1
|
Greulich P. Emergent order in epithelial sheets by interplay of cell divisions and cell fate regulation. PLoS Comput Biol 2024; 20:e1012465. [PMID: 39401252 PMCID: PMC11501039 DOI: 10.1371/journal.pcbi.1012465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/24/2024] [Accepted: 09/06/2024] [Indexed: 10/26/2024] Open
Abstract
The fate choices of stem cells between self-renewal and differentiation are often tightly regulated by juxtacrine (cell-cell contact) signalling. Here, we assess how the interplay between cell division, cell fate choices, and juxtacrine signalling can affect the macroscopic ordering of cell types in self-renewing epithelial sheets, by studying a simple spatial cell fate model with cells being arranged on a 2D lattice. We show in this model that if cells commit to their fate directly upon cell division, macroscopic patches of cells of the same type emerge, if at least a small proportion of divisions are symmetric, except if signalling interactions are laterally inhibiting. In contrast, if cells are first 'licensed' to differentiate, yet retaining the possibility to return to their naive state, macroscopic order only emerges if the signalling strength exceeds a critical threshold: if then the signalling interactions are laterally inducing, macroscopic patches emerge as well. Lateral inhibition, on the other hand, can in that case generate periodic patterns of alternating cell types (checkerboard pattern), yet only if the proportion of symmetric divisions is sufficiently low. These results can be understood theoretically by an analogy to phase transitions in spin systems known from statistical physics.
Collapse
Affiliation(s)
- Philip Greulich
- School of Mathematical Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
2
|
Hasegawa K, Zhao Y, Garbuzov A, Corces MR, Neuhöfer P, Gillespie VM, Cheung P, Belk JA, Huang YH, Wei Y, Chen L, Chang HY, Artandi SE. Clonal inactivation of TERT impairs stem cell competition. Nature 2024; 632:201-208. [PMID: 39020172 PMCID: PMC11291281 DOI: 10.1038/s41586-024-07700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 06/11/2024] [Indexed: 07/19/2024]
Abstract
Telomerase is intimately associated with stem cells and cancer, because it catalytically elongates telomeres-nucleoprotein caps that protect chromosome ends1. Overexpression of telomerase reverse transcriptase (TERT) enhances the proliferation of cells in a telomere-independent manner2-8, but so far, loss-of-function studies have provided no evidence that TERT has a direct role in stem cell function. In many tissues, homeostasis is shaped by stem cell competition, a process in which stem cells compete on the basis of inherent fitness. Here we show that conditional deletion of Tert in the spermatogonial stem cell (SSC)-containing population in mice markedly impairs competitive clone formation. Using lineage tracing from the Tert locus, we find that TERT-expressing SSCs yield long-lived clones, but that clonal inactivation of TERT promotes stem cell differentiation and a genome-wide reduction in open chromatin. This role for TERT in competitive clone formation occurs independently of both its reverse transcriptase activity and the canonical telomerase complex. Inactivation of TERT causes reduced activity of the MYC oncogene, and transgenic expression of MYC in the TERT-deleted pool of SSCs efficiently rescues clone formation. Together, these data reveal a catalytic-activity-independent requirement for TERT in enhancing stem cell competition, uncover a genetic connection between TERT and MYC and suggest that a selective advantage for stem cells with high levels of TERT contributes to telomere elongation in the male germline during homeostasis and ageing.
Collapse
Affiliation(s)
- Kazuteru Hasegawa
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Yang Zhao
- Center for Personal Dynamic Regulomes, Stanford, CA, USA
| | - Alina Garbuzov
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - M Ryan Corces
- Center for Personal Dynamic Regulomes, Stanford, CA, USA
| | - Patrick Neuhöfer
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Victoria M Gillespie
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Peggie Cheung
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia A Belk
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | - Yuning Wei
- Center for Personal Dynamic Regulomes, Stanford, CA, USA
| | - Lu Chen
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Filippi J, Casti P, Antonelli G, Murdocca M, Mencattini A, Corsi F, D'Orazio M, Pecora A, De Luca M, Curci G, Ghibelli L, Sangiuolo F, Neale SL, Martinelli E. Cell Electrokinetic Fingerprint: A Novel Approach Based on Optically Induced Dielectrophoresis (ODEP) for In-Flow Identification of Single Cells. SMALL METHODS 2024; 8:e2300923. [PMID: 38693090 DOI: 10.1002/smtd.202300923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 04/04/2024] [Indexed: 05/03/2024]
Abstract
A novel optically induced dielectrophoresis (ODEP) system that can operate under flow conditions is designed for automatic trapping of cells and subsequent induction of 2D multi-frequency cell trajectories. Like in a "ping-pong" match, two virtual electrode barriers operate in an alternate mode with varying frequencies of the input voltage. The so-derived cell motions are characterized via time-lapse microscopy, cell tracking, and state-of-the-art machine learning algorithms, like the wavelet scattering transform (WST). As a cell-electrokinetic fingerprint, the dynamic of variation of the cell displacements happening, over time, is quantified in response to different frequency values of the induced electric field. When tested on two biological scenarios in the cancer domain, the proposed approach discriminates cellular dielectric phenotypes obtained, respectively, at different early phases of drug-induced apoptosis in prostate cancer (PC3) cells and for differential expression of the lectine-like oxidized low-density lipoprotein receptor-1 (LOX-1) transcript levels in human colorectal adenocarcinoma (DLD-1) cells. The results demonstrate increased discrimination of the proposed system and pose an additional basis for making ODEP-based assays addressing cancer heterogeneity for precision medicine and pharmacological research.
Collapse
Affiliation(s)
- Joanna Filippi
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Rome, 00133, Italy
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), Via del Politecnico 1, Rome, 00133, Italy
| | - Paola Casti
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Rome, 00133, Italy
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), Via del Politecnico 1, Rome, 00133, Italy
| | - Gianni Antonelli
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Rome, 00133, Italy
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), Via del Politecnico 1, Rome, 00133, Italy
| | - Michela Murdocca
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
| | - Arianna Mencattini
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Rome, 00133, Italy
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), Via del Politecnico 1, Rome, 00133, Italy
| | - Francesca Corsi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome, 00133, Italy
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Michele D'Orazio
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Rome, 00133, Italy
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), Via del Politecnico 1, Rome, 00133, Italy
| | - Alessandro Pecora
- Italian Nation Research Council (CNR), Via del Fosso del Cavaliere 100, Rome, 00133, Italy
| | - Massimiliano De Luca
- Italian Nation Research Council (CNR), Via del Fosso del Cavaliere 100, Rome, 00133, Italy
| | - Giorgia Curci
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Rome, 00133, Italy
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), Via del Politecnico 1, Rome, 00133, Italy
| | - Lina Ghibelli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
| | - Steven L Neale
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Rome, 00133, Italy
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), Via del Politecnico 1, Rome, 00133, Italy
| |
Collapse
|
4
|
Trompet D, Melis S, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone development and repair. J Bone Miner Res 2024; 39:633-654. [PMID: 38696703 DOI: 10.1093/jbmr/zjae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
Bone development, growth, and repair are complex processes involving various cell types and interactions, with central roles played by skeletal stem and progenitor cells. Recent research brought new insights into the skeletal precursor populations that mediate intramembranous and endochondral bone development. Later in life, many of the cellular and molecular mechanisms determining development are reactivated upon fracture, with powerful trauma-induced signaling cues triggering a variety of postnatal skeletal stem/progenitor cells (SSPCs) residing near the bone defect. Interestingly, in this injury context, the current evidence suggests that the fates of both SSPCs and differentiated skeletal cells can be considerably flexible and dynamic, and that multiple cell sources can be activated to operate as functional progenitors generating chondrocytes and/or osteoblasts. The combined implementation of in vivo lineage tracing, cell surface marker-based cell selection, single-cell molecular analyses, and high-resolution in situ imaging has strongly improved our insights into the diversity and roles of developmental and reparative stem/progenitor subsets, while also unveiling the complexity of their dynamics, hierarchies, and relationships. Albeit incompletely understood at present, findings supporting lineage flexibility and possibly plasticity among sources of osteogenic cells challenge the classical dogma of a single primitive, self-renewing, multipotent stem cell driving bone tissue formation and regeneration from the apex of a hierarchical and strictly unidirectional differentiation tree. We here review the state of the field and the newest discoveries in the origin, identity, and fates of skeletal progenitor cells during bone development and growth, discuss the contributions of adult SSPC populations to fracture repair, and reflect on the dynamism and relationships among skeletal precursors and differentiated cell lineages. Further research directed at unraveling the heterogeneity and capacities of SSPCs, as well as the regulatory cues determining their fate and functioning, will offer vital new options for clinical translation toward compromised fracture healing and bone regenerative medicine.
