressed in porcine reproductive organs, cells, and embryos. Additionally, we determined that hrG-CSF treatment improved porcine embryonic development capacity in vitro.
Collapse
Affiliation(s)
- Lian Cai
- Abu Dhabi Biotech Research Foundation, Seoul, Republic of Korea
- College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Yeon-woo Jeong
- Abu Dhabi Biotech Research Foundation, Seoul, Republic of Korea
| | - Yong-xun Jin
- Abu Dhabi Biotech Research Foundation, Seoul, Republic of Korea
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- College of Animal Science, Jilin University, Changchun, China
| | - Jong-yun Lee
- Abu Dhabi Biotech Research Foundation, Seoul, Republic of Korea
| | - Yeon-ik Jeong
- Abu Dhabi Biotech Research Foundation, Seoul, Republic of Korea
| | - Kyu-chan Hwang
- Abu Dhabi Biotech Research Foundation, Seoul, Republic of Korea
| | - Sang-hwan Hyun
- Abu Dhabi Biotech Research Foundation, Seoul, Republic of Korea
- College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
- * E-mail: (WSH); (SHH)
| | - Woo-suk Hwang
- Abu Dhabi Biotech Research Foundation, Seoul, Republic of Korea
- * E-mail: (WSH); (SHH)
| |
Collapse
|
10
|
Hoseinbeyki M, Taha MF, Javeri A. miR-16 enhances miR-302/367-induced reprogramming and tumor suppression in breast cancer cells. IUBMB Life 2020; 72:1075-1086. [PMID: 32057163 DOI: 10.1002/iub.2249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 12/24/2022]
Abstract
Overexpression of either miR-302 or miR-302/367 cluster induces reprogramming of cancer cells and exerts tumor-suppressive effects by induction of mesenchymal-to-epithelial transition, apoptosis and a less proliferative capacity. Several reports have described miR-16 as a tumor suppressor microRNA (miRNA). Here, we studied the impact of exogenous induction of miR-16 in MDA-MB-231 and SK-BR-3 breast cancer cells following overexpression of miR-302/367 cluster and investigated whether transfection of these cells by a mature miR-16 mimic could affect the reprogramming state of the cells and their tumorigenicity. miR-16 enhanced the expression levels of OCT4A, SOX2, and NANOG, generally known as transcription or pluripotency factors, and suppressed proliferation and invasiveness of these cells. Meanwhile, inhibition of miR-16 counteracted both the reprogramming effect and the antitumor function of miR-302/367 in the breast cancer cells. Current results indicate that miR-16 can work as an adjuvant to improve both cancer cell reprogramming and tumor-suppressive function of miR-302/367 cluster in MDA-MB-231 and SK-BR-3 cells, while its inhibition counteracts all of these effects. Combined application of miRNAs that share some common targets in cancer cell signaling pathways may provide new approaches for repression of multiple hallmarks of cancer.
Collapse
Affiliation(s)
- Moslem Hoseinbeyki
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Masoumeh F Taha
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Arash Javeri
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
11
|
Transcriptome Analyses Reveal Effects of Vitamin C-Treated Donor Cells on Cloned Bovine Embryo Development. Int J Mol Sci 2019; 20:ijms20112628. [PMID: 31142052 PMCID: PMC6600264 DOI: 10.3390/ijms20112628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/20/2019] [Accepted: 05/26/2019] [Indexed: 12/12/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) is a very powerful technique used to produce genetically identical or modified animals. However, the cloning efficiency in mammals remains low. In this study, we aimed to explore the effects of vitamin C (Vc)-treated donor cells on cloned embryos. As a result, Vc treatment relaxed the chromatin of donor cells and improved cloned embryo development. RNA sequencing was adopted to investigate the changes in the transcriptional profiles in early embryos. We found that Vc treatment increased the expression of genes involved in the cell–substrate adherens junction. Gene ontology (GO) analysis revealed that Vc treatment facilitated the activation of autophagy, which was deficient in cloned two-cell embryos. Rapamycin, an effective autophagy activator, increased the formation of cloned blastocysts (36.0% vs. 25.6%, p < 0.05). Abnormal expression of some coding genes and long non-coding RNAs in cloned embryos was restored by Vc treatment, including the zinc-finger protein 641 (ZNF641). ZNF641 compensation by means of mRNA microinjection improved the developmental potential of cloned embryos. Moreover, Vc treatment rescued some deficient RNA-editing sites in cloned two-cell embryos. Collectively, Vc-treated donor cells improved the development of the cloned embryo by affecting embryonic transcription. This study provided useful resources for future work to promote the reprogramming process in SCNT embryos.
