1
|
St John JC, Okada T, Andreas E, Penn A. The role of mtDNA in oocyte quality and embryo development. Mol Reprod Dev 2023; 90:621-633. [PMID: 35986715 PMCID: PMC10952685 DOI: 10.1002/mrd.23640] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 09/02/2023]
Abstract
The mitochondrial genome resides in the mitochondria present in nearly all cell types. The porcine (Sus scrofa) mitochondrial genome is circa 16.7 kb in size and exists in the multimeric format in cells. Individual cell types have different numbers of mitochondrial DNA (mtDNA) copy number based on their requirements for ATP produced by oxidative phosphorylation. The oocyte has the largest number of mtDNA of any cell type. During oogenesis, the oocyte sets mtDNA copy number in order that sufficient copies are available to support subsequent developmental events. It also initiates a program of epigenetic patterning that regulates, for example, DNA methylation levels of the nuclear genome. Once fertilized, the nuclear and mitochondrial genomes establish synchrony to ensure that the embryo and fetus can complete each developmental milestone. However, altering the oocyte's mtDNA copy number by mitochondrial supplementation can affect the programming and gene expression profiles of the developing embryo and, in oocytes deficient of mtDNA, it appears to have a positive impact on the embryo development rates and gene expression profiles. Furthermore, mtDNA haplotypes, which define common maternal origins, appear to affect developmental outcomes and certain reproductive traits. Nevertheless, the manipulation of the mitochondrial content of an oocyte might have a developmental advantage.
Collapse
Affiliation(s)
- Justin C. St John
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Takashi Okada
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Eryk Andreas
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Alexander Penn
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
2
|
Saber M, Shekari F, Mousavi SA, Moini A, Miri MS, Esfandiari F. JAK/STAT3 pathway promotes proliferation of ovarian aggregate-derived stem cells in vitro. Exp Cell Res 2023:113689. [PMID: 37355151 DOI: 10.1016/j.yexcr.2023.113689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND The accurate identification and isolation of ovarian stem cells from mammalian ovaries remain a major challenge because of the lack of specific surface markers and suitable in vitro culture systems. Optimized culture conditions for in vitro expansion of ovarian stem cells would allow for identifying requirements of these stem cells for proliferation and differentiation that would pave the way to uncover role of ovarian stem cells in ovarian pathophysiology. Here, we used three-dimensional (3D) aggregate culture system for enrichment of ovarian stem cells and named them aggregate-derived stem cells (ASCs). We hypothesized that mimicking the ovarian microenvironment in vitro by using an aggregate model of the ovary would provide a suitable niche for the isolation of ovarian stem cells from adult mouse and human ovaries and wanted to find out the main cellular pathway governing the proliferation of these stem cells. RESULTS We showed that ovarian aggregates take an example from ovary microenvironment in terms of expression of ovarian markers, hormone secretion and supporting the viability of the cells. We found that aggregates-derived stem cells proliferate in vitro as long-term while remained expression of germline markers. These ovarian stem cells differentiated to oocyte like cells in vitro spontaneously. Transplantation of these stem cells in to chemotherapy mouse ovary could restore ovarian structure. RNA-sequencing analysis revealed that interleukin6 is upregulated pathway in ovarian aggregate-derived stem cells. Our data showed that JAK/Stat3 signaling pathway which is activated downstream of IL6 is critical for ovarian stem cells proliferation. CONCLUSIONS We developed a platform that is highly reproducible for in vitro propagation of ovarian stem cells. Our study provides a primary insight into cellular pathway governing the proliferation of ovarian stem cells.
Collapse
Affiliation(s)
- Maryam Saber
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyed-Ahmad Mousavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ashraf Moini
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Gynecology and Obstetrics, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran; Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Monireh-Sadat Miri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
3
|
Krajnik K, Mietkiewska K, Skowronska A, Kordowitzki P, Skowronski MT. Oogenesis in Women: From Molecular Regulatory Pathways and Maternal Age to Stem Cells. Int J Mol Sci 2023; 24:ijms24076837. [PMID: 37047809 PMCID: PMC10095116 DOI: 10.3390/ijms24076837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
It is a well-known fact that the reproductive organs in women, especially oocytes, are exposed to numerous regulatory pathways and environmental stimuli. The maternal age is one cornerstone that influences the process of oocyte fertilization. More precisely, the longer a given oocyte is in the waiting-line to be ovulated from menarche to menopause, the longer the duration from oogenesis to fertilization, and therefore, the lower the chances of success to form a viable embryo. The age of menarche in girls ranges from 10 to 16 years, and the age of menopause in women ranges from approximately 45 to 55 years. Researchers are paying attention to the regulatory pathways that are impacting the oocyte at the very beginning during oogenesis in fetal life to discover genes and proteins that could be crucial for the oocyte’s lifespan. Due to the general trend in industrialized countries in the last three decades, women are giving birth to their first child in their thirties. Therefore, maternal age has become an important factor impacting oocytes developmental competence, since the higher a woman’s age, the higher the chances of miscarriage due to several causes, such as aneuploidy. Meiotic failures during oogenesis, such as, for instance, chromosome segregation failures or chromosomal non-disjunction, are influencing the latter-mentioned aging-related phenomenon too. These errors early in life of women can lead to sub- or infertility. It cannot be neglected that oogenesis is a precisely orchestrated process, during which the oogonia and primary oocytes are formed, and RNA synthesis takes place. These RNAs are crucial for oocyte growth and maturation. In this review, we intend to describe the relevance of regulatory pathways during the oogenesis in women. Furthermore, we focus on molecular pathways of oocyte developmental competence with regard to maternal effects during embryogenesis. On the background of transcriptional mechanisms that enable the transition from a silenced oocyte to a transcriptionally active embryo, we will briefly discuss the potential of induced pluripotent stem cells.
Collapse
Affiliation(s)
- Kornelia Krajnik
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Klaudia Mietkiewska
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Agnieszka Skowronska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Pawel Kordowitzki
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Mariusz T. Skowronski
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| |
Collapse
|
4
|
Wang C, Sun Q, Li S, Liu G, Ren J, Li Y, Ding X, Zhu J, Dai Y. Isolation of female germline stem cells from neonatal piglet ovarian tissue and differentiation into oocyte-like cells. Theriogenology 2023; 197:186-197. [PMID: 36525858 DOI: 10.1016/j.theriogenology.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
It has been generally accepted that the number of oocyte pool in mammalian ovaries is limited and irreversibly consumed throughout the adulthood until menopause, which has been challenged by the existence of female germline stem cells (FGSCs) and their differentiation potentials into oocytes through mitosis. However, there have been a few reports about the existence of porcine FGSCs (pFGSCs) in the neonatal piglet ovarian tissues. In this study, the pFGSCs were isolated from the one day post partum (1 dpp) piglet ovaries by a differential anchoring velocity method combined with the magnetic cell sorting (MACS) using VASA antibody. The gene expression levels and in vitro differentiation potentials of pFGSCs were subsequently analyzed. The results showed that Oct4, C-kit, Vasa, Stella, Ifitm3 and Dazl were expressed in the pFGSCs. A small portion of pFGSCs (2.81 ± 0.76%) spontaneously differentiated into oocyte-like cells (OLCs) with a mean diameter of 50 μm and gene expressions of Vasa, Ifitm3, Blimp1, Gdf9, Zp3, Dazl and Stella. Compared with that of the spontaneous differentiation system, the differentiation rates of pFGSCs into OLCs were significantly increased after the co-supplementations of porcine follicular fluid (PFF) and retinoic acid (RA). Taken together, these above results revealed the direct evidences for the existence of pFGSCs in 1 dpp piglet ovaries and the in vitro differentiation potential of pFGSCs into OLCs, benefiting future research related to the in vitro establishment of livestock FGSCs and the in vitro differentiation of pFGSCs.