Collapse
Affiliation(s)
- Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Seppe Melis
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Andrei S Chagin
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Trompet D, Kurenkova AD, Zhou B, Li L, Dregval O, Usanova AP, Chu TL, Are A, Nedorubov AA, Kasper M, Chagin AS. Stimulation of skeletal stem cells in the growth plate promotes linear bone growth. JCI Insight 2024; 9:e165226. [PMID: 38516888 PMCID: PMC11063944 DOI: 10.1172/jci.insight.165226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/07/2024] [Indexed: 03/23/2024] Open
Abstract
Recently, skeletal stem cells were shown to be present in the epiphyseal growth plate (epiphyseal skeletal stem cells, epSSCs), but their function in connection with linear bone growth remains unknown. Here, we explore the possibility that modulating the number of epSSCs can correct differences in leg length. First, we examined regulation of the number and activity of epSSCs by Hedgehog (Hh) signaling. Both systemic activation of Hh pathway with Smoothened agonist (SAG) and genetic activation of Hh pathway by Patched1 (Ptch1) ablation in Pthrp-creER Ptch1fl/fl tdTomato mice promoted proliferation of epSSCs and clonal enlargement. Transient intra-articular administration of SAG also elevated the number of epSSCs. When SAG-containing beads were implanted into the femoral secondary ossification center of 1 leg of rats, this leg was significantly longer 1 month later than the contralateral leg implanted with vehicle-containing beads, an effect that was even more pronounced 2 and 6 months after implantation. We conclude that Hh signaling activates growth plate epSSCs, which effectively leads to increased longitudinal growth of bones. This opens therapeutic possibilities for the treatment of differences in leg length.
Collapse
Affiliation(s)
- Dana Trompet
- Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anastasiia D. Kurenkova
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Baoyi Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lei Li
- Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ostap Dregval
- Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna P. Usanova
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Tsz Long Chu
- Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Are
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andrei A. Nedorubov
- Center for Preclinical Studies, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andrei S. Chagin
- Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Khorasani N, Sadeghi M. A computational model of stem cells' internal mechanism to recapitulate spatial patterning and maintain the self-organized pattern in the homeostasis state. Sci Rep 2024; 14:1528. [PMID: 38233402 PMCID: PMC10794714 DOI: 10.1038/s41598-024-51386-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
The complex functioning of multi-cellular tissue development relies on proper cell production rates to replace dead or differentiated specialized cells. Stem cells are critical for tissue development and maintenance, as they produce specialized cells to meet the tissues' demands. In this study, we propose a computational model to investigate the stem cell's mechanism, which generates the appropriate proportion of specialized cells, and distributes them to their correct position to form and maintain the organized structure in the population through intercellular reactions. Our computational model focuses on early development, where the populations overall behavior is determined by stem cells and signaling molecules. The model does not include complicated factors such as movement of specialized cells or outside signaling sources. The results indicate that in our model, the stem cells can organize the population into a desired spatial pattern, which demonstrates their ability to self-organize as long as the corresponding leading signal is present. We also investigate the impact of stochasticity, which provides desired non-genetic diversity; however, it can also break the proper boundaries of the desired spatial pattern. We further examine the role of the death rate in maintaining the system's steady state. Overall, our study sheds light on the strategies employed by stem cells to organize specialized cells and maintain proper functionality. Our findings provide insight into the complex mechanisms involved in tissue development and maintenance, which could lead to new approaches in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Najme Khorasani
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Mehdi Sadeghi
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
7
|
Tarbashevich K, Ermlich L, Wegner J, Pfeiffer J, Raz E. The mitochondrial protein Sod2 is important for the migration, maintenance, and fitness of germ cells. Front Cell Dev Biol 2023; 11:1250643. [PMID: 37954204 PMCID: PMC10639133 DOI: 10.3389/fcell.2023.1250643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
To maintain a range of cellular functions and to ensure cell survival, cells must control their levels of reactive oxygen species (ROS). The main source of these molecules is the mitochondrial respiration machinery, and the first line of defense against these toxic substances is the mitochondrial enzyme superoxide dismutase 2 (Sod2). Thus, investigating early expression patterns and functions of this protein is critical for understanding how an organism develops ways to protect itself against ROS and enhance tissue fitness. Here, we report on expression pattern and function of zebrafish Sod2, focusing on the role of the protein in migration and maintenance of primordial germ cells during early embryonic development. We provide evidence that Sod2 is involved in purifying selection of vertebrate germ cells, which can contribute to the fitness of the organism in the following generations.
Collapse
Affiliation(s)
- Katsiaryna Tarbashevich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation (ZMBE), Muenster, Germany
| | - Laura Ermlich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation (ZMBE), Muenster, Germany
| | - Julian Wegner
- Institute of Cell Biology, Center for Molecular Biology of Inflammation (ZMBE), Muenster, Germany
| | - Jana Pfeiffer
- Institute of Cell Biology, Center for Molecular Biology of Inflammation (ZMBE), Muenster, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation (ZMBE), Muenster, Germany
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
8
|
Wu Y, Zeng S, Miao C, Wu H, Xu X, Chen L, Lu G, Lin G, Dai C. A 1-kb human CDCA8 promoter directs the spermatogonia-specific luciferase expression in adult testis. Gene 2023; 866:147350. [PMID: 36898512 DOI: 10.1016/j.gene.2023.147350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
Cell division cycle associated 8 (CDCA8) is a component of the chromosomal passenger complex and plays an essential role in mitosis, meiosis, cancer growth, and undifferentiated state of embryonic stem cells. However, its expression and role in adult tissues remain largely uncharacterized. Here, we studied the CDCA8 transcription in adult tissues by generating a transgenic mouse model, in which the luciferase was driven by a 1-kb human CDCA8 promoter. Our previous study showed that this 1-kb promoter was active enough to dictate reporter expression faithfully reflecting endogenous CDCA8 expression. Two founder mice carrying the transgene were identified. In vivo imaging and luciferase assays in tissue lysates revealed that CDCA8 promoter was highly activated and drove robust luciferase expression in testes. Subsequently, immunohistochemical and immunofluorescent staining showed that in adult transgenic testes, the expression of luciferase was restricted to a subset of spermatogonia that were located along the basement membrane and positive for the expression of GFRA1, a consensus marker for early undifferentiated spermatogonia. These findings for the first time indicate that the CDCA8 was transcriptionally activated in testis and thus may play a role in adult spermatogenesis. Moreover, the 1-kb CDCA8 promoter could be used for spermatogonia-specific gene expression in vivo and the transgenic lines constructed here could also be used for recovery of spermatogonia from adult testes.
Collapse
Affiliation(s)
- Yueren Wu
- School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Sicong Zeng
- School of Medicine, Hunan Normal University, Changsha 410013, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Congxiu Miao
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha 410008, China
| | - Huixia Wu
- School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Xiaoming Xu
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Liansheng Chen
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Guangxiu Lu
- School of Medicine, Hunan Normal University, Changsha 410013, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China; NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha 410008, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410078, China; National Engineering and Research Center of Human Stem Cell, Changsha 410205, China
| | - Ge Lin
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China; NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha 410008, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410078, China; National Engineering and Research Center of Human Stem Cell, Changsha 410205, China.
| | - Can Dai
- School of Medicine, Hunan Normal University, Changsha 410013, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China.
| |
Collapse
|
9
|
Shamhari A‘A, Jefferi NES, Abd Hamid Z, Budin SB, Idris MHM, Taib IS. The Role of Promyelocytic Leukemia Zinc Finger (PLZF) and Glial-Derived Neurotrophic Factor Family Receptor Alpha 1 (GFRα1) in the Cryopreservation of Spermatogonia Stem Cells. Int J Mol Sci 2023; 24:ijms24031945. [PMID: 36768269 PMCID: PMC9915902 DOI: 10.3390/ijms24031945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
The cryopreservation of spermatogonia stem cells (SSCs) has been widely used as an alternative treatment for infertility. However, cryopreservation itself induces cryoinjury due to oxidative and osmotic stress, leading to reduction in the survival rate and functionality of SSCs. Glial-derived neurotrophic factor family receptor alpha 1 (GFRα1) and promyelocytic leukemia zinc finger (PLZF) are expressed during the self-renewal and differentiation of SSCs, making them key tools for identifying the functionality of SSCs. To the best of our knowledge, the involvement of GFRα1 and PLZF in determining the functionality of SSCs after cryopreservation with therapeutic intervention is limited. Therefore, the purpose of this review is to determine the role of GFRα1 and PLZF as biomarkers for evaluating the functionality of SSCs in cryopreservation with therapeutic intervention. Therapeutic intervention, such as the use of antioxidants, and enhancement in cryopreservation protocols, such as cell encapsulation, cryoprotectant agents (CPA), and equilibrium of time and temperature increase the expression of GFRα1 and PLZF, resulting in maintaining the functionality of SSCs. In conclusion, GFRα1 and PLZF have the potential as biomarkers in cryopreservation with therapeutic intervention of SSCs to ensure the functionality of the stem cells.
Collapse
Affiliation(s)
- Asma’ ‘Afifah Shamhari
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Nur Erysha Sabrina Jefferi
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Zariyantey Abd Hamid
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Siti Balkis Budin
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Muhd Hanis Md Idris
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor, Malaysia
| | - Izatus Shima Taib
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
- Correspondence: ; Tel.: +603-928-97608
| |
Collapse
|
10
|
Di Persio S, Neuhaus N. Human spermatogonial stem cells and their niche in male (in)fertility: novel concepts from single-cell RNA-sequencing. Hum Reprod 2023; 38:1-13. [PMID: 36409992 PMCID: PMC9825264 DOI: 10.1093/humrep/deac245] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
The amount of single-cell RNA-sequencing (scRNA-seq) data produced in the field of human male reproduction has steadily increased. Transcriptional profiles of thousands of testicular cells have been generated covering the human neonatal, prepubertal, pubertal and adult period as well as different types of male infertility; the latter include non-obstructive azoospermia, cryptozoospermia, Klinefelter syndrome and azoospermia factor deletions. In this review, we provide an overview of transcriptional changes in different testicular subpopulations during postnatal development and in cases of male infertility. Moreover, we review novel concepts regarding the existence of spermatogonial and somatic cell subtypes as well as their crosstalk and provide corresponding marker genes to facilitate their identification. We discuss the potential clinical implications of scRNA-seq findings, the need for spatial information and the necessity to corroborate findings by exploring other levels of regulation, including at the epigenetic or protein level.
