1
|
Watabe M, Hiraiwa A, Sakai M, Ueno T, Ueno S, Nakajima K, Yaoita Y, Iwao Y. Sperm MMP-2 is indispensable for fast electrical block to polyspermy at fertilization in Xenopus tropicalis. Mol Reprod Dev 2021; 88:744-757. [PMID: 34618381 DOI: 10.1002/mrd.23540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/24/2021] [Indexed: 01/10/2023]
Abstract
Sperm matrix metalloproteinase-2 (MMP-2) is necessary for frog fertilization. Monospermy is ensured by a fast, electrical block to polyspermy mediated by a positive fertilization potential. To determine the role of the MMP-2 hemopexin domain (HPX) in a fast block to polyspermy during fertilization of the frog, Xenopus tropicalis, we prepared mutant frogs deficient in mmp2 gene using the transcription activator-like effector nuclease method. mmp2 ΔHPX (-/-) sperm without MMP-2 protein were able to fertilize wild-type (WT; +/+) eggs. However, polyspermy occurred in some eggs. The mutant sperm generated a normal fertilization potential amounting to 10 mV, and were able to fertilize eggs at 10 mV, at which WT sperm never fertilized. Sensitivity during voltage-dependent fertilization decreased in mutant sperm. This study demonstrates for the first time that the genetic alteration of the MMP-2 molecule in sperm causes polyspermy during fertilization of a monospermic species. Our findings provide reliable evidence that sperm MMP-2 is indispensable for the fast, electrical block to polyspermy during Xenopus fertilization.
Collapse
Affiliation(s)
- Mami Watabe
- Laboratory of Reproductive Developmental Biology and Developmental Cell Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Azusa Hiraiwa
- Laboratory of Reproductive Developmental Biology and Developmental Cell Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Mami Sakai
- Laboratory of Reproductive Developmental Biology and Developmental Cell Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Tomoyo Ueno
- Laboratory of Reproductive Developmental Biology and Developmental Cell Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Shuichi Ueno
- Laboratory of Reproductive Developmental Biology and Developmental Cell Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Keisuke Nakajima
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| | - Yoshio Yaoita
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| | - Yasuhiro Iwao
- Laboratory of Reproductive Developmental Biology and Developmental Cell Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
2
|
Jackson AR, Ching CB, McHugh KM, Becknell B. Roles for urothelium in normal and aberrant urinary tract development. Nat Rev Urol 2020; 17:459-468. [PMID: 32647226 DOI: 10.1038/s41585-020-0348-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUTs) represent the leading cause of chronic kidney disease and end-stage kidney disease in children. Increasing evidence points to critical roles for the urothelium in the developing urinary tract and in the genesis of CAKUTs. The involvement of the urothelium in patterning the urinary tract is supported by evidence that CAKUTs can arise as a result of abnormal urothelial development. Emerging evidence indicates that congenital urinary tract obstruction triggers urothelial remodelling that stabilizes the obstructed kidney and limits renal injury. Finally, the diagnostic potential of radiological findings and urinary biomarkers derived from the urothelium of patients with CAKUTs might aid their contribution to clinical care.
Collapse
Affiliation(s)
- Ashley R Jackson
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Christina B Ching
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Division of Pediatric Urology, Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kirk M McHugh
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Anatomy, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brian Becknell
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA. .,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA. .,Nephrology Division, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
3
|
Sato K, Tokmakov AA. Toward the understanding of biology of oocyte life cycle in Xenopus Laevis: No oocytes left behind. Reprod Med Biol 2020; 19:114-119. [PMID: 32273815 PMCID: PMC7138939 DOI: 10.1002/rmb2.12314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/09/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND For the past more than 25 years, we have been focusing on the developmental and reproductive biology of the female gametes, oocytes, and eggs, of the African clawed frog Xenopus laevis. METHODS The events associated with the life cycle of these cells can be classified into the four main categories: first, oogenesis and cell growth in the ovary during the first meiotic arrest; second, maturation and ovulation that occur simultaneously and result in the acquisition of fertilization competence and the second meiotic arrest; third, fertilization, that is sperm-induced transition from egg to zygote; and fourth, egg death after spontaneous activation in the absence of fertilizing sperm. MAIN FINDINGS Our studies have demonstrated that signal transduction system involving tyrosine kinase Src and other oocyte/egg membrane-associated molecules such as uroplakin III and some other cytoplasmic proteins such as mitogen-activated protein kinase (MAPK) play important roles for successful ovulation, maturation, fertilization, and initiation of embryonic development. CONCLUSION We summarize recent advances in understanding cellular and molecular mechanisms underlying life cycle events of the oocytes and eggs. Our further intention is to discuss and predict potentially promising impact of the recent findings on the challenges facing reproductive biology and medicine, as well as societal contexts.
