1
|
Erber L, Hoffmann A, Fallmann J, Hagedorn M, Hammann C, Stadler PF, Betat H, Prohaska S, Mörl M. Unusual Occurrence of Two Bona-Fide CCA-Adding Enzymes in Dictyostelium discoideum. Int J Mol Sci 2020; 21:ijms21155210. [PMID: 32717856 PMCID: PMC7432833 DOI: 10.3390/ijms21155210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/12/2023] Open
Abstract
Dictyostelium discoideum, the model organism for the evolutionary supergroup of Amoebozoa, is a social amoeba that, upon starvation, undergoes transition from a unicellular to a multicellular organism. In its genome, we identified two genes encoding for tRNA nucleotidyltransferases. Such pairs of tRNA nucleotidyltransferases usually represent collaborating partial activities catalyzing CC- and A-addition to the tRNA 3'-end, respectively. In D. discoideum, however, both enzymes exhibit identical activities, representing bona-fide CCA-adding enzymes. Detailed characterization of the corresponding activities revealed that both enzymes seem to be essential and are regulated inversely during different developmental stages of D. discoideum. Intriguingly, this is the first description of two functionally equivalent CCA-adding enzymes using the same set of tRNAs and showing a similar distribution within the cell. This situation seems to be a common feature in Dictyostelia, as other members of this phylum carry similar pairs of tRNA nucleotidyltransferase genes in their genome.
Collapse
Affiliation(s)
- Lieselotte Erber
- Institute for Biochemistry, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (H.B.)
| | - Anne Hoffmann
- Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany; (A.H.); (J.F.); (P.F.S.); (S.P.)
| | - Jörg Fallmann
- Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany; (A.H.); (J.F.); (P.F.S.); (S.P.)
| | - Monica Hagedorn
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany; (M.H.); (C.H.)
| | - Christian Hammann
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany; (M.H.); (C.H.)
| | - Peter F. Stadler
- Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany; (A.H.); (J.F.); (P.F.S.); (S.P.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, Leipzig University, 04103 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
- Facultad de Ciencias, Universidad National de Colombia, Sede Bogotá, Carrera 45 No. 26-85, Colombia
- Santa Fe Institute for Complex Systems, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
- Department of Theoretical Chemistry of the University of Vienna, A-1090 Vienna, Austria
| | - Heike Betat
- Institute for Biochemistry, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (H.B.)
| | - Sonja Prohaska
- Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany; (A.H.); (J.F.); (P.F.S.); (S.P.)
- Computational EvoDevo Group, Department of Computer Science, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (H.B.)
- Correspondence: ; Tel.: +49-341-9736-911; Fax: +49-341-9736-919
| |
Collapse
|
2
|
Meena NP, Jaiswal P, Chang FS, Brzostowski J, Kimmel AR. DPF is a cell-density sensing factor, with cell-autonomous and non-autonomous functions during Dictyostelium growth and development. BMC Biol 2019; 17:97. [PMID: 31791330 PMCID: PMC6889452 DOI: 10.1186/s12915-019-0714-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
Background Cellular functions can be regulated by cell-cell interactions that are influenced by extra-cellular, density-dependent signaling factors. Dictyostelium grow as individual cells in nutrient-rich sources, but, as nutrients become depleted, they initiate a multi-cell developmental program that is dependent upon a cell-density threshold. We hypothesized that novel secreted proteins may serve as density-sensing factors to promote multi-cell developmental fate decisions at a specific cell-density threshold, and use Dictyostelium in the identification of such a factor. Results We show that multi-cell developmental aggregation in Dictyostelium is lost upon minimal (2-fold) reduction in local cell density. Remarkably, developmental aggregation response at non-permissive cell densities is rescued by addition of conditioned media from high-density, developmentally competent cells. Using rescued aggregation of low-density cells as an assay, we purified a single, 150-kDa extra-cellular protein with density aggregation activity. MS/MS peptide sequence analysis identified the gene sequence, and cells that overexpress the full-length protein accumulate higher levels of a development promoting factor (DPF) activity than parental cells, allowing cells to aggregate at lower cell densities; cells deficient for this DPF gene lack density-dependent developmental aggregation activity and require higher cell density for cell aggregation compared to WT. Density aggregation activity co-purifies with tagged versions of DPF and tag-affinity-purified DPF possesses density aggregation activity. In mixed development with WT, cells that overexpress DPF preferentially localize at centers for multi-cell aggregation and define cell-fate choice during cytodifferentiation. Finally, we show that DPF is synthesized as a larger precursor, single-pass transmembrane protein, with the p150 fragment released by proteolytic cleavage and ectodomain shedding. The TM/cytoplasmic domain of DPF possesses cell-autonomous activity for cell-substratum adhesion and for cellular growth. Conclusions We have purified a novel secreted protein, DPF, that acts as a density-sensing factor for development and functions to define local collective thresholds for Dictyostelium development and to facilitate cell-cell communication and multi-cell formation. Regions of high DPF expression are enriched at centers for cell-cell signal-response, multi-cell formation, and cell-fate determination. Additionally, DPF has separate cell-autonomous functions for regulation of cellular adhesion and growth.