Collapse
Affiliation(s)
- Sara Di Persio
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Münster, Germany
| |
Collapse
|
11
|
Han J, Lin K, Choo H, Chen Y, Zhang X, Xu RH, Wang X, Wu Y. Distinct bulge stem cell populations maintain the pilosebaceous unit in a β-catenin-dependent manner. iScience 2022; 26:105805. [PMID: 36619975 PMCID: PMC9813789 DOI: 10.1016/j.isci.2022.105805] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/21/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The pilosebaceous unit (PSU) is composed of multiple compartments and the self-renewal of PSU depends on distinct hair follicle stem cell (HFSC) populations. However, the differential roles of the HFSCs in sebaceous gland (SG) renewal have not been completely understood. Here, we performed multiple lineage tracing analysis to unveil the contribution of different HFSC populations to PSU regeneration during the hair cycle and wound healing. Our results indicated that the upper bulge stem cells contributed extensively to the SG replenishment during hair cycling, while HFSCs in the lower bugle did not. During skin wound healing, all HFSC populations participated in the SG replenishment. Moreover, β-catenin activation promoted the contribution of HFSCs to SG replenishment, whereas β-catenin deletion substantially repressed the event. Thus, our findings indicated that HFSCs contributed to SG replenishment in a β-catenin-dependent manner.
Collapse
Affiliation(s)
- Jimin Han
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Kaijun Lin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - HuiQin Choo
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
| | - Yu Chen
- School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xuezheng Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Corresponding author
| | - Yaojiong Wu
- School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Corresponding author
| |
Collapse
|
12
|
Corominas-Murtra B, Hannezo E. Modelling the dynamics of mammalian gut homeostasis. Semin Cell Dev Biol 2022:S1084-9521(22)00317-2. [DOI: 10.1016/j.semcdb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/26/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
|
13
|
Jing J, Zhang M, Guo T, Pei F, Yang Y, Chai Y. Rodent incisor as a model to study mesenchymal stem cells in tissue homeostasis and repair. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.1068494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The homeostasis of adult tissues, such as skin, hair, blood, and bone, requires continuous generation of differentiated progeny of stem cells. The rodent incisor undergoes constant renewal and can provide an extraordinary model for studying stem cells and their progeny in adult tissue homeostasis, cell differentiation and injury-induced regeneration. Meanwhile, cellular heterogeneity in the mouse incisor also provides an opportunity to study cell-cell communication between different cell types, including interactions between stem cells and their niche environment. More importantly, the molecular and cellular regulatory mechanisms revealed by the mouse incisor have broad implications for other organs. Here we review recent findings and advances using the mouse incisor as a model, including perspectives on the heterogeneity of cells in the mesenchyme, the niche environment, and signaling networks that regulate stem cell behavior. The progress from this field will not only expand the knowledge of stem cells and organogenesis, but also bridge a gap between animal models and tissue regeneration.
Collapse
|
14
|
An SY, Kim HS, Kim SY, Van SY, Kim HJ, Lee JH, Han SW, Kwon IK, Lee CK, Do SH, Hwang YS. Keratin-mediated hair growth and its underlying biological mechanism. Commun Biol 2022; 5:1270. [PMID: 36402892 PMCID: PMC9675858 DOI: 10.1038/s42003-022-04232-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
Here we show that intradermal injection of keratin promotes hair growth in mice, which results from extracellular interaction of keratin with hair forming cells. Extracellular application of keratin induces condensation of dermal papilla cells and the generation of a P-cadherin-expressing cell population (hair germ) from outer root sheath cells via keratin-mediated microenvironmental changes. Exogenous keratin-mediated hair growth is reflected by the finding that keratin exposure from transforming growth factor beta 2 (TGFβ2)-induced apoptotic outer root sheath cells appears to be critical for dermal papilla cell condensation and P-cadherin-expressing hair germ formation. Immunodepletion or downregulation of keratin released from or expressed in TGFβ2-induced apoptotic outer root sheath cells negatively influences dermal papilla cell condensation and hair germ formation. Our pilot study provides an evidence on initiating hair regeneration and insight into the biological function of keratin exposed from apoptotic epithelial cells in tissue regeneration and development.
Collapse
Affiliation(s)
- Seong Yeong An
- grid.289247.20000 0001 2171 7818Department of Maxillofacial Biomedical Engineering, College of Dentistry, Kyung Hee University, Seoul, 02447 Republic of Korea
| | - Hyo-Sung Kim
- grid.258676.80000 0004 0532 8339Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 Republic of Korea
| | - So Yeon Kim
- grid.289247.20000 0001 2171 7818Department of Maxillofacial Biomedical Engineering, College of Dentistry, Kyung Hee University, Seoul, 02447 Republic of Korea ,grid.411311.70000 0004 0532 4733Present Address: Department of Dental Hygiene, College of Health Science, Cheongju University, Cheongju, 360-764 Republic of Korea
| | - Se Young Van
- grid.289247.20000 0001 2171 7818Department of Maxillofacial Biomedical Engineering, College of Dentistry, Kyung Hee University, Seoul, 02447 Republic of Korea
| | - Han Jun Kim
- grid.258676.80000 0004 0532 8339Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 Republic of Korea ,grid.419901.4Present Address: Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Jae-Hyung Lee
- grid.289247.20000 0001 2171 7818Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, 02447 Republic of Korea
| | - Song Wook Han
- KeraMedix Inc, # 204, Open Innovation Bld, Hongryeung Bio-Cluster, 117-3 Hoegi-ro, Dongdaemun-gu, Seoul, 02455 Republic of Korea
| | - Il Keun Kwon
- grid.289247.20000 0001 2171 7818Department of Dental Materials, College of Dentistry, Kyung Hee University, Seoul, 02447 Republic of Korea
| | - Chul-Kyu Lee
- Headquarters of New Drug Development Support, Chemon Inc. 15 F, Gyeonggi Bio Center, Cheongju, Gyeonggi-do 16229 Republic of Korea
| | - Sun Hee Do
- grid.258676.80000 0004 0532 8339Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 Republic of Korea
| | - Yu-Shik Hwang
- grid.289247.20000 0001 2171 7818Department of Maxillofacial Biomedical Engineering, College of Dentistry, Kyung Hee University, Seoul, 02447 Republic of Korea
| |
Collapse
|
15
|
Mohiuddin M, Kooy RF, Pearson CE. De novo mutations, genetic mosaicism and human disease. Front Genet 2022; 13:983668. [PMID: 36226191 PMCID: PMC9550265 DOI: 10.3389/fgene.2022.983668] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Mosaicism—the existence of genetically distinct populations of cells in a particular organism—is an important cause of genetic disease. Mosaicism can appear as de novo DNA mutations, epigenetic alterations of DNA, and chromosomal abnormalities. Neurodevelopmental or neuropsychiatric diseases, including autism—often arise by de novo mutations that usually not present in either of the parents. De novo mutations might occur as early as in the parental germline, during embryonic, fetal development, and/or post-natally, through ageing and life. Mutation timing could lead to mutation burden of less than heterozygosity to approaching homozygosity. Developmental timing of somatic mutation attainment will affect the mutation load and distribution throughout the body. In this review, we discuss the timing of de novo mutations, spanning from mutations in the germ lineage (all ages), to post-zygotic, embryonic, fetal, and post-natal events, through aging to death. These factors can determine the tissue specific distribution and load of de novo mutations, which can affect disease. The disease threshold burden of somatic de novo mutations of a particular gene in any tissue will be important to define.
Collapse
Affiliation(s)
- Mohiuddin Mohiuddin
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- *Correspondence: Mohiuddin Mohiuddin, ; Christopher E. Pearson,
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, Edegem, Belgium
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Mohiuddin Mohiuddin, ; Christopher E. Pearson,
| |
Collapse
|
16
|
Khorasani N, Sadeghi M. A computational model of stem cells' decision-making mechanism to maintain tissue homeostasis and organization in the presence of stochasticity. Sci Rep 2022; 12:9167. [PMID: 35654903 PMCID: PMC9163052 DOI: 10.1038/s41598-022-12717-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/10/2022] [Indexed: 11/09/2022] Open
Abstract
The maintenance of multi-cellular developed tissue depends on the proper cell production rate to replace the cells destroyed by the programmed process of cell death. The stem cell is the main source of producing cells in a developed normal tissue. It makes the stem cell the lead role in the scene of a fully formed developed tissue to fulfill its proper functionality. By focusing on the impact of stochasticity, here, we propose a computational model to reveal the internal mechanism of a stem cell, which generates the right proportion of different types of specialized cells, distribute them into their right position, and in the presence of intercellular reactions, maintain the organized structure in a homeostatic state. The result demonstrates that the spatial pattern could be harassed by the population geometries. Besides, it clearly shows that our model with progenitor cells able to recover the stem cell presence could retrieve the initial pattern appropriately in the case of injury. One of the fascinating outcomes of this project is demonstrating the contradictory roles of stochasticity. It breaks the proper boundaries of the initial spatial pattern in the population. While, on the flip side of the coin, it is the exact factor that provides the demanded non-genetic diversity in the tissue. The remarkable characteristic of the introduced model as the stem cells' internal mechanism is that it could control the overall behavior of the population without need for any external factors.