Collapse
|
12
|
Cao MF, Chen L, Dang WQ, Zhang XC, Zhang X, Shi Y, Yao XH, Li Q, Zhu J, Lin Y, Liu S, Chen Q, Cui YH, Zhang X, Bian XW. Hybrids by tumor-associated macrophages × glioblastoma cells entail nuclear reprogramming and glioblastoma invasion. Cancer Lett 2018; 442:445-452. [PMID: 30472185 DOI: 10.1016/j.canlet.2018.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/23/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023]
Abstract
Hybrid formation is a fundamental process in normal development and tissue homeostasis, while the presence and the biological role of hybrids between tumor-associated macrophages (TAMs) and glioblastoma (GBM) cells remain elusive. In this study, we observed that TAM-GBM cell hybrids existed in human GBM specimens as demonstrated by co-expression of glioma biomarkers (GFAP, IDH1R132H and PDGFRA) and macrophage biomarkers (CD68 and CD14). Furthermore, TAM-GBM cell hybrids could also be found in C57BL/6 mice orthotopically inoculated with mouse GBM cells labeled with RFP and after co-culture of bone marrow-derived macrophages from GFP-expressed mice with RFP-labeled GBM cells. The hybrids underwent nuclear reprogramming with unique gene expression profile as compared to parental cells. Moreover, glioma invasion-associated genes were enriched in the hybrids that possessed higher invasiveness, and more hybrids in the invasive margin of GBM were observed as compared to GBM core area. Our data demonstrate the presence of TAM-GBM cell hybrids that enhance GBM invasion. With a better understanding of TAM-GBM cell hybrids, new therapeutic strategies targeting GBM will be developed to treat GBM patients.
Collapse
Affiliation(s)
- Mian-Fu Cao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Lu Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Wei-Qi Dang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Xian-Chao Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Xiang Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Xiao-Hong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Qian Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Jiang Zhu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Yong Lin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Sha Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Qian Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Yong-Hong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| |
Collapse
|
13
|
Fawcett JW, Verhaagen J. Intrinsic Determinants of Axon Regeneration. Dev Neurobiol 2018; 78:890-897. [PMID: 30345655 DOI: 10.1002/dneu.22637] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/16/2018] [Accepted: 09/16/2018] [Indexed: 12/21/2022]
Abstract
The failure of axons to regenerate in the damaged mammalian CNS is the main impediment to functional recovery. There are many molecules and structures in the environment of the injured nervous system that can inhibit regeneration, but even when these are removed or replaced with a permissive environment, most CNS neurons exhibit little regeneration of their axons. This contrasts with the extensive and vigorous axon growth that may occur when embryonic neurons are transplanted into the adult CNS. In the peripheral nervous system, the axons usually respond to axotomy with a vigorous regenerative response accompanied by a regenerative program of gene expression, usually referred to as the regeneration-associated gene (RAG) program. These different responses to axotomy in the mature and immature CNS and the PNS lead to the concept of the intrinsic regenerative response of axons. Analysis of the many mechanisms and issues that affect the intrinsic regenerative response is the topic of this special issue of Developmental Neurobiology. The review articles highlight the control of expression of growth and regeneration-associated genes, emphasizing the role of epigenetic mechanisms. The reviews also discuss changes within axons that lead to the developmental loss of regenerative ability. This is caused by changes in axonal transport and trafficking, in the cytoskeleton and in signaling pathways.