Collapse
Affiliation(s)
- Chunyu Wang
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Qi Sun
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Shubin Li
- Department of Geriatric Medical Center, Inner Mongolia People's Hospital, No. 20 Zhaowuda Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Zip Code: 010050, Inner Mongolia, China
| | - Jingyu Ren
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Yuan Li
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Xiangxiang Ding
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Jie Zhu
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Yanfeng Dai
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China.
| |
Collapse
|
5
|
Wang J, Fang J, Feng M, Li L, Ma L, Zhao X, Dai Y. Inhibition of EED activity enhances cell survival of female germline stem cell and improves the oocytes production during oogenesis in vitro. Open Biol 2023; 13:220211. [PMID: 36695089 PMCID: PMC9874982 DOI: 10.1098/rsob.220211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ovarian organoids, based on female germline stem cells (FGSCs), are nowadays widely applied for reproductive medicine screening and exploring the potential mechanisms during mammalian oogenesis. However, there are still key issues that urgently need to be resolved in ovarian organoid technology, one of which is to establish a culture system that effectively expands FGSCs in vitro, as well as maintaining the unipotentcy of FGSCs to differentiate into oocytes. Here, FGSCs were EED226 treated and processed for examination of proliferation and differentiation in vitro. According to the results, EED226 specifically increased FGSC survival by decreasing the enrichment of H3K27me3 on Oct4 promoter and exon, as well as enhancing OCT4 expression and inhibiting P53 and P63 expression. Notably, we also found that FGSCs with EED226 treatment differentiated into more oocytes during oogenesis in vitro, and the resultant oocytes maintained a low level of P63 versus control at early stage development. These results demonstrated that inhibition of EED activity appeared to promote the survival of FGSCs and markedly inhibited their apoptosis during in vitro differentiation. As a result of our study, we propose an effective culture strategy to culture FGSCs and obtain oocytes in vitro, which provides a new vision for oogenesis in vitro.
Collapse
Affiliation(s)
- Jiapeng Wang
- College of Life Sciences, Inner Mongolia University, Xilingol South Road No. 49, Hohhot 010020, People's Republic of China
| | - Junxian Fang
- College of Life Sciences, Inner Mongolia University, Xilingol South Road No. 49, Hohhot 010020, People's Republic of China
| | - Mingqian Feng
- College of Life Sciences, Inner Mongolia University, Xilingol South Road No. 49, Hohhot 010020, People's Republic of China
| | - Liping Li
- College of Life Sciences, Inner Mongolia University, Xilingol South Road No. 49, Hohhot 010020, People's Republic of China
| | - Lixin Ma
- College of Life Sciences, Inner Mongolia University, Xilingol South Road No. 49, Hohhot 010020, People's Republic of China
| | - Xiaorong Zhao
- College of Life Sciences, Inner Mongolia University, Xilingol South Road No. 49, Hohhot 010020, People's Republic of China
| | - Yanfeng Dai
- College of Life Sciences, Inner Mongolia University, Xilingol South Road No. 49, Hohhot 010020, People's Republic of China
| |
Collapse
|
6
|
Isolation of Female Germline Stem Cells from Mouse and Human Ovaries by Differential Adhesion. Int J Cell Biol 2022; 2022:5224659. [PMID: 36120418 PMCID: PMC9473869 DOI: 10.1155/2022/5224659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022] Open
Abstract
Spermatogonial stem cell (SSC) counterparts known as female germline stem cells (fGSCs) were found in the mammalian ovary in 2004. Although the existence of fGSCs in the mammalian postnatal ovary is still under controversy, fGSC discovery encourages investigators to better understand the various aspects of these cells. However, their existence is not accepted by all scientists in the field because isolation of fGSCs by fluorescent activated cell sorting (FACS) has not been reproducible. In this study, we used differential adhesion to isolate and enrich fGSCs from mouse and human ovaries and subsequently cultured them in vitro. fGSCs were able to proliferate in vitro and expressed germ cell-specific markers Vasa, Dazl, Blimp1, Fragilis, Stella, and Oct4, at the protein level. Moreover, mouse and human fGSCs were, respectively, cultured for more than four months and one month in culture. Both mouse and human fGSCs maintained the expression of germ cell-specific markers over these times. In vitro cultured fGSCs spontaneously produced oocyte-like cells (OLCs) which expressed oocyte-relevant markers. Our results demonstrated that differential adhesion allows reproducible isolation of fGSCs that are able to proliferate in vitro over time. This source of fGSCs can serve as a suitable material for studying mechanisms underlying female germ cell development and function.
Collapse
|
7
|
Gorczyca G, Wartalski K, Wiater J, Samiec M, Tabarowski Z, Duda M. Anabolic Steroids-Driven Regulation of Porcine Ovarian Putative Stem Cells Favors the Onset of Their Neoplastic Transformation. Int J Mol Sci 2021; 22:ijms222111800. [PMID: 34769230 PMCID: PMC8583785 DOI: 10.3390/ijms222111800] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Nandrolone (Ndn) and boldenone (Bdn), the synthetic testosterone analogues with strong anabolic effects, despite being recognized as potentially carcinogenic compounds, are commonly abused by athletes and bodybuilders, which includes women, worldwide. This study tested the hypothesis that different doses of Ndn and Bdn can initiate neoplastic transformation of porcine ovarian putative stem cells (poPSCs). Immunomagnetically isolated poPSCs were expanded ex vivo in the presence of Ndn or Bdn, for 7 and 14 days. Results show that pharmacological doses of both Ndn and Bdn, already after 7 days of poPSCs culture, caused a significant increase of selected, stemness-related markers of cancer cells: CD44 and CD133. Notably, Ndn also negatively affected poPSCs growth not only by suppressing their proliferation and mitochondrial respiration but also by inducing apoptosis. This observation shows, for the first time, that chronic exposure to Ndn or Bdn represents a precondition that might enhance risk of poPSCs neoplastic transformation. These studies carried out to accomplish detailed molecular characterization of the ex vivo expanded poPSCs and their potentially cancerous derivatives (PCDs) might be helpful to determine their suitability as nuclear donor cells (NDCs) for further investigations focused on cloning by somatic cell nuclear transfer (SCNT). Such investigations might also be indispensable to estimate the capabilities of nuclear genomes inherited from poPSCs and their PCDs to be epigenetically reprogrammed (dedifferentiated) in cloned pig embryos generated by SCNT. This might open up new possibilities for biomedical research aimed at more comprehensively recognizing genetic and epigenetic mechanisms underlying not only tumorigenesis but also reversal/retardation of pro-tumorigenic intracellular events.
Collapse
Affiliation(s)
- Gabriela Gorczyca
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland;
| | - Kamil Wartalski
- Department of Histology, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7 Street, 31-034 Krakow, Poland; (K.W.); (J.W.)
| | - Jerzy Wiater
- Department of Histology, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7 Street, 31-034 Krakow, Poland; (K.W.); (J.W.)
| | - Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice near Kraków, Poland
- Correspondence: (M.S.); (M.D.)
| | - Zbigniew Tabarowski
- Department of Experimental Hematology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland;
| | - Małgorzata Duda
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland;
- Correspondence: (M.S.); (M.D.)
| |
Collapse
|
8
|
Hainaut M, Clarke HJ. Germ cells of the mammalian female: A limited or renewable resource? Biol Reprod 2021; 105:774-788. [PMID: 34114006 DOI: 10.1093/biolre/ioab115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/12/2022] Open
Abstract
In many non-mammalian organisms, a population of germ-line stem cells supports continuing production of gametes during most or all the life of the individual, and germ-line stem cells are also present and functional in male mammals. Traditionally, however, they have been thought not to exist in female mammals, who instead generate all their germ cells during fetal life. Over the last several years, this dogma has been challenged by several reports, while supported by others. We describe and compare these conflicting studies with the aim of understanding how they came to opposing conclusions. We first consider studies that, by examining marker-gene expression, the fate of genetically marked cells, and consequences of depleting the oocyte population, addressed whether ovaries of post-natal females contain oogonial stem cells (OSC) that give rise to new oocytes. We next discuss whether ovaries contain cells that, even if inactive under physiological conditions, nonetheless possess OSC properties that can be revealed through cell-culture. We then examine studies of whether cells harvested after long-term culture of cells obtained from ovaries can, following transplantation into ovaries of recipient females, give rise to oocytes and offspring. Finally, we note studies where somatic cells have been re-programmed to acquire a female germ-cell fate. We conclude that the weight of evidence strongly supports the traditional interpretation that germ-line stem cells do not exist post-natally in female mammals. However, the ability to generate germ cells from somatic cells in vitro establishes a method to generate new gametes from cells of post-natal mammalian females.