Collapse
Affiliation(s)
- Ken‐ichi Sato
- Laboratory of Cell Signaling and DevelopmentDepartment of Industrial Life SciencesFaculty of Life SciencesKyoto Sangyo UniversityKyotoJapan
| | - Alexander A. Tokmakov
- Laboratory of Cell Signaling and DevelopmentDepartment of Industrial Life SciencesFaculty of Life SciencesKyoto Sangyo UniversityKyotoJapan
| |
Collapse
|
4
|
Sato KI, Tokmakov AA. Membrane Microdomains as Platform to Study Membrane-Associated Events During Oogenesis, Meiotic Maturation, and Fertilization in Xenopus laevis. Methods Mol Biol 2019; 1920:59-73. [PMID: 30737686 DOI: 10.1007/978-1-4939-9009-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Studies on the egg plasma membrane-associated tyrosine kinase Src have shed light on the identity of the molecular machinery that is responsible for gamete interaction and possibly fusion in African clawed frog Xenopus laevis. Here we describe our protocol for identifying and analyzing molecular and cellular machinery that contributes to a variety of biological processes in the course of oogenesis, oocyte maturation, egg fertilization, and early embryogenesis in Xenopus. Our current special interest is to evaluate the hypothesis that the oocyte/egg membrane microdomain (MD)-associated uroplakin III-Src system is responsible for mediating sperm-egg membrane interaction/fusion signal to the oocyte/egg cytoplasm to initiate embryonic and zygotic development in this species. Therefore, this chapter contains a brief introduction to biology of oocytes and eggs in Xenopus and addresses the following questions: (1) What is oocyte/egg MD? (2) Why do we study oocyte/egg MD? (3) How to manipulate oocyte/egg MD? (4) What has been achieved by oocyte/egg MD studies? (5) What are the next steps in oocyte/egg MD studies?
Collapse
Affiliation(s)
- Ken-Ichi Sato
- Faculty of Life Sciences, Laboratory of Cell Signaling and Development, Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto, Japan.