Collapse
Affiliation(s)
- Netra Pal Meena
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pundrik Jaiswal
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fu-Sheng Chang
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joseph Brzostowski
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, 20892, USA.,Laboratory of Immunogenetics Twinbrook Imaging Facility, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Rockville, MD, 20852, USA
| | - Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Saettone A, Nabeel-Shah S, Garg J, Lambert JP, Pearlman RE, Fillingham J. Functional Proteomics of Nuclear Proteins in Tetrahymena thermophila: A Review. Genes (Basel) 2019; 10:E333. [PMID: 31052454 PMCID: PMC6562869 DOI: 10.3390/genes10050333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Identification and characterization of protein complexes and interactomes has been essential to the understanding of fundamental nuclear processes including transcription, replication, recombination, and maintenance of genome stability. Despite significant progress in elucidation of nuclear proteomes and interactomes of organisms such as yeast and mammalian systems, progress in other models has lagged. Protists, including the alveolate ciliate protozoa with Tetrahymena thermophila as one of the most studied members of this group, have a unique nuclear biology, and nuclear dimorphism, with structurally and functionally distinct nuclei in a common cytoplasm. These features have been important in providing important insights about numerous fundamental nuclear processes. Here, we review the proteomic approaches that were historically used as well as those currently employed to take advantage of the unique biology of the ciliates, focusing on Tetrahymena, to address important questions and better understand nuclear processes including chromatin biology of eukaryotes.
Collapse
Affiliation(s)
- Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Jyoti Garg
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Quebec, QC, G1V 0A6, Canada.
- CHU de Québec Research Center, CHUL, 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Ronald E Pearlman
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
4
|
van Ravenswaaij-Arts C, Martin DM. New insights and advances in CHARGE syndrome: Diagnosis, etiologies, treatments, and research discoveries. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2017; 175:397-406. [PMID: 29171162 DOI: 10.1002/ajmg.c.31592] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 01/17/2023]
Abstract
CHARGE syndrome is a multiple congenital anomaly condition caused, in a majority of individuals, by loss of function pathogenic variants in the gene CHD7. In this special issue of the American Journal of Medical Genetics part C, authors of eleven manuscripts describe specific organ system features of CHARGE syndrome, with a focus on recent developments in diagnosis, etiologies, and treatments. Since 2004, when CHD7 was identified as the major causative gene in CHARGE, several animal models (mice, zebrafish, flies, and frog) and cell-based systems have been developed to explore the underlying pathophysiology of this condition. In this article, we summarize those advances, highlight opportunities for new discoveries, and encourage readers to explore specific organ systems in more detail in each individual article. We hope the excitement around innovative research and development in CHARGE syndrome will encourage others to join this effort, and will stimulate other investigators and professionals to engage with individuals diagnosed as having CHARGE syndrome, their families, and their care providers.