Collapse
Affiliation(s)
- Mathilde Hainaut
- Department of Obstetrics and Gynecology, McGill University and Research Institute of the McGill University Health Centre, Montreal Canada
| | - Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University and Research Institute of the McGill University Health Centre, Montreal Canada
| |
Collapse
|
9
|
The effect of hypoxia on the proteomic signature of pig adipose-derived stromal/stem cells (pASCs). Sci Rep 2020; 10:20035. [PMID: 33208768 PMCID: PMC7676232 DOI: 10.1038/s41598-020-76796-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/16/2020] [Indexed: 01/16/2023] Open
Abstract
Human adipose-derived stem cells (ASCs) have potential to improve wound healing; however, their equivalents from domestic animals have received less attention as an alternative cell-based therapy for animals or even humans. Hypoxia is essential for maintaining stem cell functionality in tissue-specific niches. However, a cellular response to low oxygen levels has not been demonstrated in pig ASCs. Hence, the goal of our study was to characterize ASCs isolated from the subcutaneous fat of domestic pigs (pASCs) and examine the effect of hypoxia on their proteome and functional characteristics that might reproduce pASCs wound healing ability. Analysis of immunophenotypic and functional markers demonstrated that pASCs exhibited characteristics of mesenchymal stem cells. Proteomic analysis revealed 70 differentially abundant proteins between pASCs cultured under hypoxia (1% O2) or normoxia (21% O2). Among them, 42 proteins were enriched in the cells exposed to low oxygen, whereas 28 proteins showed decrease expression following hypoxia. Differentially expressed proteins were predominantly involved in cell metabolism, regulation of focal and intracellular communication, and attributed to wound healing. Functional examination of hypoxic pASCs demonstrated acquisition of contractile abilities in vitro. Overall, our results demonstrate that hypoxia pre-conditioning impacts the pASC proteome signature and contractile function in vitro and hence, they might be considered for further cell-based therapy study on wound healing.
Collapse
|
10
|
Wartalski K, Gorczyca G, Wiater J, Tabarowski Z, Palus-Chramiec K, Setkowicz Z, Duda M. Efficient generation of neural-like cells from porcine ovarian putative stem cells - morphological characterization and evaluation of their electrophysiological properties. Theriogenology 2020; 155:256-268. [PMID: 32810809 DOI: 10.1016/j.theriogenology.2020.05.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 12/20/2022]
Abstract
Until recently, the mammalian ovary was considered to consist of fully differentiated tissues, but evidence for the presence of adult stem cells in this organ appeared. The differentiation potential of these cells, referred to as putative stem cells, is not well defined. Porcine ovarian putative stem cells (poPSCs) were immunomagnetically isolated from postnatal pig ovaries based on the presence of the SSEA-4 surface marker protein. First, they were cultured in the undifferentiated state. After the third passage, a novel 7-day culture method inducing their differentiation into neural-like cells by the addition of forskolin (FSK), retinoic acid (RA) and basic fibroblast growth factor (bFGF) to the culture medium was applied. After 7 days, poPSCs successfully differentiated into neural-like cells, as evidenced by neural morphology and the presence of the neuronal markers nestin, NeuN, and GFAP, as confirmed by immunofluorescence, western blot, and real-time PCR. Electrophysiological analysis of potassium and sodium channel activity (patch clamp) confirmed that they indeed differentiated into neurons. The plasticity of poPSCs offers an excellent opportunity, especially in the field of neuroscience, since they can differentiate into neurons or glial cells. Although poPSCs might not be pluripotent cells, they also escape the rigid classification framework of adult stem cells.
Collapse
Affiliation(s)
- Kamil Wartalski
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland; Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034, Krakow, Poland
| | - Gabriela Gorczyca
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Jerzy Wiater
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034, Krakow, Poland; Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Zbigniew Tabarowski
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Zuzanna Setkowicz
- Department of Neuroanatomy, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Małgorzata Duda
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|
11
|
Porras-Gómez TJ, Moreno-Mendoza N. Interaction between oocytes, cortical germ cells and granulosa cells of the mouse and bat, following the dissociation-re-aggregation of adult ovaries. ZYGOTE 2020; 28:223-232. [PMID: 32122435 DOI: 10.1017/s0967199420000052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is widely accepted that the oocyte plays a very active role in promoting the growth of the follicle by directing the differentiation of granulosa cells and secreting paracrine growth factors. In turn, granulosa cells regulate the development of the oocytes, establishing close bidirectional communication between germ and somatic cells. The presence of cortical cells with morphological characteristics, similar to primordial germ cells that express specific germline markers, stem cells and cell proliferation, known as adult cortical germ cells (ACGC) have been reported in phyllostomid bats. Using magnetic cell separation techniques, dissociation-cellular re-aggregation and organ culture, the behaviour of oocytes and ACGC was analyzed by interacting in vitro with mouse ovarian cells. Bat ACGC was mixed with disaggregated ovaries from a transgenic mouse that expressed green fluorescent protein. The in vitro reconstruction of the re-aggregates was evaluated. We examined the viability, integration, cellular interaction and ovarian morphogenesis by detecting the expression of Vasa, pH3, Cx43 and Laminin. Our results showed that the interaction between ovarian cells is carried out in the adult ovary of two species, without them losing their capacity to form follicular structures, even after having been enzymatically dissociated.
Collapse
Affiliation(s)
- Tania Janeth Porras-Gómez
- Laboratorio de Biología Tisular y Reproductora, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México
| | - Norma Moreno-Mendoza
- Department of Cell Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510México, DF, México
| |
Collapse
|
12
|
Bharti D, Jang SJ, Lee SY, Lee SL, Rho GJ. In Vitro Generation of Oocyte Like Cells and Their In Vivo Efficacy: How Far We have been Succeeded. Cells 2020; 9:E557. [PMID: 32120836 PMCID: PMC7140496 DOI: 10.3390/cells9030557] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
In the last few decades, stem cell therapy has grown as a boon for many pathological complications including female reproductive disorders. In this review, a brief description of available strategies that are related to stem cell-based in vitro oocyte-like cell (OLC) development are given. We have tried to cover all the aspects and latest updates of the in vitro OLC developmental methodologies, marker profiling, available disease models, and in vivo efficacies, with a special focus on mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) usage. The differentiation abilities of both the ovarian and non-ovarian stem cell sources under various induction conditions have shown different effects on morphological alterations, proliferation- and size-associated developments, hormonal secretions under gonadotropic stimulations, and their neo-oogenesis or folliculogenesis abilities after in vivo transplantations. The attainment of characters like oocyte-like morphology, size expansion, and meiosis initiation have been found to be major obstacles during in vitro oogenesis. A number of reports have either lacked in vivo studies or have shown their functional incapability to produce viable and healthy offspring. Though researchers have gained many valuable insights regarding in vitro gametogenesis, still there are many things to do to make stem cell-derived OLCs fully functional.
Collapse
Affiliation(s)
- Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
| | - Si-Jung Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
| | - Sang-Yun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
13
|
Silvestris E, D’Oronzo S, Cafforio P, Kardhashi A, Dellino M, Cormio G. In Vitro Generation of Oocytes from Ovarian Stem Cells (OSCs): In Search of Major Evidence. Int J Mol Sci 2019; 20:ijms20246225. [PMID: 31835581 PMCID: PMC6940822 DOI: 10.3390/ijms20246225] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023] Open
Abstract
The existence of ovarian stem cells (OSCs) in women as well as their physiological role in post-menopausal age are disputed. However, accumulating evidence demonstrated that, besides the animal models including primarily mice, even in adult women putative OSCs obtained from ovarian cortex are capable to differentiate in vitro into oocyte-like cells (OLCs) expressing molecular markers typical of terminal stage of oogonial cell lineage. Recent studies describe that, similarly to mature oocytes, the OSC-derived OLCs also contain haploid karyotype. As proof of concept of their stem commitment, OSCs from mice differentiated to oocytes in vitro are suitable to be fertilized and implanted in sterilized animals resulting in embryo development. Despite enthusiasm for these data, which definitely require extended confirmation before considering potential application in humans for treatment of ovarian insufficiency, OSCs appear suitable for other clinical uses, restoring the endocrine derangements in premature ovarian failure or for fertility preservation in oncologic patients after anti-cancer treatments. In this context, the selection of viable oocytes generated from OSCs before chemotherapy protocols would overcome the potential adjunct oncogenic risk in women bearing hormone-dependent tumors who are repeatedly stimulated with high dose estrogens to induce oocyte maturation for their egg recruitment and cryopreservation.
Collapse
Affiliation(s)
- Erica Silvestris
- Gynecologic Oncology Unit, National Cancer Center, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (A.K.); (M.D.); (G.C.)