| | - Alexander A Tokmakov
- Faculty of Life Sciences, Laboratory of Cell Signaling and Development, Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
5
|
Watabe M, Izaki K, Fujino S, Maruyama M, Kojima C, Hiraiwa A, Ueno S, Iwao Y. The electrical block to polyspermy induced by an intracellular Ca
2+
increase at fertilization of the clawed frogs,
Xenopus laevis
and
Xenopus tropicalis. Mol Reprod Dev 2019; 86:387-403. [DOI: 10.1002/mrd.23115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/26/2018] [Accepted: 01/09/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Mami Watabe
- Laboratory of Reproductive Developmental BiologyGraduate School of Sciences and Technology for Innovation, Yamaguchi University Yamaguchi Japan
| | - Kenta Izaki
- Laboratory of Reproductive Developmental BiologyGraduate School of Sciences and Technology for Innovation, Yamaguchi University Yamaguchi Japan
| | - Shohei Fujino
- Laboratory of Reproductive Developmental BiologyGraduate School of Sciences and Technology for Innovation, Yamaguchi University Yamaguchi Japan
| | - Mei Maruyama
- Laboratory of Reproductive Developmental BiologyGraduate School of Sciences and Technology for Innovation, Yamaguchi University Yamaguchi Japan
| | - Chiho Kojima
- Laboratory of Reproductive Developmental BiologyGraduate School of Sciences and Technology for Innovation, Yamaguchi University Yamaguchi Japan
| | - Azusa Hiraiwa
- Laboratory of Reproductive Developmental BiologyGraduate School of Sciences and Technology for Innovation, Yamaguchi University Yamaguchi Japan
| | - Shuichi Ueno
- Laboratory of Reproductive Developmental BiologyGraduate School of Sciences and Technology for Innovation, Yamaguchi University Yamaguchi Japan
| | - Yasuhiro Iwao
- Laboratory of Reproductive Developmental BiologyGraduate School of Sciences and Technology for Innovation, Yamaguchi University Yamaguchi Japan
| |
Collapse
|
6
|
Liao Y, Chang HC, Liang FX, Chung PJ, Wei Y, Nguyen TP, Zhou G, Talebian S, Krey LC, Deng FM, Wong TW, Chicote JU, Grifo JA, Keefe DL, Shapiro E, Lepor H, Wu XR, DeSalle R, Garcia-España A, Kim SY, Sun TT. Uroplakins play conserved roles in egg fertilization and acquired additional urothelial functions during mammalian divergence. Mol Biol Cell 2018; 29:3128-3143. [PMID: 30303751 PMCID: PMC6340209 DOI: 10.1091/mbc.e18-08-0496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Uroplakin (UP) tetraspanins and their associated proteins are major mammalian urothelial differentiation products that form unique two-dimensional crystals of 16-nm particles (“urothelial plaques”) covering the apical urothelial surface. Although uroplakins are highly expressed only in mammalian urothelium and are often referred to as being urothelium specific, they are also expressed in several mouse nonurothelial cell types in stomach, kidney, prostate, epididymis, testis/sperms, and ovary/oocytes. In oocytes, uroplakins colocalize with CD9 on cell-surface and multivesicular body-derived exosomes, and the cytoplasmic tail of UPIIIa undergoes a conserved fertilization-dependent, Fyn-mediated tyrosine phosphorylation that also occurs in Xenopus laevis eggs. Uroplakin knockout and antibody blocking reduce mouse eggs’ fertilization rate in in vitro fertilization assays, and UPII/IIIa double-knockout mice have a smaller litter size. Phylogenetic analyses showed that uroplakin sequences underwent significant mammal-specific changes. These results suggest that, by mediating signal transduction and modulating membrane stability that do not require two-dimensional-crystal formation, uroplakins can perform conserved and more ancestral fertilization functions in mouse and frog eggs. Uroplakins acquired the ability to form two-dimensional-crystalline plaques during mammalian divergence, enabling them to perform additional functions, including umbrella cell enlargement and the formation of permeability and mechanical barriers, to protect/modify the apical surface of the modern-day mammalian urothelium.