Collapse
Affiliation(s)
- Najme Khorasani
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Mehdi Sadeghi
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
17
|
Yuen AC, Hillion KH, Wang R, Amoyel M. Germ cells commit somatic stem cells to differentiation following priming by PI3K/Tor activity in the Drosophila testis. PLoS Genet 2021; 17:e1009609. [PMID: 34898607 PMCID: PMC8699969 DOI: 10.1371/journal.pgen.1009609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/23/2021] [Accepted: 11/27/2021] [Indexed: 01/05/2023] Open
Abstract
How and when potential becomes restricted in differentiating stem cell daughters is poorly understood. While it is thought that signals from the niche are actively required to prevent differentiation, another model proposes that stem cells can reversibly transit between multiple states, some of which are primed, but not committed, to differentiate. In the Drosophila testis, somatic cyst stem cells (CySCs) generate cyst cells, which encapsulate the germline to support its development. We find that CySCs are maintained independently of niche self-renewal signals if activity of the PI3K/Tor pathway is inhibited. Conversely, PI3K/Tor is not sufficient alone to drive differentiation, suggesting that it acts to license cells for differentiation. Indeed, we find that the germline is required for differentiation of CySCs in response to PI3K/Tor elevation, indicating that final commitment to differentiation involves several steps and intercellular communication. We propose that CySC daughter cells are plastic, that their fate depends on the availability of neighbouring germ cells, and that PI3K/Tor acts to induce a primed state for CySC daughters to enable coordinated differentiation with the germline. Stem cells are unique in their ability to regenerate adult tissues by dividing to provide new stem cells, a process called self-renewal, and cells that will differentiate and maintain tissue function. How and when the daughters that differentiate lose the ability to self-renew is still poorly understood. Self-renewal depends on signals that are provided by the supportive micro-environment, or niche, in which the stem cells reside. It was assumed that simply losing access to this environment and the signals it provides was sufficient to direct differentiation. Here we use the Drosophila testis as a model to show that this is not the case. Instead, differentiation must be actively induced by signalling, and stem cells deprived of all signals can be maintained. Studying the relative timings of the various inputs into differentiation leads us to propose that a series of events ensure appropriate differentiation. First, stem cells receive differentiation-inducing signals that promote a permissive, or primed, state which is reversible and does not preclude self-renewal. The final commitment comes from interacting with other cells in the tissue, ensuring that differentiation always occurs in a coordinated manner among the different cell types composing this tissue.
Collapse
Affiliation(s)
- Alice C. Yuen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Kenzo-Hugo Hillion
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Ruoxu Wang
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Chapla R, Hammer JA, West JL. Adding Dynamic Biomolecule Signaling to Hydrogel Systems via Tethered Photolabile Cell-Adhesive Proteins. ACS Biomater Sci Eng 2021; 8:208-217. [PMID: 34870965 DOI: 10.1021/acsbiomaterials.1c01181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sequential biochemical signaling events direct key native tissue processes including disease progression, wound healing and angiogenesis, and tissue regeneration. While in vitro modeling of these processes is critical to understanding endogenous tissue behavior and improving therapeutic outcomes, current models inadequately recapitulate the dynamism of these signaling events. Even the most advanced current synthetic tissue culture constructs are restricted in their capability to sequentially add and remove the same molecule to model transient signaling. Here, we developed a genetically encoded method for reversible biochemical signaling within poly(ethylene glycol) (PEG)-based hydrogels for greater accuracy of modeling tissue regeneration within a reductionist environment. We designed and implemented a recombinant protein with a SpyCatcher domain connected to a cell-adhesive RGDS peptide domain by a light-cleavable domain known as PhoCl. This protein was shown to bind to SpyTag-functionalized PEG-matrices via SpyTag-SpyCatcher isopeptide bonding to present RGDS adhesive ligands to cells. Upon 405 nm light exposure, the PhoCl domain was cleaved to subsequently release the RGDS peptide, which diffused out of the matrix. This system was implemented to confer reversible adhesion of 3T3 fibroblasts to the PEG-based hydrogel surface in 2D culture (73.36 ± 21.47% cell removal upon cell-compatible light exposure) and temporal control over cell spreading over time in 3D culture within cell-degradable PEG-based hydrogels, demonstrating the capability of this system to present dynamic signaling events to cells toward modeling native tissue processes within in a controlled, ECM-mimetic matrix.
Collapse
Affiliation(s)
- Rachel Chapla
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, North Carolina 27708-0281, United States
| | - Joshua A Hammer
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, North Carolina 27708-0281, United States
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, North Carolina 27708-0281, United States
| |
Collapse
|
19
|
Hsu GCY, Cherief M, Sono T, Wang Y, Negri S, Xu J, Peault B, James AW. Divergent effects of distinct perivascular cell subsets for intra-articular cell therapy in posttraumatic osteoarthritis. J Orthop Res 2021; 39:2388-2397. [PMID: 33512030 PMCID: PMC8319216 DOI: 10.1002/jor.24997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/30/2020] [Accepted: 01/24/2021] [Indexed: 02/04/2023]
Abstract
Intra-articular injection of mesenchymal stem cells has shown benefit for the treatment of osteoarthritis (OA). However, mesenchymal stem/stromal cells at the origin of these clinical results are heterogenous cell populations with limited cellular characterization. Here, two transgenic reporter mice were used to examine the differential effects of two precisely defined perivascular cell populations (Pdgfrα+ and Pdgfrβ+ cells) from white adipose tissue for alleviation of OA. Perivascular mesenchymal cells were isolated from transgenic Pdgfrα-and Pdgfrβ-CreERT2 reporter animals and delivered as a one-time intra-articular dose to C57BL/6J mice after destabilization of the medial meniscus (DMM). Both Pdgfrα+ and Pdgfrβ+ cell preparations improved metrics of cartilage degradation and reduced markers of chondrocyte hypertrophy. While some similarities in cell distribution were identified within the synovial and perivascular spaces, injected Pdgfrα+ cells remained in the superficial layers of articular cartilage, while Pdgfrβ+ cells were more widely dispersed. Pdgfrβ+ cell therapy prevented subchondral sclerosis induced by DMM, while Pdgfrα+ cell therapy had no effect. In summary, while both cell therapies showed beneficial effects in the DMM model, important differences in cell incorporation, persistence, and subchondral sclerosis were identified.
Collapse
Affiliation(s)
- Ginny Ching-Yun Hsu
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Takashi Sono
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States;,Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, 90095;,Center For Cardiovascular Science and Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| |
Collapse
|
20
|
Abstract
A fundamental challenge when studying biological systems is the description of cell state dynamics. During transitions between cell states, a multitude of parameters may change - from the promoters that are active, to the RNAs and proteins that are expressed and modified. Cells can also adopt different shapes, alter their motility and change their reliance on cell-cell junctions or adhesion. These parameters are integral to how a cell behaves and collectively define the state a cell is in. Yet, technical challenges prevent us from measuring all of these parameters simultaneously and dynamically. How, then, can we comprehend cell state transitions using finite descriptions? The recent virtual workshop organised by The Company of Biologists entitled 'Cell State Transitions: Approaches, Experimental Systems and Models' attempted to address this question. Here, we summarise some of the main points that emerged during the workshop's themed discussions. We also present examples of cell state transitions and describe models and systems that are pushing forward our understanding of how cells rewire their state.
Collapse
Affiliation(s)
- Carla Mulas
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Agathe Chaigne
- MRC, LMCB, University College London, Gower Street, London WC1E 6BT, UK
| | - Austin Smith
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Kevin J Chalut
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
21
|
Roan HY, Tseng TL, Chen CH. Whole-body clonal mapping identifies giant dominant clones in zebrafish skin epidermis. Development 2021; 148:272161. [PMID: 34463754 DOI: 10.1242/dev.199669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022]
Abstract
Skin expansion during development is predominantly driven by growth of basal epithelial cell (BEC)-derived clonal populations, which often display varied sizes and shapes. However, little is known about the causes of clonal heterogeneity and the maximum size to which a single clone can grow. Here, we created a zebrafish model, basebow, for capturing clonal growth behavior in the BEC population on a whole-body, centimeter scale. By tracking 222 BECs over the course of a 28-fold expansion of body surface area, we determined that most BECs survive and grow clonal populations with an average size of 0.013 mm2. An extensive survey of 742 sparsely labeled BECs further revealed that giant dominant clones occasionally arise on specific body regions, covering up to 0.6% of the surface area. Additionally, a growth-induced extracellular matrix component, Lamb1a, mediates clonal growth in a cell-autonomous manner. Altogether, our findings demonstrate how clonal heterogeneity and clonal dominance may emerge to enable post-embryonic growth of a vertebrate organ, highlighting key cellular mechanisms that may only become evident when visualizing single cell behavior at the whole-animal level.
Collapse
Affiliation(s)
- Hsiao-Yuh Roan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Lun Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
22
|
Hyman LB, Christopher CR, Romero PA. Single-cell nucleic acid profiling in droplets (SNAPD) enables high-throughput analysis of heterogeneous cell populations. Nucleic Acids Res 2021; 49:e103. [PMID: 34233007 PMCID: PMC8501953 DOI: 10.1093/nar/gkab577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/03/2022] Open
Abstract
Experimental methods that capture the individual properties of single cells are revealing the key role of cell-to-cell variability in countless biological processes. These single-cell methods are becoming increasingly important across the life sciences in fields such as immunology, regenerative medicine and cancer biology. In addition to high-dimensional transcriptomic techniques such as single-cell RNA sequencing, there is a need for fast, simple and high-throughput assays to enumerate cell samples based on RNA biomarkers. In this work, we present single-cell nucleic acid profiling in droplets (SNAPD) to analyze sets of transcriptional markers in tens of thousands of single mammalian cells. Individual cells are encapsulated in aqueous droplets on a microfluidic chip and the RNA markers in each cell are amplified. Molecular logic circuits then integrate these amplicons to categorize cells based on the transcriptional markers and produce a detectable fluorescence output. SNAPD is capable of analyzing over 100,000 cells per hour and can be used to quantify distinct cell types within heterogeneous populations, detect rare cells at frequencies down to 0.1% and enrich specific cell types using microfluidic sorting. SNAPD provides a simple, rapid, low cost and scalable approach to study complex phenotypes in heterogeneous cell populations.