- Correspondence:
| | - Stella D’Oronzo
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, 70124 Bari, Italy; (S.D.); (P.C.)
- National Cancer Center, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy
| | - Paola Cafforio
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, 70124 Bari, Italy; (S.D.); (P.C.)
| | - Anila Kardhashi
- Gynecologic Oncology Unit, National Cancer Center, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (A.K.); (M.D.); (G.C.)
| | - Miriam Dellino
- Gynecologic Oncology Unit, National Cancer Center, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (A.K.); (M.D.); (G.C.)
| | - Gennaro Cormio
- Gynecologic Oncology Unit, National Cancer Center, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (A.K.); (M.D.); (G.C.)
- Department of Biomedical Sciences and Human Oncology, Unit of Obstetrics and Gynecology, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
14
|
Hoang SN, Ho CNQ, Nguyen TTP, Doan CC, Tran DH, Le LT. Evaluation of stemness marker expression in bovine ovarian granulosa cells. Anim Reprod 2019; 16:277-281. [PMID: 33224287 PMCID: PMC7673596 DOI: 10.21451/1984-3143-ar2018-0083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to assess the stemness marker expressions (Oct4, Nanog, and Sox2) of granulosa cells (GCs) collected from bovine ovarian follicles and in vitro expansion. The single bovine ovarian follicles were isolated and categorized into 4 groups according to their diameter including group A (<2 mm), group B (2-3 mm), group C (3-4 mm), and group D (>4 mm). Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and immunostaining were applied to evaluate the stemness marker expression of bovine GCs from ovarian follicles. We also estimated the stemness marker transcript expressions of GCs during in vitro expression by qRT-PCR. qRT-PCR analysis demonstrated that fresh GCs from bovine ovarian follicles expressed the stemness markers (Oct4, Nanog, Sox2). These markers were down-regulated during antral stage follicular development. We also estimated stemness marker transcript expressions of GCs which were isolated and in vitro expanded from ovarian follicles of group A. The qRT-PCR results showed that Oct4 and Sox2 transcript expressions were reduced during in vitro expansion while Nanog transcript was not expressed.
Collapse
Affiliation(s)
- Son Nghia Hoang
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Chi Nguyen Quynh Ho
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Thao Thi Phuong Nguyen
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Chung Chinh Doan
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Diem Hong Tran
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, TX
| | - Long Thanh Le
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| |
Collapse
|
15
|
Mitochondria and Female Germline Stem Cells-A Mitochondrial DNA Perspective. Cells 2019; 8:cells8080852. [PMID: 31398797 PMCID: PMC6721711 DOI: 10.3390/cells8080852] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondria and mitochondrial DNA have important roles to play in development. In primordial germ cells, they progress from small numbers to populate the maturing oocyte with high numbers to support post-fertilization events. These processes take place under the control of significant changes in DNA methylation and other epigenetic modifiers, as well as changes to the DNA methylation status of the nuclear-encoded mitochondrial DNA replication factors. Consequently, the differentiating germ cell requires significant synchrony between the two genomes in order to ensure that they are fit for purpose. In this review, I examine these processes in the context of female germline stem cells that are isolated from the ovary and those derived from embryonic stem cells and reprogrammed somatic cells. Although our knowledge is limited in this respect, I provide predictions based on other cellular systems of what is expected and provide insight into how these cells could be used in clinical medicine.
Collapse
|
16
|
Nguyen HH, Nhu BLQ, Uyen NNP, Nguyen VT, Bui HT. Isolation of female germline stem cells from porcine ovarian tissue and differentiation into oocyte-like cells. J Reprod Dev 2019; 65:423-432. [PMID: 31378755 PMCID: PMC6815736 DOI: 10.1262/jrd.2019-050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Historically, it had been widely accepted that the female mammalian ovary contained a limited number of oocytes that would reduce over time, without the possibility of replenishment.
However, recent studies have suggested that female germline stem cells (FGSCs) could replenish the oocyte-pool in adults. The aim of this study was to isolate FGSCs from porcine ovaries and
differentiate them into oocyte-like cells (OLCs). The FGSCs were successfully isolated from porcine ovarian tissue and cultured in vitro, in DMEM/F-12 medium supplemented
with growth factors (EGF, FGF, GDNF, etc.) and a supplement (N21). These cells possessed spherical morphology and expressed specific germline characteristics (Vasa, Stella, Oct4, c-kit). By
evaluating different conditions for in vitro differentiation of FGSCs, co-culturing the isolated FGSCs with MEF cells, under three-dimensional (3D) cell cultures, were shown
to be optimal. FGSCs could successfully be differentiated into OLCs and reached about 70 µm in diameter, with a large number of surrounding somatic cells. Importantly, OLCs contained large
nuclei, about 25–30 µm, with filamentous chromatin, similar to oocyte morphology, and expressed oocyte-specific markers (Gdf9, Zp2, SCP3, etc.) at the same level as oocytes. In conclusion,
we successfully isolated FGSCs from porcine ovarian tissue and differentiated them into oocyte-like cells. This will provide a valuable model for studying a new, alternative source of
oocytes.
Collapse
Affiliation(s)
- Huy-Hoang Nguyen
- Cellular Reprogramming Laboratory, School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Bui Le Quynh Nhu
- Cellular Reprogramming Laboratory, School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Nhat Phuong Uyen
- Cellular Reprogramming Laboratory, School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Van-Thuan Nguyen
- Cellular Reprogramming Laboratory, School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Hong-Thuy Bui
- Cellular Reprogramming Laboratory, School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
17
|
Similar Population of CD133+ and DDX4+ VSEL-Like Stem Cells Sorted from Human Embryonic Stem Cell, Ovarian, and Ovarian Cancer Ascites Cell Cultures: The Real Embryonic Stem Cells? Cells 2019; 8:cells8070706. [PMID: 31336813 PMCID: PMC6678667 DOI: 10.3390/cells8070706] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
A population of small stem cells with diameters of up to 5 μm resembling very small embryonic-like stem cells (VSELs) were sorted from human embryonic stem cell (hESC) cultures using magnetic-activated cell sorting (MACS) based on the expression of a stem-cell-related marker prominin-1 (CD133). These VSEL-like stem cells had nuclei that almost filled the whole cell volume and expressed stem-cell-related markers (CD133, SSEA-4) and markers of germinal lineage (DDX4/VASA, PRDM14). They were comparable to similar populations of small stem cells sorted from cell cultures of normal ovaries and were the predominant cells in ascites of recurrent ovarian cancer. The sorted populations of CD133+ VSEL-like stem cells were quiescent in vitro, except for ascites, and were highly activated after exposure to valproic acid and follicle-stimulating hormone (FSH), indicating a new tool to study these cells in vitro. These VSEL-like stem cells spontaneously formed clusters resembling tumour-like structures or grew into larger, oocyte-like cells and were differentiated in vitro into adipogenic, osteogenic and neural lineages after sorting. We propose the population of VSEL-like stem cells from hESC cultures as potential original embryonic stem cells, which are present in the human embryo, persist in adult human ovaries from the embryonic period of life and are involved in cancer manifestation.
Collapse
|
18
|
Virant-Klun I. Functional Testing of Primitive Oocyte-like Cells Developed in Ovarian Surface Epithelium Cell Culture from Small VSEL-like Stem Cells: Can They Be Fertilized One Day? Stem Cell Rev Rep 2019; 14:715-721. [PMID: 29876729 DOI: 10.1007/s12015-018-9832-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Data from the literature show that there are different populations of stem cells present in human adult ovaries, including small stem cells resembling very small embryonic-like stem cells (VSELs). These small ovarian stem cells with diameters of up to 5 μm are present in the ovarian surface epithelium and can grow into bigger, primitive oocyte-like cells that express several markers of a germinal lineage and exhibit pluripotency but not the zona pellucida structure when cultured in vitro. In this report, we present the results of the functional testing of such primitive oocyte-like cells from one patient with premature ovarian failure after insemination with her partners' sperm. Knowing that even immature oocytes collected in an in vitro fertilization program cannot be fertilized naturally, we were only interested in determining whether and how these cells react to added sperm and whether spermatozoa somehow "recognize" them. Interestingly, the primitive oocyte-like cells quickly released a zona pellucida-like structure in the presence of sperm. Two different populations of cells were distinguished, those with a thick and those with a thin zona pellucida-like structure. The primitive oocyte-like cells with a released zona pellucida-like structure expressed the pluripotency-related gene OCT4A (POU5F1) and zona pellucida-related gene ZP3, similar to oocytes obtained from in vitro fertilization but not somatic chondrocytes. In a small proportion of these cells, a single-spermatozoon was observed inside the cytoplasm, but no signs of fertilization were found. These observations may suggest a primitive "cortical reaction". Our data further confirm the presence of germinal stem cells in the ovarian surface epithelium cell culture.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia.