Collapse
Affiliation(s)
- James W Fawcett
- John van Geest Centre for Brain Repair, Department Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, United Kingdom
| | - Joost Verhaagen
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105 BA, The Netherlands
| |
Collapse
|
14
|
Matanova V, Kostova Z, Kolev M. Brain-based treatment-A new approach or a well-forgotten old one? J Eval Clin Pract 2018; 24:859-863. [PMID: 29691958 DOI: 10.1111/jep.12915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/13/2018] [Indexed: 11/28/2022]
Abstract
For a relatively long period of time, mental functioning was mainly associated with personal profile while brain functioning went by the wayside. After the 90s of the 20th century, or the so called "Decade of the Brain", today, contemporary specialists work on the boundary between fundamental science and medicine. This brings neuroscience, neuropsychology, psychiatry, and psychotherapy closer to each other. Today, we definitely know that brain structures are being built and altered thanks to experience. Psychotherapy can be more effective when based on a neuropsychological approach-this implies identification of the neural foundations of various disorders and will lead to specific psychotherapeutic conclusions. The knowledge about the brain is continually enriched, which leads to periodic rethinking and updating of the therapeutic approaches to various diseases of the nervous system and brain dysfunctions. The aim of translational studies is to match and combine scientific areas, resources, experience and techniques to improve prevention, diagnosis and therapies, and "transformation" of scientific discoveries into potential treatments of various diseases done in laboratory conditions. Neuropsychological studies prove that cognition is a key element that links together brain functioning and behaviour. According to Dr. Kandel, all experimental events, including psychotherapeutic interventions, affect the structure and function of neuronal synapses. The story of why psychotherapy works is a story of understanding the brain mechanisms of psychic processes, a story of how the brain has been evolving to ensure learning, forgetting, and the mechanisms of permanent psychological change. The new evidence on brain functioning necessitates the integration of neuropsychological achievements in the psychotherapeutic process. An integrative approach is needed to take into account the dynamic interaction between brain functioning, psyche, soul, spirit, and social interaction, ie, development of a model of psychotherapeutic work based on cerebral plasticity! Brain-based psychotherapy aims at changing brain functioning not directly, but through experiences. This is neuro-psychologically informed psychotherapy.
Collapse
Affiliation(s)
- Vanya Matanova
- Institute of Mental Health and Development-Sofia, Sofia University, Sofia, Bulgaria
| | - Zlatomira Kostova
- Institute of Mental Health and Development-Plovdiv, Plovdiv University, Plovdiv, 236, Bulgaria
| | - Martin Kolev
- Institute of Mental Health and Development-Sofia, Sofia University, Sofia, Bulgaria
| |
Collapse
|
15
|
Gonzalez-Munoz E, Cibelli JB. Somatic Cell Reprogramming Informed by the Oocyte. Stem Cells Dev 2018; 27:871-887. [DOI: 10.1089/scd.2018.0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Elena Gonzalez-Munoz
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Cell Biology, Genetics and Physiology, University of Málaga, Málaga, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Málaga, Spain
| | - Jose B. Cibelli
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Animal Science, Michigan State University, East Lansing, MI
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI
| |
Collapse
|
16
|
Laterally confined growth of cells induces nuclear reprogramming in the absence of exogenous biochemical factors. Proc Natl Acad Sci U S A 2018; 115:E4741-E4750. [PMID: 29735717 PMCID: PMC6003522 DOI: 10.1073/pnas.1714770115] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study, we demonstrate a platform for reprogramming somatic cells with high efficiency in the absence of exogenous reprogramming factors. Sustained laterally confined growth of cells on micropatterned substrates results in sequential changes to the nucleus and chromatin with each cell division, leading to the progressive erasure of lineage specific characteristics and incorporation of pluripotency. After 10 days of confined growth, the cells exhibit stemness and have multilineage differentiation potential. Our observation highlights a previously unknown role of mechanical constraints in nuclear reprogramming. Our method provides a unique approach to greatly improve stem cell technologies for developing patient specific disease models and regenerative medicine. Cells in tissues undergo transdifferentiation programs when stimulated by specific mechanical and biochemical signals. While seminal studies have demonstrated that exogenous biochemical factors can reprogram somatic cells into pluripotent stem cells, the critical roles played by mechanical signals in such reprogramming process have not been well documented. In this paper, we show that laterally confined growth of fibroblasts on micropatterned substrates induces nuclear reprogramming with high efficiency in