Collapse
Affiliation(s)
- Leland B Hyman
- Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Clare R Christopher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Philip A Romero
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.,The University of Wisconsin Carbone Cancer Center, Madison, WI 53706, USA
| |
Collapse
|
23
|
Shakiba N, Jones RD, Weiss R, Del Vecchio D. Context-aware synthetic biology by controller design: Engineering the mammalian cell. Cell Syst 2021; 12:561-592. [PMID: 34139166 PMCID: PMC8261833 DOI: 10.1016/j.cels.2021.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
The rise of systems biology has ushered a new paradigm: the view of the cell as a system that processes environmental inputs to drive phenotypic outputs. Synthetic biology provides a complementary approach, allowing us to program cell behavior through the addition of synthetic genetic devices into the cellular processor. These devices, and the complex genetic circuits they compose, are engineered using a design-prototype-test cycle, allowing for predictable device performance to be achieved in a context-dependent manner. Within mammalian cells, context effects impact device performance at multiple scales, including the genetic, cellular, and extracellular levels. In order for synthetic genetic devices to achieve predictable behaviors, approaches to overcome context dependence are necessary. Here, we describe control systems approaches for achieving context-aware devices that are robust to context effects. We then consider cell fate programing as a case study to explore the potential impact of context-aware devices for regenerative medicine applications.
Collapse
Affiliation(s)
- Nika Shakiba
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ross D Jones
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Domitilla Del Vecchio
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
24
|
Mizukoshi M, Kaku M, Thant L, Kitami K, Arai M, Saito I, Uoshima K. In vivo cell proliferation analysis and cell-tracing reveal the global cellular dynamics of periodontal ligament cells under mechanical-loading. Sci Rep 2021; 11:9813. [PMID: 33963224 PMCID: PMC8105403 DOI: 10.1038/s41598-021-89156-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Periodontal ligament (PDL) is a uniquely differentiated tissue that anchors the tooth to the alveolar bone socket and plays key roles in oral function. PDL cells can respond rapidly to mechanical stimuli, resulting in accelerated tissue remodeling. Cell proliferation is an initial event in tissue remodeling and participates in maintaining the cell supply; therefore, analyzing cell-proliferative activity might provide a comprehensive view of cellular dynamics at the tissue level. In this study, we investigated proliferating cells in mouse molar PDL during orthodontic tooth movement (OTM)-induced tissue remodeling. Our results demonstrated that the mechanical stimuli evoked a dynamic change in the proliferative-cell profile at the entire PDL. Additionally, cell-tracing analysis revealed that the proliferated cells underwent further division and subsequently contributed to tissue remodeling. Moreover, OTM-induced proliferating cells expressed various molecular markers that most likely arise from a wide range of cell types, indicating the lineage plasticity of PDL cells in vivo. Although further studies are required, these findings partially elucidated the global views of the cell trajectory in mouse molar PDL under mechanical-loading conditions, which is vital for understanding the cellular dynamics of the PDL and beneficial for dental treatment in humans.
Collapse
Affiliation(s)
- Masaru Mizukoshi
- Division of Orthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Kaku
- Division of Bio-Prosthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | - Lay Thant
- Division of Orthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kohei Kitami
- Division of Orthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Moe Arai
- Division of Orthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Isao Saito
- Division of Orthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Katsumi Uoshima
- Division of Bio-Prosthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
25
|
Ibrayeva A, Bay M, Pu E, Jörg DJ, Peng L, Jun H, Zhang N, Aaron D, Lin C, Resler G, Hidalgo A, Jang MH, Simons BD, Bonaguidi MA. Early stem cell aging in the mature brain. Cell Stem Cell 2021; 28:955-966.e7. [PMID: 33848469 PMCID: PMC10069280 DOI: 10.1016/j.stem.2021.03.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/19/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Stem cell dysfunction drives many age-related disorders. Identifying mechanisms that initially compromise stem cell behavior represent early targets to promote tissue function later in life. Here, we pinpoint multiple factors that disrupt neural stem cell (NSC) behavior in the adult hippocampus. Clonal tracing showed that NSCs exhibit asynchronous depletion by identifying short-term NSCs (ST-NSCs) and long-term NSCs (LT-NSCs). ST-NSCs divide rapidly to generate neurons and deplete in the young brain. Meanwhile, multipotent LT-NSCs are maintained for months but are pushed out of homeostasis by lengthening quiescence. Single-cell transcriptome analysis of deep NSC quiescence revealed several hallmarks of molecular aging in the mature brain and identified tyrosine-protein kinase Abl1 as an NSC aging factor. Treatment with the Abl inhibitor imatinib increased NSC activation without impairing NSC maintenance in the middle-aged brain. Our study indicates that hippocampal NSCs are particularly vulnerable and adaptable to cellular aging.
Collapse
Affiliation(s)
- Albina Ibrayeva
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA; USC Davis School - Buck Institute Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA 90033, USA
| | - Maxwell Bay
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Elbert Pu
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - David J Jörg
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK; Gurdon Institute, University of Cambridge, Cambridge CB3 0HE, UK
| | - Lei Peng
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Heechul Jun
- Department of Neurological Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Naibo Zhang
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Daniel Aaron
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Congrui Lin
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Galen Resler
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Axel Hidalgo
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mi-Hyeon Jang
- Department of Neurological Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK; Gurdon Institute, University of Cambridge, Cambridge CB3 0HE, UK
| | - Michael A Bonaguidi
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA; USC Davis School - Buck Institute Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90033, USA; Davis School of Gerontology, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
26
|
Postnatal Pluripotent Cells: Quarter of a Century of Research. Bull Exp Biol Med 2021; 170:515-521. [PMID: 33713237 DOI: 10.1007/s10517-021-05099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 10/21/2022]
Abstract
Almost quarter of a century long studies aimed at identification, isolation, culturing, and use of postnatal pluripotent cells for the development of cell-based technologies have not met with success and failed to provide reliable and reproducible protocols of cell isolation, identification, and culturing. At the same time, experimental data in this field suggest that postnatal pluripotent cells are not the copies of embryonic cells and, therefore, the tests routinely used for identification of embryonic pluripotent cells are not fully adequate for characterization of their postnatal analogues. Therefore, cell lineage tracing methods showing the differentiation routes of the studied cells in human or animal body after birth should be developed and used.
Collapse
|
27
|
Kawamura M, Sugihara K, Takigawa-Imamura H, Ogawa T, Miura T. Mathematical Modeling of Dynamic Cellular Association Patterns in Seminiferous Tubules. Bull Math Biol 2021; 83:33. [PMID: 33594605 DOI: 10.1007/s11538-021-00863-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/21/2021] [Indexed: 11/29/2022]
Abstract
In vertebrates, sperm is generated in testicular tube-like structures called seminiferous tubules. The differentiation stages of spermatogenesis exhibit a dynamic spatiotemporal wavetrain pattern. There are two types of pattern-the vertical type, which is observed in mice, and the helical type, which is observed in humans. The mechanisms of this pattern difference remain little understood. In the present study, we used a three-species reaction-diffusion model to reproduce the wavetrain pattern observed in vivo. We hypothesized that the wavelength of the pattern in mice was larger than that in humans and undertook numerical simulations. We found complex patterns of helical and vertical pattern frequency, which can be understood by pattern selection using boundary conditions. From these theoretical results, we predicted that a small number of vertical patterns should be present in human seminiferous tubules. We then found vertical patterns in histological sections of human tubules, consistent with the theoretical prediction. Finally, we showed that the previously reported irregularity of the human pattern could be reproduced using two factors: a wider unstable wavenumber range and the irregular geometry of human compared with mouse seminiferous tubules. These results show that mathematical modeling is useful for understanding the pattern dynamics of seminiferous tubules in vivo.
Collapse
Affiliation(s)
- Mari Kawamura
- Academic Society of Mathematical Medicine, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Kei Sugihara
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hisako Takigawa-Imamura
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiyuki Ogawa
- Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, Tokyo, Japan
| | - Takashi Miura
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
28
|
Ishii R, Yanagisawa H, Sada A. Defining compartmentalized stem cell populations with distinct cell division dynamics in the ocular surface epithelium. Development 2020; 147:dev197590. [PMID: 33199446 PMCID: PMC7758628 DOI: 10.1242/dev.197590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022]
Abstract
Adult tissues contain label-retaining cells (LRCs), which are relatively slow-cycling and considered to represent a property of tissue stem cells (SCs). In the ocular surface epithelium, LRCs are present in the limbus and conjunctival fornix; however, the character of these LRCs remains unclear, owing to lack of appropriate molecular markers. Using three CreER transgenic mouse lines, we demonstrate that the ocular surface epithelium accommodates spatially distinct populations with different cell division dynamics. In the limbus, long-lived Slc1a3CreER-labeled SCs either migrate centripetally toward the central cornea or slowly expand their clones laterally within the limbal region. In the central cornea, non-LRCs labeled with Dlx1CreER and K14CreER behave as short-lived progenitor cells. The conjunctival epithelium in the bulbar, fornix and palpebral compartment is regenerated by regionally unique SC populations. Severe damage to the cornea leads to the cancellation of SC compartments and conjunctivalization, whereas milder limbal injury induces a rapid increase of laterally expanding clones in the limbus. Taken together, our work defines compartmentalized multiple SC/progenitor populations of the mouse eye in homeostasis and their behavioral changes in response to injury.