Collapse
Affiliation(s)
- Yi Liao
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Hung-Chi Chang
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016.,Department of Obstetrics and Gynecology, National Taiwan University, Taipei 10617, Taiwan
| | - Feng-Xia Liang
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | | | - Yuan Wei
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Tuan-Phi Nguyen
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Ge Zhou
- Regeneron, Tarrytown, NY 10591
| | - Sheeva Talebian
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016
| | - Lewis C Krey
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016
| | - Fang-Ming Deng
- Department of Pathology, New York University School of Medicine, New York, NY 10016.,Department of Urology, New York University School of Medicine, New York, NY 10016
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University, Tainan 701, Taiwan
| | - Javier U Chicote
- Unitat De Recerca, Hospital Joan XXIII, Institut de Investigacio Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - James A Grifo
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016
| | - David L Keefe
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016
| | - Ellen Shapiro
- Department of Urology, New York University School of Medicine, New York, NY 10016
| | - Herbert Lepor
- Department of Urology, New York University School of Medicine, New York, NY 10016.,Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY 10024
| | - Xue-Ru Wu
- Department of Pathology, New York University School of Medicine, New York, NY 10016.,Department of Urology, New York University School of Medicine, New York, NY 10016.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Robert DeSalle
- Veterans Affairs New York Harbor Healthcare System, New York, NY 10010
| | - Antonio Garcia-España
- Unitat De Recerca, Hospital Joan XXIII, Institut de Investigacio Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Sang Yong Kim
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Tung-Tien Sun
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016.,Department of Urology, New York University School of Medicine, New York, NY 10016.,The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY 10016.,Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY 10024
| |
Collapse
|
7
|
Satouh Y, Ikawa M. New Insights into the Molecular Events of Mammalian Fertilization. Trends Biochem Sci 2018; 43:818-828. [PMID: 30170889 DOI: 10.1016/j.tibs.2018.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/30/2018] [Accepted: 08/04/2018] [Indexed: 12/20/2022]
Abstract
Currently, infertility affects ∼16% of couples worldwide. The causes are reported to involve both male and female factors, including fertilization failure between mature spermatozoa and eggs. However, the molecular mechanisms involved in each step of mammalian fertilization are yet to be fully elucidated. Although some of these steps can be rescued with assisted reproductive technologies, it is important to clarify the molecular mechanisms involved for the treatment and diagnosis of infertile couples. This review illustrates recent findings in mammalian fertilization, discovered by combining gene modification techniques with other new approaches, and aims to show how these findings will guide future research in mammalian fertilization.
Collapse
Affiliation(s)
- Yuhkoh Satouh
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan.
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan; The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan.
| |
Collapse
|
8
|
Universality and Diversity of a Fast, Electrical Block to Polyspermy During Fertilization in Animals. DIVERSITY AND COMMONALITY IN ANIMALS 2018. [DOI: 10.1007/978-4-431-56609-0_24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Peuchen EH, Cox OF, Sun L, Hebert AS, Coon JJ, Champion MM, Dovichi NJ, Huber PW. Phosphorylation Dynamics Dominate the Regulated Proteome during Early Xenopus Development. Sci Rep 2017; 7:15647. [PMID: 29142207 PMCID: PMC5688136 DOI: 10.1038/s41598-017-15936-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/03/2017] [Indexed: 01/08/2023] Open
Abstract
The earliest stages of animal development are largely controlled by changes in protein phosphorylation mediated by signaling pathways and cyclin-dependent kinases. In order to decipher these complex networks and to discover new aspects of regulation by this post-translational modification, we undertook an analysis of the X. laevis phosphoproteome at seven developmental stages beginning with stage VI oocytes and ending with two-cell embryos. Concurrent measurement of the proteome and phosphoproteome enabled measurement of phosphosite occupancy as a function of developmental stage. We observed little change in protein expression levels during this period. We detected the expected phosphorylation of MAP kinases, translational regulatory proteins, and subunits of APC/C that validate the accuracy of our measurements. We find that more than half the identified proteins possess multiple sites of phosphorylation that are often clustered, where kinases work together in a hierarchical manner to create stretches of phosphorylated residues, which may be a means to amplify signals or stabilize a particular protein conformation. Conversely, other proteins have opposing sites of phosphorylation that seemingly reflect distinct changes in activity during this developmental timeline.