the absence of any exogenous reprogramming factors. We provide compelling evidence on the induction of stem cell-like properties using alkaline phosphatase assays and expression of pluripotent markers. Early onset of reprogramming was accompanied with enhanced nuclear dynamics and changes in chromosome intermingling degrees, potentially facilitating rewiring of the genome. Time-lapse analysis of promoter occupancy by immunoprecipitation of H3K9Ac chromatin fragments revealed that epithelial, proliferative, and reprogramming gene promoters were progressively acetylated, while mesenchymal promoters were deacetylated by 10 days. Consistently, RNA sequencing analysis showed a systematic progression from mesenchymal to stem cell transcriptome, highlighting pathways involving mechanisms underlying nuclear reprogramming. We then demonstrated that these mechanically reprogrammed cells could be maintained as stem cells and can be redifferentiated into multiple lineages with high efficiency. Importantly, we also demonstrate the induction of cancer stemness properties in MCF7 cells grown in such laterally confined conditions. Collectively, our results highlight an important generic property of somatic cells that, when grown in laterally confined conditions, acquire stemness. Such mechanical reprogramming of somatic cells demonstrated here has important implications in tissue regeneration and disease models.
Collapse
|
17
|
Cancer reversion with oocyte extracts is mediated by cell cycle arrest and induction of tumour dormancy. Oncotarget 2018; 9:16008-16027. [PMID: 29662623 PMCID: PMC5882314 DOI: 10.18632/oncotarget.24664] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 02/27/2018] [Indexed: 11/25/2022] Open
Abstract
Inducing stable control of tumour growth by tumour reversion is an alternative approach to cancer treatment when eradication of the disease cannot be achieved. The process requires re-establishment of normal control mechanisms that are lost in cancer cells so that abnormal proliferation can be halted. Embryonic environments can reset cellular programmes and we previously showed that axolotl oocyte extracts can reprogram breast cancer cells and reverse their tumorigenicity. In this study, we analysed the gene expression profiles of oocyte extract-treated tumour xenografts to show that tumour reprogramming involves cell cycle arrest and acquisition of a quiescent state. Tumour dormancy is associated with increased P27 expression, restoration of RB function and downregulation of mitogen-activated signalling pathways. We also show that the quiescent state is associated with increased levels of H4K20me3 and decreased H4K20me1, an epigenetic profile leading to chromatin compaction. The epigenetic reprogramming induced by oocyte extracts is required for RB hypophosphorylation and induction of P27 expression, both occurring during exposure to the extracts and stably maintained in reprogrammed tumour xenografts. Therefore, this study demonstrates the value of oocyte molecules for inducing tumour reversion and for the development of new chemoquiescence-based therapies.
Collapse
|
18
|
Fields C, Levin M. Multiscale memory and bioelectric error correction in the cytoplasm-cytoskeleton-membrane system. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 10. [DOI: 10.1002/wsbm.1410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/19/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Chris Fields
- 21 Rue des Lavandiéres, 11160 Caunes Minervois; France
| | - Michael Levin
- Allen Discovery Center at Tufts University; Medford MA USA
| |
Collapse
|
19
|
Eslami-Arshaghi T, Vakilian S, Seyedjafari E, Ardeshirylajimi A, Soleimani M, Salehi M. Primordial germ cell differentiation of nuclear transfer embryonic stem cells using surface modified electroconductive scaffolds. In Vitro Cell Dev Biol Anim 2017; 53:371-380. [PMID: 28039620 DOI: 10.1007/s11626-016-0113-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/01/2016] [Indexed: 01/26/2023]
Abstract
A combination of nanotopographical cues and surface modification of collagen and fibronectin is a potential platform in primordial germ cells (PGCs) differentiation. In the present study, the synergistic effect of nanotopography and surface modification on differentiation of nuclear transfer embryonic stem cells (nt-ESCs) toward PGC lineage was investigated. In order to achieve this goal, poly-anyline (PANi) was mix within poly-L-lactic acid (PLLA). Afterward, the random composite mats were fabricated using PLLA and PANi mix solution. The nanofiber topography notably upregulated the expressions of prdm14, mvh and c-kit compared with tissue culture polystyrene (TCP). Moreover, the combination of nanofiber topography and surface modification resulted in more enhancement of PGCs differentiation compared with non-modified nanofibrous scaffold. Additionally, gene expression results showed that mvh and c-kit were expressed at higher intensity in cells exposed to collagen and fibronectin rather than collagen or fibronectin solitary. These results demonstrated the importance of combined effect of collagen and fibronectin in order to develop a functional extracellular matrix (ECM) mimic in directing stem cell fate and the potential of such biofunctional scaffolds for treatment of infertility.