Collapse
Affiliation(s)
- Ryutaro Ishii
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Aiko Sada
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
29
|
Wang Y, Dai W, Liu Z, Liu J, Cheng J, Li Y, Li X, Hu J, Lü J. Single-Cell Infrared Microspectroscopy Quantifies Dynamic Heterogeneity of Mesenchymal Stem Cells during Adipogenic Differentiation. Anal Chem 2020; 93:671-676. [PMID: 33290049 DOI: 10.1021/acs.analchem.0c04110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The central relevance of cellular heterogeneity to biological phenomena raises the rational needs for analytical techniques with single-cell resolution. Here, we developed a single-cell FTIR microspectroscopy-based method for the quantitative evaluation of cellular heterogeneity by calculating the cell-to-cell similarity distance of the infrared spectral data. Based on this method, we revealed the infrared phenotypes might reflect the dynamic heterogeneity changes in the cell population during the adipogenic differentiation of the human mesenchymal stem cells. These findings provide an alternative label-free optical approach for quantifying the cellular heterogeneity, and the combination with other single-cell analysis tools will be very helpful for understanding the genotype-to-phenotype relationship in cellular populations.
Collapse
Affiliation(s)
- Yadi Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 239 Zhangheng Road, Pudong New District, Shanghai 201203, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jia Luo Road, Jiading District, Shanghai 201800, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Wentao Dai
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China.,Shanghai Center for Bioinformation Technology, No.1278 Ke Yuan Road, Pudong New District, Shanghai 201203, China
| | - Zhixiao Liu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jia Luo Road, Jiading District, Shanghai 201800, China
| | - Jixiang Liu
- Shanghai Center for Bioinformation Technology, No.1278 Ke Yuan Road, Pudong New District, Shanghai 201203, China
| | - Jie Cheng
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 239 Zhangheng Road, Pudong New District, Shanghai 201203, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jia Luo Road, Jiading District, Shanghai 201800, China
| | - Yuanyuan Li
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China.,Shanghai Center for Bioinformation Technology, No.1278 Ke Yuan Road, Pudong New District, Shanghai 201203, China
| | - Xueling Li
- Shanghai University of Medicine and Health Sciences, National Engineering Research Center for Nanotechnology, No. 28 Jiangchuan East Road, Minhang District, Shanghai 201318, China
| | - Jun Hu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 239 Zhangheng Road, Pudong New District, Shanghai 201203, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jia Luo Road, Jiading District, Shanghai 201800, China
| | - Junhong Lü
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 239 Zhangheng Road, Pudong New District, Shanghai 201203, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jia Luo Road, Jiading District, Shanghai 201800, China
| |
Collapse
|
30
|
Yoshida S. Mouse Spermatogenesis Reflects the Unity and Diversity of Tissue Stem Cell Niche Systems. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036186. [PMID: 32152184 DOI: 10.1101/cshperspect.a036186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mouse spermatogenesis is supported by spermatogenic stem cells (SSCs). SSCs maintain their pool while migrating over an open (or facultative) niche microenvironment of testicular seminiferous tubules, where ligands that support self-renewal are likely distributed widely. This contrasts with the classic picture of closed (or definitive) niches in which stem cells are gathered and the ligands are highly localized. Some of the key properties observed in the dynamics of SSCs in the testicular niche in vivo, which show the flexible and stochastic (probabilistic) fate behaviors, are found to be generic for a wide range of, if not all, tissue stem cells. SSCs also show properties characteristic of an open niche-supported system, such as high motility. Motivated by the properties of SSCs, in this review, I will reconsider the potential unity and diversity of tissue stem cell systems, with an emphasis on the varying degrees of ligand distribution and stem cell motility.
Collapse
Affiliation(s)
- Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences; and Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
31
|
Fumagalli A, Bruens L, Scheele CLGJ, van Rheenen J. Capturing Stem Cell Behavior Using Intravital and Live Cell Microscopy. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035949. [PMID: 31767651 DOI: 10.1101/cshperspect.a035949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stem cells maintain tissue homeostasis by driving cellular turnover and regeneration upon damage. They reside within specialized niches that provide the signals required for stem cell maintenance. Stem cells have been identified in many tissues and cancer types, but their behavior within the niche and their reaction to microenvironmental signals were inferred from limited static observations. Recent advances in live imaging techniques, such as live cell imaging and intravital microscopy, have allowed the visualization of stem cell behavior and dynamics over time in their (near) native environment. Through these recent technological advances, it is now evident that stem cells are much more dynamic than previously anticipated, resulting in a model in which stemness is a state that can be gained or lost over time. In this review, we will highlight how live imaging and intravital microscopy have unraveled previously unanticipated stem cell dynamics and plasticity during development, homeostasis, regeneration, and tumor formation.
Collapse
Affiliation(s)
- Arianna Fumagalli
- Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, Amsterdam 1066CX, Netherlands
| | - Lotte Bruens
- Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, Amsterdam 1066CX, Netherlands
| | - Colinda L G J Scheele
- Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, Amsterdam 1066CX, Netherlands
| | - Jacco van Rheenen
- Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, Amsterdam 1066CX, Netherlands
| |
Collapse
|
32
|
Khorasani N, Sadeghi M, Nowzari-Dalini A. A computational model of stem cell molecular mechanism to maintain tissue homeostasis. PLoS One 2020; 15:e0236519. [PMID: 32730297 PMCID: PMC7392222 DOI: 10.1371/journal.pone.0236519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/07/2020] [Indexed: 11/24/2022] Open
Abstract
Stem cells, with their capacity to self-renew and to differentiate to more specialized cell types, play a key role to maintain homeostasis in adult tissues. To investigate how, in the dynamic stochastic environment of a tissue, non-genetic diversity and the precise balance between proliferation and differentiation are achieved, it is necessary to understand the molecular mechanisms of the stem cells in decision making process. By focusing on the impact of stochasticity, we proposed a computational model describing the regulatory circuitry as a tri-stable dynamical system to reveal the mechanism which orchestrate this balance. Our model explains how the distribution of noise in genes, linked to the cell regulatory networks, affects cell decision-making to maintain homeostatic state. The noise effect on tissue homeostasis is achieved by regulating the probability of differentiation and self-renewal through symmetric and/or asymmetric cell divisions. Our model reveals, when mutations due to the replication of DNA in stem cell division, are inevitable, how mutations contribute to either aging gradually or the development of cancer in a short period of time. Furthermore, our model sheds some light on the impact of more complex regulatory networks on the system robustness against perturbations.
Collapse
Affiliation(s)
- Najme Khorasani
- School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
| | - Mehdi Sadeghi
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.,School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Abbas Nowzari-Dalini
- School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
33
|
Sachdeva K, Goel M, Sundaramurthy V. Heterogeneity in the endocytic capacity of individual macrophage in a population determines its subsequent phagocytosis, infectivity and subcellular trafficking. Traffic 2020; 21:522-533. [DOI: 10.1111/tra.12752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Kuldeep Sachdeva
- National Center for Biological Sciences Tata Institute of Fundamental Research Bangalore India
| | - Manisha Goel
- National Center for Biological Sciences Tata Institute of Fundamental Research Bangalore India
| | | |
Collapse
|
34
|
Abstract
Understanding to what extent stem cell potential is a cell-intrinsic property or an emergent behavior coming from global tissue dynamics and geometry is a key outstanding question of systems and stem cell biology. Here, we propose a theory of stem cell dynamics as a stochastic competition for access to a spatially localized niche, giving rise to a stochastic conveyor-belt model. Cell divisions produce a steady cellular stream which advects cells away from the niche, while random rearrangements enable cells away from the niche to be favorably repositioned. Importantly, even when assuming that all cells in a tissue are molecularly equivalent, we predict a common ("universal") functional dependence of the long-term clonal survival probability on distance from the niche, as well as the emergence of a well-defined number of functional stem cells, dependent only on the rate of random movements vs. mitosis-driven advection. We test the predictions of this theory on datasets of pubertal mammary gland tips and embryonic kidney tips, as well as homeostatic intestinal crypts. Importantly, we find good agreement for the predicted functional dependency of the competition as a function of position, and thus functional stem cell number in each organ. This argues for a key role of positional fluctuations in dictating stem cell number and dynamics, and we discuss the applicability of this theory to other settings.