Collapse
Affiliation(s)
- Elizabeth H Peuchen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Olivia F Cox
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Alex S Hebert
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Paul W Huber
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
10
|
Fertilization 2: Polyspermic Fertilization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1001:105-123. [DOI: 10.1007/978-981-10-3975-1_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
The Tetraspanin-Associated Uroplakins Family (UPK2/3) Is Evolutionarily Related to PTPRQ, a Phosphotyrosine Phosphatase Receptor. PLoS One 2017; 12:e0170196. [PMID: 28099513 PMCID: PMC5242461 DOI: 10.1371/journal.pone.0170196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/02/2017] [Indexed: 11/19/2022] Open
Abstract
Uroplakins are a widespread group of vertebrate integral membrane proteins that belong to two different families: UPK1a and UPK1b belong to the large tetraspanin (TSPAN) gene family, and UPK3a, UPK3b, UPK3c, UPK3d, UPK2a and UPK2b form a family of their own, the UPK2/3 tetraspanin-associated family. In a previous study, we reported that uroplakins first appeared in vertebrates, and that uroplakin tetraspanins (UPK1a and UPK1b) should have originated by duplication of an ancestor tetraspanin gene. However, the evolutionary origin of the UPK2/3 family remains unclear. In this study, we provide evidence that the UPK2/3 family originated by gene duplication and domain loss from a protoPTPRQ-like basal deuterostome gene. PTPRQs are members of the subtype R3 tyrosine phosphatase receptor (R3 PTPR) family, which are characterized by having a unique modular composition of extracellular fibronectin (FN3) repeats, a transmembrane helix, and a single intra-cytoplasmic phosphotyrosine phophatase (PTP) domain. Our assumption of a deuterostome protoPTPRQ-like gene as an ancestor of the UPK2/3 family by gene duplication and loss of its PTP and fibronectin (FN3) domains, excluding the one closest to the transmembrane helix, is based on the following: (i) phylogenetic analyses, (ii) the existence of an identical intron/exon gene pattern between UPK2/3 and the corresponding genetic region in R3 PTPRs, (iii) the conservation of cysteine patterns and protein motifs between UPK2/3 and PTPRQ proteins and, (iv) the existence in tunicates, the closest organisms to vertebrates, of two sequences related to PTPRQ; one with the full subtype R3 modular characteristic and another without the PTP domain but with a short cytoplasmic tail with some sequence similarity to that of UPK3a. This finding will facilitate further studies on the structure and function of these important proteins with implications in human diseases.
Collapse
|
12
|
Kuriyama S, Tamiya Y, Tanaka M. Spatiotemporal expression of UPK3B and its promoter activity during embryogenesis and spermatogenesis. Histochem Cell Biol 2016; 147:17-26. [PMID: 27577269 DOI: 10.1007/s00418-016-1486-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2016] [Indexed: 01/14/2023]
Abstract
Uroplakin (Upk) 3 is one of the main structural components of the urothelium tissue. Although expression of UPK3B is seen in a wider variety of the tissues and organs than UPK3A, tissue-specific expression has not yet been analyzed. Here, we analyzed the Cre recombinase activity driven by the Upk3b promoter in transgenic mice and the endogenous localization of UPK3B. We generated Tg(Upk3b-Cre)/R26tdTomato mice by crossing ROSA26tm14(CAG-tdTomato) (R26tdTomato) mice with Tg(Upk3b-Cre) mice and investigated the spatiotemporal distribution of tdTomato in embryonic and adult mice. In embryos, we detected Cre recombinase activity in neural crest cells and the heart, liver, kidneys, and lungs. In adult mice, Cre recombinase activity was detected in male and female genital organs; however, the activity was absent in the bladder. Histological analyses revealed that both tdTomato and UPK3B were present in testicular and epididymal sperm; however, tdTomato was not present in the ductus epididymis, where the endogenous expression of UPK3B was detected. In female siblings, both tdTomato and UPK3B expressions were detected in the follicles of the ovary, whereas no tdTomato expression was found in the mucosal epithelium of the fallopian tubes, where the endogenous UPK3B was expressed. These data suggest that UPK3B may play a pivotal role in the maturation of gametes and gamete-delivery organs.