Collapse
Affiliation(s)
| | | | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Abdolreza Ardeshirylajimi
- Stem Cells Technology Research Center, Tehran, Iran.,Department of Tissue Engeneering and Regenerative Medicine, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Evolutionary origin of endochondral ossification: the transdifferentiation hypothesis. Dev Genes Evol 2016; 227:121-127. [DOI: 10.1007/s00427-016-0567-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/23/2016] [Indexed: 02/06/2023]
|
21
|
Sepulveda-Rincon LP, Solanas EDL, Serrano-Revuelta E, Ruddick L, Maalouf WE, Beaujean N. Early epigenetic reprogramming in fertilized, cloned, and parthenogenetic embryos. Theriogenology 2016; 86:91-8. [DOI: 10.1016/j.theriogenology.2016.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/25/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
|
22
|
Abstract
It should be emphasized that "129" is not simply a number but is also the designation of a mouse strain that has made a great contribution to modern biological science and technology. Embryonic stem cells derived from 129 mice were essential components of gene-targeting strategies in early research. More recently, 129 mice have provided superior donor genomes for cloning by nuclear transfer. Some factor or factors conferring genomic plasticity must exist in the 129 genome, but these remain unidentified.
Collapse
Affiliation(s)
- Kimiko Inoue
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | | |
Collapse
|
23
|
Chen H, Zhang L, Guo Z, Wang Y, He R, Qin Y, Quan F, Zhang Y. Improving the development of early bovine somatic-cell nuclear transfer embryos by treating adult donor cells with vitamin C. Mol Reprod Dev 2015. [PMID: 26212732 DOI: 10.1002/mrd.22531] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Vitamin C (Vc) has been widely studied in cell and embryo culture, and has recently been demonstrated to promote cellular reprogramming. The objective of this study was to identify a suitable Vc concentration that, when used to treat adult bovine fibroblasts serving as donor cells for nuclear transfer, improved donor-cell physiology and the developmental potential of the cloned embryos that the donor nuclei were used to create. A Vc concentration of 0.15 mM promoted cell proliferation and increased donor-cell 5-hydroxy methyl cytosine levels 2.73-fold (P < 0.05). The blastocyst rate was also significantly improved after nuclear transfer (39.6% treated vs. 26.0% control, P < 0.05); the average number of apoptotic cells in cloned blastocysts was significantly reduced (2.2 vs. 4.4, P < 0.05); and the inner cell mass-to-trophectoderm ratio (38.25% vs. 30.75%, P < 0.05) and expression of SOX2 (3.71-fold, P < 0.05) and POU5F1 (3.15-fold, P < 0.05) were significantly increased. These results suggested that Vc promotes cell proliferation, decreases DNA methylation levels in donor cells, and improves the developmental competence of bovine somatic-cell nuclear transfer embryos.