| |
Collapse
|
19
|
Abstract
KIT is a receptor tyrosine kinase that after binding to its ligand stem cell factor activates signaling cascades linked to biological processes such as proliferation, differentiation, migration and cell survival. Based on studies performed on SCF and/or KIT mutant animals that presented anemia, sterility, and/or pigmentation disorders, KIT signaling was mainly considered to be involved in the regulation of hematopoiesis, gametogenesis, and melanogenesis. More recently, novel animal models and ameliorated cellular and molecular techniques have led to the discovery of a widen repertoire of tissue compartments and functions that are being modulated by KIT. This is the case for the lung, heart, nervous system, gastrointestinal tract, pancreas, kidney, liver, and bone. For this reason, the tyrosine kinase inhibitors that were originally developed for the treatment of hemato-oncological diseases are being currently investigated for the treatment of non-oncological disorders such as asthma, rheumatoid arthritis, and alzheimer's disease, among others. The beneficial effects of some of these tyrosine kinase inhibitors have been proven to depend on KIT inhibition. This review will focus on KIT expression and regulation in healthy and pathologic conditions other than cancer. Moreover, advances in the development of anti-KIT therapies, including tyrosine kinase inhibitors, and their application will be discussed.
Collapse
|
20
|
Hou Z, An L, Han J, Yuan Y, Chen D, Tian J. Revolutionize livestock breeding in the future: an animal embryo-stem cell breeding system in a dish. J Anim Sci Biotechnol 2018; 9:90. [PMID: 30568797 PMCID: PMC6298008 DOI: 10.1186/s40104-018-0304-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Meat and milk production needs to increase ~ 70–80% relative to its current levels for satisfying the human needs in 2050. However, it is impossible to achieve such genetic gain by conventional animal breeding systems. Based on recent advances with regard to in vitro induction of germ cell from pluripotent stem cells, herein we propose a novel embryo-stem cell breeding system. Distinct from the conventional breeding system in farm animals that involves selecting and mating individuals, the novel breeding system completes breeding cycles from parental to offspring embryos directly by selecting and mating embryos in a dish. In comparison to the conventional dairy breeding scheme, this system can rapidly achieve 30–40 times more genetic gain by significantly shortening generation interval and enhancing selection intensity. However, several major obstacles must be overcome before we can fully use this system in livestock breeding, which include derivation and mantaince of pluripotent stem cells in domestic animals, as well as in vitro induction of primordial germ cells, and subsequent haploid gametes. Thus, we also discuss the potential efforts needed in solving the obstacles for application this novel system, and elaborate on their groundbreaking potential in livestock breeding. This novel system would provide a revolutionary animal breeding system by offering an unprecedented opportunity for meeting the fast-growing meat and milk demand of humans.
Collapse
Affiliation(s)
- Zhuocheng Hou
- 1Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei An
- 1Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianyong Han
- 2State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ye Yuan
- 3Colorado Center for Reproductive Medicine, Denver, USA
| | - Dongbao Chen
- 4Department of Obstetrics and Gynecology, University of California Irvine, Irvine, USA
| | - Jianhui Tian
- 1Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Sánchez-Maldonado B, Galicia MDL, Rojo C, González-Gil A, Flor-García M, Picazo RA. Spheroids Spontaneously Generated In Vitro from Sheep Ovarian Cortical Cells Contain Integrating Cells That Exhibit Hallmarks of Neural Stem/Progenitor Cells. Stem Cells Dev 2018; 27:1557-1576. [PMID: 30251912 DOI: 10.1089/scd.2017.0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell spheroids are inducible or spontaneously generated cell aggregates produced in vitro that can provide a valuable model for developmental biology, stem cell biology, and cancer therapy research. This investigation aimed to define the cellular identity of spheroids spontaneously generated in vitro from sheep ovarian cortical cells cultured under specific serum-free conditions. Spheroids were characterized during 21 days of culture by morphometric evaluation, detection of alkaline phosphatase (AP) activity, gene expression analyses of stemness transcription factors and several lineage markers, immunolocalization analyses, as well as assessment of self-renewal and differentiation potential. Cell aggregation, evidenced from day 3 of culture onward, resulted in efficient generation of 65-75 spheroids for every 500,000 cells seeded. The spheroids reached maximum diameter (187 ± 15.9 μm) during the second week of culture and exhibited AP activity. Sox2, Oct4, and Nanog were expressed throughout the culture period, with upregulation of Sox2. Neural lineage specification genes (eg, nestin, vimentin, Pax6, and p75NTR) were expressed from day 10 onward at levels above that of Oct4, Nanog and those for endoderm [alpha-fetoprotein (AFP)], and mesoderm (brachyury) specification. Neural stem cell (NSC)/neural progenitor cell (NPC) markers, nestin, Pax6, p75NTR, and vimentin, were extensively localized in cells on day 10, 15 (44.75% ± 5.84%; 93.54% ± 1.35%; 78.90% ± 4.80%; 73.82% ± 3.40%, respectively), and 21 (49.98% ± 5.30%; 91.84% ± 1.9%; 76.74% ± 11.0%; 95.80% ± 3.60%, respectively). Spheroid cell self-renewal was evidenced by cell proliferation and the generation of new spheroids during two consecutive expansion periods. Culture of spheroid cells under differentiation conditions gave rise to cells showing immunolocalization of the neuron-specific antigen NeuN and the astroglial antigen GFAP (glial fibrillary acidic protein). Our results indicate that spheroids spontaneously generated in this culture system were comprised of cells with molecular characteristics of NSC/NPC that can self-renew and differentiate into neurons and glia, supporting the identity of spheroids as neurospheres.
Collapse
Affiliation(s)
- Belén Sánchez-Maldonado
- 1 Departamento de Medicina y Cirugía, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| | - María de Lourdes Galicia
- 2 Sección Departamental de Fisiología, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| | - Concepción Rojo
- 3 Sección Departamental de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| | - Alfredo González-Gil
- 2 Sección Departamental de Fisiología, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| | - Miguel Flor-García
- 4 Departamento de Neuropatología Molecular, Centro de Biología Molecular "Severo Ochoa" (CBMSO), CSIC-UAM , Madrid, España.,5 Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid , Madrid, España
| | - Rosa A Picazo
- 2 Sección Departamental de Fisiología, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| |
Collapse
|
22
|
Yazdekhasti H, Hosseini MA, Rajabi Z, Parvari S, Salehnia M, Koruji M, Izadyar F, Aliakbari F, Abbasi M. Improved Isolation, Proliferation, and Differentiation Capacity of Mouse Ovarian Putative Stem Cells. Cell Reprogram 2017; 19:132-144. [PMID: 28375748 DOI: 10.1089/cell.2016.0054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The recent discovery of ovarian stem cells in postnatal mammalian ovaries, also referred to as putative stem cells (PSCs), and their roles in mammalian fertility has challenged the long-existing theory that women are endowed with a certain number of germ cells. The rare amount of PSCs is the major limitation for utilizing them through different applications. Therefore, this study was conducted in six phases to find a way to increase the number of Fragilis- and mouse vasa homolog (MVH)-positive sorted cells from 14-day-old NMRI strain mice. Results showed that there is a population of Fragilis- and MVH-positive cells with pluripotent stem cell characteristics, which can be isolated and expanded for months in vitro. PSCs increase their proliferation capacity under the influence of some mitogenic agents, and our results showed that different doses of stem cell factor (SCF) induce PSC proliferation with the maximum increase observed at 50 ng/mL. SCF was also able to increase the number of Fragilis- and MVH-positive cells after sorting by magnetic-activated cell sorting and enhance colony formation efficiency in sorted cells. Differentiation capacity assay indicated that there is a basic level of spontaneous differentiation toward oocyte-like cells during 3 days of culture. However, relative gene expression was significantly higher in the follicle-stimulating hormone-treated groups, especially in the Fragilis- sorted PSCs. We suggest that higher number of PSCs provides us either a greater source of energy that can be injected into energy-impaired oocytes in women with a history of repeat IVF failure or a good source for research.