Collapse
|
35
|
Jongen MSA, MacArthur BD, Englyst NA, West J. Single platelet variability governs population sensitivity and initiates intrinsic heterotypic responses. Commun Biol 2020; 3:281. [PMID: 32499608 PMCID: PMC7272428 DOI: 10.1038/s42003-020-1002-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Investigations into the nature of platelet functional variety and consequences for homeostasis require new methods for resolving single platelet phenotypes. Here we combine droplet microfluidics with flow cytometry for high throughput single platelet function analysis. A large-scale sensitivity continuum was shown to be a general feature of human platelets from individual donors, with hypersensitive platelets coordinating significant sensitivity gains in bulk platelet populations and shown to direct aggregation in droplet-confined minimal platelet systems. Sensitivity gains scaled with agonist potency (convulxin > TRAP-14>ADP) and reduced the collagen and thrombin activation threshold required for platelet population polarization into pro-aggregatory and pro-coagulant states. The heterotypic platelet response results from an intrinsic behavioural program. The method and findings invite future discoveries into the nature of hypersensitive platelets and how community effects produce population level responses in health and disease. Maaike S. A. Jongen et al. combine droplet microfluidics with flow cytometry to resolve single platelet responses to agonists. They demonstrate that hyperactive platelets enhance the platelet population response by paracrine signaling as a function of agonist potency and heterotypic responses result from an intrinsic behavioural program.
Collapse
Affiliation(s)
- Maaike S A Jongen
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ben D MacArthur
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK.,Mathematical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Nicola A Englyst
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK.,Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Jonathan West
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK. .,Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
36
|
Kagan BJ, Rosello‐Diez A. Integrating levels of bone growth control: From stem cells to body proportions. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e384. [DOI: 10.1002/wdev.384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/09/2020] [Accepted: 04/16/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Brett J. Kagan
- Australian Regenerative Medicine Institute Monash University Clayton Australia
| | | |
Collapse
|
37
|
Capillary-assisted microfluidic biosensing platform captures single cell secretion dynamics in nanoliter compartments. Biosens Bioelectron 2020; 155:112113. [DOI: 10.1016/j.bios.2020.112113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
|
38
|
Brandi G, Tavolari S. Asbestos and Intrahepatic Cholangiocarcinoma. Cells 2020; 9:E421. [PMID: 32059499 PMCID: PMC7072580 DOI: 10.3390/cells9020421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 02/07/2023] Open
Abstract
The link between asbestos exposure and the onset of thoracic malignancies is well established. However epidemiological studies have provided evidences that asbestos may be also involved in the development of gastrointestinal tumors, including intrahepatic cholangiocarcinoma (ICC). In line with this observation, asbestos fibers have been detected in the liver of patients with ICC. Although the exact mechanism still remains unknown, the presence of asbestos fibers in the liver could be explained in the light of their translocation pathway following ingestion/inhalation. In the liver, thin and long asbestos fibers could remain trapped in the smaller bile ducts, particularly in the stem cell niche of the canals of Hering, and exerting their carcinogenic effect for a long time, thus inducing hepatic stem/progenitor cells (HpSCs) malignant transformation. In this scenario, chronic liver damage induced by asbestos fibers over the years could be seen as a classic model of stem cell-derived carcinogenesis, where HpSC malignant transformation represents the first step of this process. This phenomenon could explain the recent epidemiological findings, where asbestos exposure seems mainly involved in ICC, rather than extrahepatic cholangiocarcinoma, development.
Collapse
Affiliation(s)
- Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, 40138 Bologna, Italy
| | - Simona Tavolari
- Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
| |
Collapse
|
39
|
Shape-dependent regulation of differentiation lineages of bone marrow-derived cells under cyclic stretch. J Biomech 2019; 96:109371. [PMID: 31590963 DOI: 10.1016/j.jbiomech.2019.109371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 12/26/2022]
Abstract
Multipotent stem cells are considered as a key material in regenerative medicine, and the understanding of the heterogeneity in the differentiation potentials of bone marrow-derived cells is important in the successful regenerative tissue repair. Therefore, the present study has been performed to investigate how the differentiation of post-harvest, native bone marrow-derived cells is regulated by cyclic stretch in vitro. Bone marrow-derived cells were obtained from mouse femur of both hind limbs and categorized into the following five categories: amebocytes, round cells, spindle cells, stellate cells and others. The cells were seeded on a silicone-made stretch chamber, and subjected to cyclic stretch with an amplitude of 10% at a frequency of 1 Hz for 7 days for cell shape analysis and for 3 days for the analysis of the expression of marker proteins of osteogenic (osteocalcin), vascular smooth muscle (α-smooth muscle actin and smooth muscle myosin heavy chain) and neurogenic (neurofilament) differentiation. When disregarding the differences in the cell shapes, there was an overall trend that the application of 10% cyclic stretch inhibited osteogenic and neurogenic differentiation, but enhanced smooth muscle differentiation. Close examinations revealed that round cells were influenced the most by cyclic stretch (significant up- or down-regulation in all the four marker protein expressions) while amebocytes and spindle cells were only influenced by cyclic stretch for vascular smooth muscle and/or neurogenic differentiation. As far as the authors know, this is the first study reporting the shape-related differences in the fate decision criteria for mechanical strain in bone marrow-derived cells.
Collapse
|
40
|
Goldmann JM, Veltman JA, Gilissen C. De Novo Mutations Reflect Development and Aging of the Human Germline. Trends Genet 2019; 35:828-839. [PMID: 31610893 DOI: 10.1016/j.tig.2019.08.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/15/2019] [Accepted: 08/28/2019] [Indexed: 01/19/2023]
Abstract
Human germline de novo mutations (DNMs) are both a driver of evolution and an important cause of genetic diseases. In the past few years, whole-genome sequencing (WGS) of parent-offspring trios has facilitated the large-scale detection and study of human DNMs, which has led to exciting discoveries. The overarching theme of all of these studies is that the DNMs of an individual are a complex mixture of mutations that arise through different biological processes acting at different times during human development and life.
Collapse
Affiliation(s)
- J M Goldmann
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - J A Veltman
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, UK; Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - C Gilissen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
41
|
Tai K, Cockburn K, Greco V. Flexibility sustains epithelial tissue homeostasis. Curr Opin Cell Biol 2019; 60:84-91. [PMID: 31153058 PMCID: PMC6756930 DOI: 10.1016/j.ceb.2019.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/01/2019] [Accepted: 04/26/2019] [Indexed: 01/11/2023]
Abstract
Epithelia surround our bodies and line most of our organs. Intrinsic homeostatic mechanisms replenish and repair these tissues in the face of wear and tear, wounds, and even the presence of accumulating mutations. Recent advances in cell biology, genetics, and live-imaging techniques have revealed that epithelial homeostasis represents an intrinsically flexible process at the level of individual epithelial cells. This homeostatic flexibility has important implications for how we think about the more dramatic cell plasticity that is frequently thought to be associated with pathological settings. In this review, we will focus on key emerging mechanisms and processes of epithelial homeostasis and elaborate on the known molecular mechanisms of epithelial cell interactions to illuminate how epithelia are maintained throughout an organism's lifetime.
Collapse
Affiliation(s)
- Karen Tai
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Katie Cockburn
- Departments of Cell Biology & Dermatology, Yale Stem Cell Center, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Valentina Greco
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Cell Biology & Dermatology, Yale Stem Cell Center, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
42
|
Nie Q, Plikus MV. Equal opportunities in stemness. Nat Cell Biol 2019; 21:921-923. [PMID: 31358967 DOI: 10.1038/s41556-019-0366-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qing Nie
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA. .,Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA. .,Department of Mathematics, University of California, Irvine, Irvine, CA, USA. .,Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
| | - Maksim V Plikus
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA. .,Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA. .,Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA. .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
43
|
Wilson A, Hodgson-Garms M, Frith JE, Genever P. Multiplicity of Mesenchymal Stromal Cells: Finding the Right Route to Therapy. Front Immunol 2019; 10:1112. [PMID: 31164890 PMCID: PMC6535495 DOI: 10.3389/fimmu.2019.01112] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/01/2019] [Indexed: 12/26/2022] Open
Abstract
Over the last decade, the acceleration in the clinical use of mesenchymal stromal cells (MSCs) has been nothing short of spectacular. Perhaps most surprising is how little we know about the "MSC product." Although MSCs are being delivered to patients at an alarming rate, the regulatory requirements for MSC therapies (for example in terms of quality assurance and quality control) are nowhere near the expectations of traditional pharmaceuticals. That said, the standards that define a chemical compound or purified recombinant protein cannot be applied with the same stringency to a cell-based therapy. Biological processes are dynamic, adaptive and variable. Heterogeneity will always exist or emerge within even the most rigorously sorted clonal cell populations. With MSCs, perhaps more so than any other therapeutic cell, heterogeneity pervades at multiple levels, from the sample source to the single cell. The research and clinical communities collectively need to recognize and take steps to address this troublesome truth, to ensure that the promise of MSC-based therapies is fulfilled.