Collapse
Affiliation(s)
- Huanhuan Chen
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| | - Lei Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| | - Rongjun He
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| | - Yumin Qin
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| |
Collapse
|
24
|
Eslami-Arshaghi T, Salehi M, Soleimani M, Gholipourmalekabadi M, Mossahebi-Mohammadi M, Ardeshirylajimi A, Rajabi H. Lymphoid lineage differentiation potential of mouse nuclear transfer embryonic stem cells. Biologicals 2015; 43:349-54. [PMID: 26239678 DOI: 10.1016/j.biologicals.2015.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/04/2015] [Accepted: 07/02/2015] [Indexed: 01/16/2023] Open
Abstract
Stem cells therapy is considered as an efficient strategy for the treatment of some diseases. Nevertheless, some obstacles such as probability of rejection by the immune system limit applications of this strategy. Therefore, several efforts have been made to overcome this among which using the induced pluripotent stem cells (iPSCs) and nuclear transfer embryonic stem cell (nt-ESCs) are the most efficient strategies. The objective of this study was to evaluate the differentiation potential of the nt-ESCs to lymphoid lineage in the presence of IL-7, IL-3, FLT3-ligand and TPO growth factors in vitro. To this end, the nt-ESCs cells were prepared and treated with aforementioned growth factors for 7 and 14 days. Then, the cells were examined for expression of lymphoid markers (CD3, CD25, CD127 and CD19) by quantitative PCR (q-PCR) and flow cytometry. An increased expression of CD19 and CD25 markers was observed in the treated cells compared with the negative control samples by day 7. After 14 days, the expression level of all the tested CD markers significantly increased in the treated groups in comparison with the control. The current study reveals the potential of the nt-ESCs in differentiation to lymphoid lineage in the presence of defined growth factors.
Collapse
Affiliation(s)
- Tarlan Eslami-Arshaghi
- Department of Transgenic Animal Sciences, Stem Cells Technology Research Center, Tehran, Iran
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoud Soleimani
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mazaher Gholipourmalekabadi
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Mossahebi-Mohammadi
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Urogenital Stem Cell Research Center (UGSCRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hoda Rajabi
- Department of Transgenic Animal Sciences, Stem Cells Technology Research Center, Tehran, Iran
| |
Collapse
|
25
|
Hardwick LJA, Philpott A. An oncologist׳s friend: How Xenopus contributes to cancer research. Dev Biol 2015; 408:180-7. [PMID: 25704511 PMCID: PMC4684227 DOI: 10.1016/j.ydbio.2015.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/27/2015] [Accepted: 02/10/2015] [Indexed: 01/10/2023]
Abstract
One of the most striking features of the Xenopus system is the versatility in providing a unique range of both in vitro and in vivo models that are rapid, accessible and easily manipulated. Here we present an overview of the diverse contribution that Xenopus has made to advance our understanding of tumour biology and behaviour; a contribution that goes beyond the traditional view of Xenopus as a developmental model organism. From the utility of the egg and oocyte extract system to the use of whole embryos as developmental or induced tumour models, the Xenopus system has been fundamental to investigation of cell cycle mechanisms, cell metabolism, cell signalling and cell behaviour, and has allowed an increasing appreciation of the parallels between early development and the pathogenesis of tumour progression and metastasis. Although not the prototypical oncological model system, we propose that Xenopus is an adaptable and multifunctional tool in the oncologist׳s arsenal.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK.
| |
Collapse
|
26
|
Halley-Stott RP. Nuclear Reprogramming and Mitosis--how does mitosis enhance changes in gene expression? Transcription 2015; 6:17-20. [PMID: 25668203 DOI: 10.1080/21541264.2015.1014262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Nuclear reprogramming changes the identity of cells by changing gene expression programmes. Two recent pieces of work have highlighted the role that mitosis plays in enhancing the success of nuclear reprogramming. This Point of View article examines this work in the context of nuclear reprogramming.