Collapse
Affiliation(s)
- Hossein Yazdekhasti
- 1 Department of Anatomy, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Marzieh Agha Hosseini
- 2 Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | - Zahra Rajabi
- 1 Department of Anatomy, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Soraya Parvari
- 3 Department of Anatomy, School of Medicine, Alborz University of Medical Sciences , Karaj, Iran
| | - Mojdeh Salehnia
- 4 Department of Anatomy, School of Medical Sciences, Tarbiat Modarres University , Tehran, Iran
| | - Morteza Koruji
- 5 Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | | | - Fereshte Aliakbari
- 1 Department of Anatomy, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Mehdi Abbasi
- 1 Department of Anatomy, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
23
|
Adib S, Valojerdi MR. Molecular assessment, characterization, and differentiation of theca stem cells imply the presence of mesenchymal and pluripotent stem cells in sheep ovarian theca layer. Res Vet Sci 2017; 114:378-387. [DOI: 10.1016/j.rvsc.2017.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/07/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
|
24
|
Abstract
Recently, the existence of a mechanism for neo-oogenesis in the ovaries of adult mammals has generated much controversy within reproductive biology. This mechanism, which proposes that the ovary has cells capable of renewing the follicular reserve, has been described for various species of mammals. The first evidence was found in prosimians and humans. However, these findings were not considered relevant because the predominant dogma for reproductive biology at the time was that of Zuckerman. This dogma states that female mammals are born with finite numbers of oocytes that decline throughout postnatal life. Currently, the concept of neo-oogenesis has gained momentum due to the discovery of cells with mitotic activity in adult ovaries of various mammalian species (mice, humans, rhesus monkeys, domestic animals such as pigs, and wild animals such as bats). Despite these reports, the concept of neo-oogenesis has not been widely accepted by the scientific community, generating much criticism and speculation about its accuracy because it has been impossible to reproduce some evidence. This controversy has led to the creation of two positions: one in favour of neo-oogenesis and the other against it. Various animal models have been used in support of both camps, including both classic laboratory animals and domestic and wild animals. The aim of this review is to critically present the current literature on the subject and to evaluate the arguments pro and contra neo-oogenesis in mammals.
Collapse
|
25
|
Tsai TS, Johnson J, White Y, John JC. The molecular characterization of porcine egg precursor cells. Oncotarget 2017; 8:63484-63505. [PMID: 28969006 PMCID: PMC5609938 DOI: 10.18632/oncotarget.18833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/03/2017] [Indexed: 12/12/2022] Open
Abstract
Female-factor infertility can be caused by poor oocyte quality and depleted ovarian reserves. Egg precursor cells (EPCs), isolated from the ovarian cortex, have the potential to be used to overcome female infertility. We aimed to define the origins of EPCs by analyzing their gene expression profiles and mtDNA content using a mini-pig model. We characterized FAC-sorted DDX4+-derived porcine EPCs by performing RNA-sequencing and determined that they utilize pathways important for cell cycle and proliferation, which supports the existence of adult mitotically active oogonial cells. Expression of the pluripotent markers Sox2 and Oct4, and the primitive germ cell markers Blimp1 and Stella were not detected. However, Nanog and Ddx4 were expressed, as were the primitive germ cell markers Fragilis, c-Kit and Tert. Moreover, porcine EPCs expressed self-renewal and proliferation markers including Myc, Esrrb, Id2, Klf4, Klf5, Stat3, Fgfr1, Fgfr2 and Il6st. The presence of Zp1, Zp2, Zp3 and Nobox were not detected, indicating that porcine EPCs are not indicative of mature primordial oocytes. We performed mitochondrial DNA Next Generation Sequencing and determined that one mtDNA variant harbored by EPCs was present in oocytes, preimplantation embryos and somatic tissues over three generations in our mini-pig model indicating the potential germline origin of EPCs.
Collapse
Affiliation(s)
- Te-Sha Tsai
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Centre for Genetic Diseases, Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Jacqueline Johnson
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | | | - Justin C John
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Centre for Genetic Diseases, Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
26
|
Horan CJ, Williams SA. Oocyte stem cells: fact or fantasy? Reproduction 2017; 154:R23-R35. [PMID: 28389520 DOI: 10.1530/rep-17-0008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/29/2017] [Accepted: 04/07/2017] [Indexed: 01/08/2023]
Abstract
For many decades, the dogma prevailed that female mammals had a finite pool of oocytes at birth and this was gradually exhausted during a lifetime of reproductive function. However, in 2004, a new era began in the field of female oogenesis. A study was published that appeared to detect oocyte-stem cells capable of generating new eggs within mouse ovaries. This study was highly controversial and the years since this initial finding have produced extensive research and even more extensive debate into their possibility. Unequivocal evidence testifying to the existence of oocyte-stem cells (OSCs) has yet to be produced, meanwhile the spectrum of views from both sides of the debate are wide-ranging and surprisingly passionate. Although recent studies have presented some convincing results that germ cells exist and are capable of creating new oocytes, many questions remain. Are these cells present in humans? Do they exist in physiological conditions in a dormant state? This comprehensive review first examines where and how the dogma of a finite pool was established, how this has been challenged over the years and addresses the most pertinent questions as to the current status of their existence, their role in female fertility, and perhaps most importantly, if they do exist, how can we harness these cells to improve a woman's oocyte reserve and treat conditions such as premature ovarian insufficiency (POI: also known as premature ovarian failure, POF).
Collapse
Affiliation(s)
- Corrina J Horan
- Nuffield Department of Obstetrics and GynaecologyUniversity of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Suzannah A Williams
- Nuffield Department of Obstetrics and GynaecologyUniversity of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
27
|
Yazdekhasti H, Rajabi Z, Parvari S, Abbasi M. Used protocols for isolation and propagation of ovarian stem cells, different cells with different traits. J Ovarian Res 2016; 9:68. [PMID: 27765047 PMCID: PMC5072317 DOI: 10.1186/s13048-016-0274-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 10/03/2016] [Indexed: 11/10/2022] Open
Abstract
Although existence of ovarian stem cells (OSCs) in mammalian postnatal ovary is still under controversy, however, it has been almost accepted that OSCs are contributing actively to folliculogenesis and neo-oogenesis. Recently, various methods with different efficacies have been employed for OSCs isolation from ovarian tissue, which these methods could be chosen depends on aim of isolation and accessible equipments and materials in lab. Although isolated OSCs from different methods have various traits and characterizations, which might become from their different nature and origin, however these stem cells are promising source for woman infertility treatment or source of energy for women with a history of repeat IVF failure in near future. This review has brought together and summarized currently used protocols for isolation and propagation of OSCs in vitro.