Collapse
Affiliation(s)
- Conny van Ravenswaaij-Arts
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Donna M Martin
- Departments of Human Genetics, The University of Michigan Medical School, Ann Arbor, Michigan.,Departments of Pediatrics, The University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
5
|
Platt JL, Kent NA, Kimmel AR, Harwood AJ. Regulation of nucleosome positioning by a CHD Type III chromatin remodeler and its relationship to developmental gene expression in Dictyostelium. Genome Res 2017; 27:591-600. [PMID: 28330902 PMCID: PMC5378177 DOI: 10.1101/gr.216309.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/27/2017] [Indexed: 01/14/2023]
Abstract
Nucleosome placement and repositioning can direct transcription of individual genes; however, the precise interactions of these events are complex and largely unresolved at the whole-genome level. The Chromodomain-Helicase-DNA binding (CHD) Type III proteins are a subfamily of SWI2/SNF2 proteins that control nucleosome positioning and are associated with several complex human disorders, including CHARGE syndrome and autism. Type III CHDs are required for multicellular development of animals and Dictyostelium but are absent in plants and yeast. These CHDs can mediate nucleosome translocation in vitro, but their in vivo mechanism is unknown. Here, we use genome-wide analysis of nucleosome positioning and transcription profiling to investigate the in vivo relationship between nucleosome positioning and gene expression during development of wild-type (WT) Dictyostelium and mutant cells lacking ChdC, a Type III CHD protein ortholog. We demonstrate major nucleosome positional changes associated with developmental gene regulation in WT. Loss of chdC caused an increase of intragenic nucleosome spacing and misregulation of gene expression, affecting ∼50% of the genes that are repositioned during WT development. These analyses demonstrate active nucleosome repositioning during Dictyostelium multicellular development, establish an in vivo function of CHD Type III chromatin remodeling proteins in this process, and reveal the detailed relationship between nucleosome positioning and gene regulation, as cells transition between developmental states.
Collapse
Affiliation(s)
- James L Platt
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom.,Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nicholas A Kent
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom
| | - Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Adrian J Harwood
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| |
Collapse
|
6
|
Chd8 mediates cortical neurogenesis via transcriptional regulation of cell cycle and Wnt signaling. Nat Neurosci 2016; 19:1477-1488. [PMID: 27694995 PMCID: PMC5386887 DOI: 10.1038/nn.4400] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 09/01/2016] [Indexed: 12/13/2022]
Abstract
De novo mutations in CHD8 are strongly associated with autism spectrum disorder (ASD), however the basic biology of CHD8 remains poor understood. Here we report that Chd8 knockdown during cortical development results in defective neural progenitor proliferation and differentiation that ultimately manifests in abnormal neuronal morphology and behaviors in adult mice. Transcriptome analysis revealed that while Chd8 stimulates the transcription of cell cycle genes, it also precludes the induction of neural specific genes by regulating the expression of PRC2 complex components. Furthermore, knockdown of Chd8 disrupts the expression of key transducers of Wnt signaling, and enhancing Wnt signaling rescues the transcriptional and behavioral deficits caused by Chd8 knockdown. We propose that these roles of Chd8 and the dynamics of Chd8 expression during development help negotiate the fine balance between neural progenitor proliferation and differentiation. Together, these observations provide new insights into the neurodevelopmental role of Chd8.
Collapse
|
7
|
Loomis WF. Genetic control of morphogenesis in Dictyostelium. Dev Biol 2015; 402:146-61. [PMID: 25872182 PMCID: PMC4464777 DOI: 10.1016/j.ydbio.2015.03.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/12/2015] [Accepted: 03/25/2015] [Indexed: 01/06/2023]
Abstract
Cells grow, move, expand, shrink and die in the process of generating the characteristic shapes of organisms. Although the structures generated during development of the social amoeba Dictyostelium discoideum look nothing like the structures seen in metazoan embryogenesis, some of the morphogenetic processes used in their making are surprisingly similar. Recent advances in understanding the molecular basis for directed cell migration, cell type specific sorting, differential adhesion, secretion of matrix components, pattern formation, regulation and terminal differentiation are reviewed. Genes involved in Dictyostelium aggregation, slug formation, and culmination of fruiting bodies are discussed.
Collapse
Affiliation(s)
- William F Loomis
- Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|