Collapse
Affiliation(s)
- Richard P Halley-Stott
- a Faculty of Health Sciences, University of Cape Town , Anzio Road, Observatory , Cape Town , South Africa
| |
Collapse
|
27
|
Kanherkar RR, Bhatia-Dey N, Makarev E, Csoka AB. Cellular reprogramming for understanding and treating human disease. Front Cell Dev Biol 2014; 2:67. [PMID: 25429365 PMCID: PMC4228919 DOI: 10.3389/fcell.2014.00067] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/27/2014] [Indexed: 12/15/2022] Open
Abstract
In the last two decades we have witnessed a paradigm shift in our understanding of cells so radical that it has rewritten the rules of biology. The study of cellular reprogramming has gone from little more than a hypothesis, to applied bioengineering, with the creation of a variety of important cell types. By way of metaphor, we can compare the discovery of reprogramming with the archeological discovery of the Rosetta stone. This stone slab made possible the initial decipherment of Egyptian hieroglyphics because it allowed us to see this language in a way that was previously impossible. We propose that cellular reprogramming will have an equally profound impact on understanding and curing human disease, because it allows us to perceive and study molecular biological processes such as differentiation, epigenetics, and chromatin in ways that were likewise previously impossible. Stem cells could be called “cellular Rosetta stones” because they allow also us to perceive the connections between development, disease, cancer, aging, and regeneration in novel ways. Here we present a comprehensive historical review of stem cells and cellular reprogramming, and illustrate the developing synergy between many previously unconnected fields. We show how stem cells can be used to create in vitro models of human disease and provide examples of how reprogramming is being used to study and treat such diverse diseases as cancer, aging, and accelerated aging syndromes, infectious diseases such as AIDS, and epigenetic diseases such as polycystic ovary syndrome. While the technology of reprogramming is being developed and refined there have also been significant ongoing developments in other complementary technologies such as gene editing, progenitor cell production, and tissue engineering. These technologies are the foundations of what is becoming a fully-functional field of regenerative medicine and are converging to a point that will allow us to treat almost any disease.
Collapse
Affiliation(s)
- Riya R Kanherkar
- Epigenetics Laboratory, Department of Anatomy, Howard University Washington, DC, USA
| | - Naina Bhatia-Dey
- Epigenetics Laboratory, Department of Anatomy, Howard University Washington, DC, USA
| | - Evgeny Makarev
- InSilico Medicine, Emerging Technology Center, Johns Hopkins University Eastern Baltimore, MD, USA
| | - Antonei B Csoka
- Epigenetics Laboratory, Department of Anatomy, Howard University Washington, DC, USA
| |
Collapse
|
28
|
Hu Z, Wang J. Histone deacetylase inhibitor induces the expression of select epithelial genes in mouse utricle sensory epithelia-derived progenitor cells. Cell Reprogram 2014; 16:266-75. [PMID: 24945595 DOI: 10.1089/cell.2013.0086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mouse utricle sensory epithelial cell-derived progenitor cells (MUCs), which have hair cell progenitor and mesenchymal features via epithelial-to-mesenchymal transition (EMT) as previously described, provide a potential approach for hair cell regeneration via cell transplantation. In this study, we treated MUCs with trichostatin A (TSA) to determine whether histone deacetylase inhibitor is able to stimulate the expression of epithelial genes in MUCs, an essential step for guiding mesenchymal-like MUCs to become sensory epithelial cells. After 72 h of TSA treatment, MUCs acquired epithelial-like features, which were indicated by increased expression of epithelial markers such as Cdh1, Krt18, and Dsp. Additionally, TSA decreased the expression of mesenchymal markers, including Zeb1, Zeb2, Snai1, and Snai2, and prosensory genes Lfng, Six1, and Dlx5. Moreover, the expression of the hair cell genes Atoh1 and Myo6 was increased in TSA-treated MUCs. We also observed significantly decreased expression of Hdac2 and Hdac3 in TSA-treated MUCs. However, no remarkable change was detected in protein expression using immunofluorescence, indicating that TSA-induced HDAC inhibition may contribute to the initial stage of the mesenchymal-to-epithelial phenotypic change. In the future, more work is needed to induce hair cell regeneration using inner ear tissue-derived progenitors to achieve an entire mesenchymal-to-epithelial transition.
Collapse
Affiliation(s)
- Zhengqing Hu
- Department of Otolaryngology-HNS, Wayne State University School of Medicine , Detroit, MI, 48201
| | | |
Collapse
|
29
|
Langerova A, Fulka H, Fulka J. Somatic Cell Nuclear Transfer–Derived Embryonic Stem Cell Lines in Humans: Pros and Cons. Cell Reprogram 2013; 15:481-3. [DOI: 10.1089/cell.2013.0054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
| | - Helena Fulka
- Institute of Animal Science, 104 00 Prague 10, Czech Republic
| | - Josef Fulka
- Institute of Animal Science, 104 00 Prague 10, Czech Republic
| |
Collapse
|