Collapse
Affiliation(s)
- Hossein Yazdekhasti
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rajabi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Parvari
- Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Abbasi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Zhang XL, Wu J, Wang J, Shen T, Li H, Lu J, Gu Y, Kang Y, Wong CH, Ngan CY, Shao Z, Wu J, Zhao X. Integrative epigenomic analysis reveals unique epigenetic signatures involved in unipotency of mouse female germline stem cells. Genome Biol 2016; 17:162. [PMID: 27465593 PMCID: PMC4963954 DOI: 10.1186/s13059-016-1023-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/08/2016] [Indexed: 01/26/2023] Open
Abstract
Background Germline stem cells play an essential role in establishing the fertility of an organism. Although extensively characterized, the regulatory mechanisms that govern the fundamental properties of mammalian female germline stem cells remain poorly understood. Results We generate genome-wide profiles of the histone modifications H3K4me1, H3K27ac, H3K4me3, and H3K27me3, DNA methylation, and RNA polymerase II occupancy and perform transcriptome analysis in mouse female germline stem cells. Comparison of enhancer regions between embryonic stem cells and female germline stem cells identifies the lineage-specific enhancers involved in germline stem cell features. Additionally, our results indicate that DNA methylation primarily contributes to female germline stem cell unipotency by suppressing the somatic program and is potentially involved in maintenance of sexual identity when compared with male germline stem cells. Moreover, we demonstrate down-regulation of Prmt5 triggers differentiation and thus uncover a role for Prmt5 in maintaining the undifferentiated status of female germline stem cells. Conclusions The genome-wide epigenetic signatures and the transcription regulators identified here provide an invaluable resource for understanding the fundamental features of mouse female germline stem cells. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1023-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Li Zhang
- Shanghai Center for Systems Biomedicine, Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Wu
- Shanghai Center for Systems Biomedicine, Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jian Wang
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tingting Shen
- Shanghai Center for Systems Biomedicine, Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hua Li
- Shanghai Center for Systems Biomedicine, Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Lu
- Shanghai Center for Systems Biomedicine, Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yunzhao Gu
- Shanghai Center for Systems Biomedicine, Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yani Kang
- Shanghai Center for Systems Biomedicine, Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chee-Hong Wong
- Sequencing Technology Group, Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, 94598, USA
| | - Chew Yee Ngan
- Sequencing Technology Group, Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, 94598, USA
| | - Zhifeng Shao
- Shanghai Center for Systems Biomedicine, Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ji Wu
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
29
|
Virant-Klun I, Kenda-Suster N, Smrkolj S. Small putative NANOG, SOX2, and SSEA-4-positive stem cells resembling very small embryonic-like stem cells in sections of ovarian tissue in patients with ovarian cancer. J Ovarian Res 2016; 9:12. [PMID: 26940129 PMCID: PMC4778328 DOI: 10.1186/s13048-016-0221-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/22/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In previous studies it has been found that in cell cultures of human adult ovaries there is a population of small stem cells with diameters of 2-4 μm, which are present mainly in the ovarian surface epithelium and are comparable to very small embryonic-like stem cells (VSELs) from bone marrow. These cells are not observed by histopathologists in the ovarian tissue due to their small size and unknown clinical significance. Because these cells express a degree of pluripotency, they might be involved in the manifestation of ovarian cancer. Therefore we studied the ovarian tissue sections in women with borderline ovarian cancer and serous ovarian carcinoma to perhaps identify the small putative stem cells in situ. METHODS In 27 women with borderline ovarian cancer and 20 women with high-grade serous ovarian carcinoma the ovarian tissue sections were stained, per standard practice, with eosin and hematoxylin staining and on NANOG, SSEA-4 and SOX2 markers, related to pluripotency, using immunohistochemistry. We focused on the presence and localization of small putative stem cells with diameters of up to 5 μm and with the nuclei spread over nearly the full cell volume. RESULTS In ovarian sections of both borderline ovarian cancer and serous ovarian carcinoma patients we were able to identify the presence of small round cells complying with the above criteria. Some of these small cells were NANOG-positive, were located among epithelial cells in the ovarian surface epithelium and as a single cell or groups of cells/clusters in typical "chambers", were found only in the presence of ovarian cancer and not in healthy ovaries and are comparable to those in fetal ovaries. We envision that these small cells could be related to NANOG-positive tumor-like structures and oocyte-like cells in similar "chambers" found in sections of cancerous ovaries, which could support their stemness and pluripotency. Further immunohistochemistry revealed a similar population of SSEA-4 and SOX2-positive cells. CONCLUSIONS We may conclude that putative small stem cells expressing markers, related to pluripotency, are present in the ovarian tissue sections of women with borderline ovarian cancer and high-grade serous ovarian carcinoma thus indicating their potential involvement in ovarian cancer.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia.
| | - Natasa Kenda-Suster
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia.
| | - Spela Smrkolj
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia.
| |
Collapse
|
30
|
Guo K, Li CH, Wang XY, He DJ, Zheng P. Germ stem cells are active in postnatal mouse ovary under physiological conditions. Mol Hum Reprod 2016; 22:316-28. [PMID: 26916381 DOI: 10.1093/molehr/gaw015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/19/2016] [Indexed: 11/12/2022] Open
Abstract
STUDY HYPOTHESIS Are active ovarian germ stem cells present in postnatal mouse ovaries under physiological conditions? STUDY FINDING Active ovarian germ stem cells exist and function in adult mouse ovaries under physiological conditions. WHAT IS KNOWN ALREADY In vitro studies suggested the existence of germ stem cells in postnatal ovaries of mouse, pig and human. However, in vivo studies provided evidence against the existence of active germ stem cells in postnatal mouse ovaries. Thus, it remains controversial whether such germ stem cells really exist and function in vivo in postnatal mammalian ovaries. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Octamer-binding transcription factor 4 (Oct4)-MerCreMer transgenic mice were crossed with R26R-enhanced yellow fluorescent protein (EYFP) mice to establish a tamoxifen-inducible tracing system so that Oct4-expressing potential ovarian germ stem cells in young adult mice (5-6 weeks old) can be labeled with EYFP. The germ cell activities of DNA replication, mitotic division, entry into meiosis and progression to primordial follicle stage were investigated by means of immunofluorescent staining of ovarian tissues collected at different time points post-tamoxifen injection (1 day, 3 days, 2 months and 4 months). Meiosis entry and primordial follicle formation were also measured by EYFP-labeled single-cell RT-PCR. Germ cell proliferation and mitotic division were examined through 5-bromodeoxyuridine triphosphate incorporation assay. At each time point, ovaries from two to three animals were used for each set of experiment. MAIN RESULTS AND THE ROLE OF CHANCE By labeling the Oct4-expressing small germ cells and tracing their fates for up to 4 months, we observed persistent meiosis entry and primordial follicle replenishment. Furthermore, we captured the transient processes of mitotic DNA replication as well as mitotic division of the marked germ cells at various time periods after tracing. These lines of evidence unambiguously support the presence of active germ stem cells in postnatal ovaries and their function in replenishing primordial follicle pool under physiological conditions. Moreover, we pointed out that Oct4(+) deleted in azoospermia-like (Dazl)(-) but not Oct4(+)Dazl(+) or Oct4(+) DEAD (Asp-Glu-Ala-Asp) Box Polypeptide 4 (Ddx4)(+) cells contain a population of germ stem cells in mouse ovary. LIMITATIONS, REASONS FOR CAUTION This study was conducted in mice. Whether or not the results are applicable to human remain unclear. The future work should aim at identifying the specific ovarian germ stem cell marker and evaluating the significance of these stem cells to normal ovarian function. WIDER IMPLICATIONS OF THE FINDINGS Clarifying the existence of active germ stem cells and their functional significance in postnatal mammalian ovaries could provide new insights in understanding the mechanism of ovarian aging and failure. LARGE SCALE DATA Not applicable. STUDY FUNDING/COMPETING INTERESTS This work was supported by the National Key Basic Research Program of China (grant number 2012CBA01300) and the National Natural Science Foundation of China to P.Z. (31571484). No competing interests are reported.