Collapse
Affiliation(s)
- Alison Wilson
- Department of Biology, University of York, York, United Kingdom
| | | | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Paul Genever
- Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
44
|
Sonam S, Srnak JA, Perry KJ, Henry JJ. Molecular markers for corneal epithelial cells in larval vs. adult Xenopus frogs. Exp Eye Res 2019; 184:107-125. [PMID: 30981716 DOI: 10.1016/j.exer.2019.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
Corneal Epithelial Stem Cells (CESCs) and their proliferative progeny, the Transit Amplifying Cells (TACs), are responsible for maintaining the integrity and transparency of the cornea. These stem cells (SCs) are widely used in corneal transplants and ocular surface reconstruction. Molecular markers are essential to identify, isolate and enrich for these cells, yet no definitive CESC marker has been established. An extensive literature survey shows variability in the expression of putative CESC markers among vertebrates; being attributed to species-specific variations, or other differences in developmental stages of these animals, approaches used in these studies and marker specificity. Here, we expanded the search for CESC markers using the amphibian model Xenopus laevis. In previous studies we found that long-term label retaining cells (suggestive of CESCs and TACs) are present throughout the larval basal corneal epithelium. In adult frogs, these cells become concentrated in the peripheral cornea (limbal region). Here, we used immunofluorescence to characterize the expression of nine proteins in the corneas of both Xenopus larvae and adults (post-metamorphic). We found that localization of some markers change between larval and adult stages. Markers such as p63, Keratin 19, and β1-integrin are restricted to basal corneal epithelial cells of the larvae. After metamorphosis their expression is found in basal and intermediate layer cells of the adult frog corneal epithelium. Another protein, Pax6 was expressed in the larval corneas, but surprisingly it was not detected in the adult corneal epithelium. For the first time we report that Tcf7l2 can be used as a marker to differentiate cornea vs. skin in frogs. Tcf7l2 is present only in the frog skin, which differs from reports indicating that the protein is expressed in the human cornea. Furthermore, we identified the transition between the inner, and the outer surface of the adult frog eyelid as a key boundary in terms of marker expression. Although these markers are useful to identify different regions and cellular layers of the frog corneal epithelium, none is unique to CESCs or TACs. Our results confirm that there is no single conserved CESC marker in vertebrates. This molecular characterization of the Xenopus cornea facilitates its use as a vertebrate model to understand the functions of key proteins in corneal homeostasis and wound repair.
Collapse
Affiliation(s)
- Surabhi Sonam
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Jennifer A Srnak
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Kimberly J Perry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
45
|
Sharma S, Wistuba J, Pock T, Schlatt S, Neuhaus N. Spermatogonial stem cells: updates from specification to clinical relevance. Hum Reprod Update 2019; 25:275-297. [DOI: 10.1093/humupd/dmz006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/23/2018] [Accepted: 02/22/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Swati Sharma
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| | - Joachim Wistuba
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| | - Tim Pock
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| |
Collapse
|
46
|
Marcotti S, Reilly GC, Lacroix D. Effect of cell sample size in atomic force microscopy nanoindentation. J Mech Behav Biomed Mater 2019; 94:259-266. [PMID: 30928670 DOI: 10.1016/j.jmbbm.2019.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/21/2018] [Accepted: 03/17/2019] [Indexed: 11/25/2022]
Abstract
Single-cell technologies are powerful tools to evaluate cell characteristics. In particular, Atomic Force Microscopy (AFM) nanoindentation experiments have been widely used to study single cell mechanical properties. One important aspect related to single cell techniques is the need for sufficient statistical power to obtain reliable results. This aspect is often overlooked in AFM experiments were sample sizes are arbitrarily set. The aim of the present work was to propose a tool for sample size estimation in the context of AFM nanoindentation experiments of single cell. To this aim, a retrospective approach was used by acquiring a large dataset of experimental measurements on four bone cell types and by building saturation curves for increasing sample sizes with a bootstrap resampling method. It was observed that the coefficient of variation (CV%) decayed with a function of the form y = axb with similar parameters for all samples tested and that sample sizes of 21 and 83 cells were needed for the specific cells and protocol employed if setting a maximum threshold on CV% of 10% or 5%, respectively. The developed tool is made available as an open-source repository and guidelines are provided for its use for AFM nanoindentation experimental design.
Collapse
Affiliation(s)
- Stefania Marcotti
- Insigneo Institute for in silico Medicine, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK; Department of Mechanical Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK.
| | - Gwendolen C Reilly
- Insigneo Institute for in silico Medicine, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK; Department of Materials Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | - Damien Lacroix
- Insigneo Institute for in silico Medicine, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK; Department of Mechanical Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
47
|
Nakatani Y, Kiyonari H, Kondo T. Ecrg4 deficiency extends the replicative capacity of neural stem cells in a Foxg1-dependent manner. Development 2019; 146:dev.168120. [PMID: 30745428 DOI: 10.1242/dev.168120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/28/2019] [Indexed: 02/03/2023]
Abstract
The self-renewal activity of neural stem cells (NSCs) has been suggested to decrease with aging, resulting in age-dependent declines in brain function, such as presbyopia and memory loss. The molecular mechanisms underlying decreases in NSC proliferation with age need to be elucidated in more detail to develop treatments that promote brain function. We have previously reported that the expression of esophageal cancer-related gene 4 (Ecrg4) was upregulated in aged NSCs, whereas its overexpression decreased NSC proliferation, suggesting a functional relationship between Ecrg4 and NSC aging. Using Ecrg4-deficient mice in which the Ecrg4 locus was replaced with the lacZ gene, we here show that Ecrg4 deficiency recovered the age-dependent decline in NSC proliferation and enhanced spatial learning and memory in the Morris water-maze paradigm. We demonstrate that the proliferation of Ecrg4-deficient NSCs was partly maintained by the increased expression of Foxg1. Collectively, these results determine Ecrg4 as a NSC aging factor.
Collapse
Affiliation(s)
- Yuka Nakatani
- Division of Bio-Function Dynamics Imaging, Center for Life Science Technology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit and Genetic Engineering Team, Center for Life Science Technology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| |
Collapse
|
48
|
Kleine-Brüggeney H, van Vliet LD, Mulas C, Gielen F, Agley CC, Silva JCR, Smith A, Chalut K, Hollfelder F. Long-Term Perfusion Culture of Monoclonal Embryonic Stem Cells in 3D Hydrogel Beads for Continuous Optical Analysis of Differentiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804576. [PMID: 30570812 DOI: 10.1002/smll.201804576] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/02/2018] [Indexed: 06/09/2023]
Abstract
Developmental cell biology requires technologies in which the fate of single cells is followed over extended time periods, to monitor and understand the processes of self-renewal, differentiation, and reprogramming. A workflow is presented, in which single cells are encapsulated into droplets (Ø: 80 µm, volume: ≈270 pL) and the droplet compartment is later converted to a hydrogel bead. After on-chip de-emulsification by electrocoalescence, these 3D scaffolds are subsequently arrayed on a chip for long-term perfusion culture to facilitate continuous cell imaging over 68 h. Here, the response of murine embryonic stem cells to different growth media, 2i and N2B27, is studied, showing that the exit from pluripotency can be monitored by fluorescence time-lapse microscopy, by immunostaining and by reverse-transcription and quantitative PCR (RT-qPCR). The defined 3D environment emulates the natural context of cell growth (e.g., in tissue) and enables the study of cell development in various matrices. The large scale of cell cultivation (in 2000 beads in parallel) may reveal infrequent events that remain undetected in lower throughput or ensemble studies. This platform will help to gain qualitative and quantitative mechanistic insight into the role of external factors on cell behavior.
Collapse
Affiliation(s)
- Hans Kleine-Brüggeney
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Liisa D van Vliet
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Carla Mulas
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Fabrice Gielen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Chibeza C Agley
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - José C R Silva
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Austin Smith
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Kevin Chalut
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
- Department of Physics, University of Cambridge, 19 J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| |
Collapse
|
49
|
Yoshida S. Heterogeneous, dynamic, and stochastic nature of mammalian spermatogenic stem cells. Curr Top Dev Biol 2019; 135:245-285. [DOI: 10.1016/bs.ctdb.2019.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Kitadate Y, Jörg DJ, Tokue M, Maruyama A, Ichikawa R, Tsuchiya S, Segi-Nishida E, Nakagawa T, Uchida A, Kimura-Yoshida C, Mizuno S, Sugiyama F, Azami T, Ema M, Noda C, Kobayashi S, Matsuo I, Kanai Y, Nagasawa T, Sugimoto Y, Takahashi S, Simons BD, Yoshida S. Competition for Mitogens Regulates Spermatogenic Stem Cell Homeostasis in an Open Niche. Cell Stem Cell 2018; 24:79-92.e6. [PMID: 30581080 PMCID: PMC6327111 DOI: 10.1016/j.stem.2018.11.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/30/2018] [Accepted: 11/09/2018] [Indexed: 01/08/2023]
Abstract
In many tissues, homeostasis is maintained by physical contact between stem cells and an anatomically defined niche. However, how stem cell homeostasis is achieved in environments where cells are motile and dispersed among their progeny remains unknown. Using murine spermatogenesis as a model, we find that spermatogenic stem cell density is tightly regulated by the supply of fibroblast growth factors (FGFs) from lymphatic endothelial cells. We propose that stem cell homeostasis is achieved through competition for a limited supply of FGFs. We show that the quantitative dependence of stem cell density on FGF dosage, the biased localization of stem cells toward FGF sources, and stem cell dynamics during regeneration following injury can all be predicted and explained within the framework of a minimal theoretical model based on "mitogen competition." We propose that this model provides a generic and robust mechanism to support stem cell homeostasis in open, or facultative, niche environments.
Collapse
Affiliation(s)
- Yu Kitadate
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - David J Jörg
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
| | - Moe Tokue
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Ayumi Maruyama
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Rie Ichikawa
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Soken Tsuchiya
- Department of Pharmaceutical Biochemistry, Kumamoto University Graduate School of Pharmaceutical Sciences, Oe-Honmachi, Kumamoto 862-0973, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Eri Segi-Nishida
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Toshinori Nakagawa
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Aya Uchida
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chiharu Kimura-Yoshida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Takuya Azami
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Chiyo Noda
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Satoru Kobayashi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Isao Matsuo
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine, Immunology Frontier Research Center, World Premier International Research Center (WPI), Osaka University, Osaka 565-0871, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Kumamoto University Graduate School of Pharmaceutical Sciences, Oe-Honmachi, Kumamoto 862-0973, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Benjamin D Simons
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK.
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|