Collapse
Affiliation(s)
- Kun Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao Chang Dong Lu, Kunming 650223, Yunnan, China Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao Chang Dong Lu, Kunming 650223, Yunnan, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Chao-Hui Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao Chang Dong Lu, Kunming 650223, Yunnan, China Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao Chang Dong Lu, Kunming 650223, Yunnan, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Xin-Yi Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao Chang Dong Lu, Kunming 650223, Yunnan, China Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao Chang Dong Lu, Kunming 650223, Yunnan, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Da-Jian He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao Chang Dong Lu, Kunming 650223, Yunnan, China Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao Chang Dong Lu, Kunming 650223, Yunnan, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao Chang Dong Lu, Kunming 650223, Yunnan, China Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao Chang Dong Lu, Kunming 650223, Yunnan, China
| |
Collapse
|
31
|
Virant-Klun I. Very Small Embryonic-Like Stem Cells: A Potential Developmental Link Between Germinal Lineage and Hematopoiesis in Humans. Stem Cells Dev 2015; 25:101-13. [PMID: 26494182 DOI: 10.1089/scd.2015.0275] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
It has been suggested that hematopoietic stem/progenitor cells (HSPCs) could become specified from a population of migrating primordial germ cells (PGCs), precursors of gametes, during embryogenesis. Some recent experimental data demonstrated that the cell population that is usually considered to be PGCs, moving toward the gonadal ridges of an embryo, contains a subset of cells coexpressing several germ cell and hematopoietic markers and possessing hematopoietic activity. Experimental data showed that bone morphogenetic protein 4 (BMP4) generates PGCs from mouse bone marrow-derived pluripotent stem cells. Interestingly, functional reproductive hormone receptors have been identified in HSPCs, thus indicating their potential role in reproductive function. Several reports have demonstrated fertility restoration and germ cell generation after bone marrow transplantation in both animal models and humans. A potential link between HSPCs and germinal lineage might be represented by very small embryonic-like stem cells (VSELs), which have been found in adult human bone marrow, peripheral blood, and umbilical cord blood, express a specific pattern of pluripotency, germinal lineage, and hematopoiesis, and are proposed to persist in adult tissues and organs from the embryonic period of life. Stem cell populations, similar to VSELs, expressing several genes related to pluripotency and germinal lineage, especially to PGCs, have been discovered in adult human reproductive organs, ovaries and testicles, and were related to primitive germ cell-like cell development in vitro, thus supporting the idea of VSELs as a potential link between germinal lineage and hematopoiesis.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynecology, University Medical Center Ljubljana , Ljubljana, Slovenia
| |
Collapse
|
32
|
Novel Action of FSH on Stem Cells in Adult Mammalian Ovary Induces Postnatal Oogenesis and Primordial Follicle Assembly. Stem Cells Int 2015; 2016:5096596. [PMID: 26635884 PMCID: PMC4655292 DOI: 10.1155/2016/5096596] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/08/2015] [Indexed: 01/27/2023] Open
Abstract
Adult mammalian ovary has been under the scanner for more than a decade now since it was proposed to harbor stem cells that undergo postnatal oogenesis during reproductive period like spermatogenesis in testis. Stem cells are located in the ovary surface epithelium and exist in adult and menopausal ovary as well as in ovary with premature failure. Stem cells comprise two distinct populations including spherical, very small embryonic-like stem cells (VSELs which express nuclear OCT-4 and other pluripotent and primordial germ cells specific markers) and slightly bigger ovarian germ stem cells (OGSCs with cytoplasmic OCT-4 which are equivalent to spermatogonial stem cells in the testes). These stem cells have the ability to spontaneously differentiate into oocyte-like structures in vitro and on exposure to a younger healthy niche. Bone marrow may be an alternative source of these stem cells. The stem cells express FSHR and respond to FSH by undergoing self-renewal, clonal expansion, and initiating neo-oogenesis and primordial follicle assembly. VSELs are relatively quiescent and were recently reported to survive chemotherapy and initiate oogenesis in mice when exposed to FSH. This emerging understanding and further research in the field will help evolving novel strategies to manage ovarian pathologies and also towards oncofertility.
Collapse
|
33
|
Fereydouni B, Salinas-Riester G, Heistermann M, Dressel R, Lewerich L, Drummer C, Behr R. Long-Term Oocyte-Like Cell Development in Cultures Derived from Neonatal Marmoset Monkey Ovary. Stem Cells Int 2015; 2016:2480298. [PMID: 26664406 PMCID: PMC4655298 DOI: 10.1155/2016/2480298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 11/17/2022] Open
Abstract
We use the common marmoset monkey (Callithrix jacchus) as a preclinical nonhuman primate model to study reproductive and stem cell biology. The neonatal marmoset monkey ovary contains numerous primitive premeiotic germ cells (oogonia) expressing pluripotent stem cell markers including OCT4A (POU5F1). This is a peculiarity compared to neonatal human and rodent ovaries. Here, we aimed at culturing marmoset oogonia from neonatal ovaries. We established a culture system being stable for more than 20 passages and 5 months. Importantly, comparative transcriptome analysis of the cultured cells with neonatal ovary, embryonic stem cells, and fibroblasts revealed a lack of germ cell and pluripotency genes indicating the complete loss of oogonia upon initiation of the culture. From passage 4 onwards, however, the cultured cells produced large spherical, free-floating cells resembling oocyte-like cells (OLCs). OLCs strongly expressed several germ cell genes and may derive from the ovarian surface epithelium. In summary, our novel primate ovarian cell culture initially lacked detectable germ cells but then produced OLCs over a long period of time. This culture system may allow a deeper analysis of early phases of female primate germ cell development and-after significant refinement-possibly also the production of monkey oocytes.
Collapse
Affiliation(s)
- Bentolhoda Fereydouni
- Stem Cell Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Gabriela Salinas-Riester
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen (UMG), Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Ralf Dressel
- Department of Cellular and Molecular Immunology, University of Göttingen, Humboldtallee 34, 37073 Göttingen, Germany
| | - Lucia Lewerich
- Stem Cell Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Charis Drummer
- Stem Cell Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Rüdiger Behr
- Stem Cell Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| |
Collapse
|
34
|
Abstract
In spite of generally accepted dogma that the total number of follicles and oocytes is established in human ovaries during the fetal period of life rather than forming de novo in adult ovaries, some new evidence in the field challenges this understanding. Several studies have shown that different populations of stem cells, such as germinal stem cells and small round stem cells with diameters of 2 to 4 μm, that resembled very small embryonic-like stem cells and expressed several genes related to primordial germ cells, pluripotency, and germinal lineage are present in adult human ovaries and originate in ovarian surface epithelium. These small stem cells were pushed into the germinal direction of development and formed primitive oocyte-like cells in vitro. Moreover, oocyte-like cells were also formed in vitro from embryonic stem cells and induced pluripotent stem cells. This indicates that postnatal oogenesis is not excluded. It is further supported by the occurrence of mesenchymal stem cells that can restore the function of sterilized ovaries and lead to the formation of new follicles and oocytes in animal models. Both oogenesis in vitro and transplantation of stem cell-derived "oocytes" into the ovarian niche to direct their natural maturation represent a big challenge for reproductive biomedicine in the treatment of female infertility in the future and needs to be explored and interpreted with caution, but it is still very important for clinical practice in the field of reproductive medicine.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynaecology, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
35
|
Zeng F, Huang F, Guo J, Hu X, Liu C, Wang H. Emerging methods to generate artificial germ cells from stem cells. Biol Reprod 2015; 92:89. [PMID: 25715792 DOI: 10.1095/biolreprod.114.124800] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/16/2015] [Indexed: 12/29/2022] Open
Abstract
Germ cells are responsible for the transmission of genetic and epigenetic information across generations. At present, the number of infertile couples is increasing worldwide; these infertility problems can be traced to environmental pollutions, infectious diseases, cancer, psychological or work-related stress, and other factors, such as lifestyle and genetics. Notably, lack of germ cells and germ cell loss present real obstacles in infertility treatment. Recent research aimed at producing gametes through artificial germ cell generation from stem cells may offer great hope for affected couples to treat infertility in the future. Therefore, this rapidly emerging area of artificial germ cell generation from nongermline cells has gained considerable attention from basic and clinical research in the fields of stem cell biology, developmental biology, and reproductive biology. Here, we review the state of the art in artificial germ cell generation.
Collapse
Affiliation(s)
- Fanhui Zeng
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Fajun Huang
- School of Medical Science, Hubei University for Nationalities, Enshi, China
| | - Jingjing Guo
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xingchang Hu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Changbai Liu
- The Institute of Molecular Biology, China Three Gorges University, Yichang, China
| | - Hu Wang
- Medical School, China Three Gorges University, Yichang, China
| |
Collapse
|
36
|
Gheorghisan-Galateanu AA, Hinescu ME, Enciu AM. Ovarian adult stem cells: hope or pitfall? J Ovarian Res 2014; 7:71. [PMID: 25018783 PMCID: PMC4094411 DOI: 10.1186/1757-2215-7-71] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 06/29/2014] [Indexed: 12/22/2022] Open
Abstract
For many years, ovarian biology has been based on the dogma that oocytes reserve in female mammals included a finite number, established before or at birth and it is determined by the number and quality of primordial follicles developed during the neonatal period. The restricted supply of oocytes in adult female mammals has been disputed in recent years by supporters of postnatal neo-oogenesis. Recent experimental data showed that ovarian surface epithelium and cortical tissue from both mouse and human were proved to contain very low proportion of cells able to propagate themselves, but also to generate immature oocytes in vitro or in vivo, when transplanted into immunodeficient mice ovaries. By mentioning several landmarks of ovarian stem cell reserve and addressing the exciting perspective of translation into clinical practice as treatment for infertility pathologies, the purpose of this article is to review the knowledge about adult mammalian ovarian stem cells, a topic that, since the first approach quickly attracted the attention of both the scientific media and patients.
Collapse
Affiliation(s)
- Ancuta Augustina Gheorghisan-Galateanu
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania ; C.I.Parhon National Institute of Endocrinology, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Mihail Eugen Hinescu
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania ; V.Babes National Institute of Pathology, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Ana Maria Enciu
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania ; V.Babes National Institute of Pathology, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| |
Collapse
|