Collapse
Affiliation(s)
- Sei Kuriyama
- Department of Molecular Biochemistry, Graduate School Medicine Akita University, Hondo 1-1-1, Akita City, Akita, 010-8543, Japan.
| | - Yuutaro Tamiya
- Department of Molecular Biochemistry, Graduate School Medicine Akita University, Hondo 1-1-1, Akita City, Akita, 010-8543, Japan.,Department of Lifescience, Faculty and Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegata Gakuenmachi, Akita City, Akita, 010-8502, Japan
| | - Masamitsu Tanaka
- Department of Molecular Biochemistry, Graduate School Medicine Akita University, Hondo 1-1-1, Akita City, Akita, 010-8543, Japan
| |
Collapse
|
13
|
Krauchunas AR, Marcello MR, Singson A. The molecular complexity of fertilization: Introducing the concept of a fertilization synapse. Mol Reprod Dev 2016; 83:376-86. [PMID: 26970099 DOI: 10.1002/mrd.22634] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/22/2016] [Indexed: 01/27/2023]
Abstract
The details of sperm-egg interactions remain a relative mystery despite many decades of research. As new molecular complexities are being discovered, we need to revise the framework in which we think about fertilization. As such, we propose that fertilization involves the formation of a synapse between the sperm and egg. A cellular synapse is a structure that mediates cell adhesion, signaling, and secretion through specialized zones of interaction and polarity. In this review, we draw parallels between the immune synapse and fertilization, and argue that we should consider sperm-egg recognition, binding, and fusion in the context of a "fertilization synapse." Mol. Reprod. Dev. 83: 376-386, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amber R Krauchunas
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey
| | | | - Andrew Singson
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
14
|
Stith BJ. Phospholipase C and D regulation of Src, calcium release and membrane fusion during Xenopus laevis development. Dev Biol 2015; 401:188-205. [PMID: 25748412 DOI: 10.1016/j.ydbio.2015.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/15/2015] [Accepted: 02/24/2015] [Indexed: 11/28/2022]
Abstract
This review emphasizes how lipids regulate membrane fusion and the proteins involved in three developmental stages: oocyte maturation to the fertilizable egg, fertilization and during first cleavage. Decades of work show that phosphatidic acid (PA) releases intracellular calcium, and recent work shows that the lipid can activate Src tyrosine kinase or phospholipase C during Xenopus fertilization. Numerous reports are summarized to show three levels of increase in lipid second messengers inositol 1,4,5-trisphosphate and sn 1,2-diacylglycerol (DAG) during the three different developmental stages. In addition, possible roles for PA, ceramide, lysophosphatidylcholine, plasmalogens, phosphatidylinositol 4-phosphate, phosphatidylinositol 5-phosphate, phosphatidylinositol 4,5-bisphosphate, membrane microdomains (rafts) and phosphatidylinositol 3,4,5-trisphosphate in regulation of membrane fusion (acrosome reaction, sperm-egg fusion, cortical granule exocytosis), inositol 1,4,5-trisphosphate receptors, and calcium release are discussed. The role of six lipases involved in generating putative lipid second messengers during fertilization is also discussed: phospholipase D, autotaxin, lipin1, sphingomyelinase, phospholipase C, and phospholipase A2. More specifically, proteins involved in developmental events and their regulation through lipid binding to SH3, SH4, PH, PX, or C2 protein domains is emphasized. New models are presented for PA activation of Src (through SH3, SH4 and a unique domain), that this may be why the SH2 domain of PLCγ is not required for Xenopus fertilization, PA activation of phospholipase C, a role for PA during the calcium wave after fertilization, and that calcium/calmodulin may be responsible for the loss of Src from rafts after fertilization. Also discussed is that the large DAG increase during fertilization derives from phospholipase D production of PA and lipin dephosphorylation to DAG.
Collapse
Affiliation(s)
- Bradley J Stith
- University of Colorado Denver, Department of Integrative Biology, Campus Box 171, PO Box 173364, Denver, CO 80217-3364, United States.
| |
Collapse
|
15
|
Sato KI. Transmembrane signal transduction in oocyte maturation and fertilization: focusing on Xenopus laevis as a model animal. Int J Mol Sci 2014; 16:114-34. [PMID: 25546390 PMCID: PMC4307238 DOI: 10.3390/ijms16010114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022] Open
Abstract
Fertilization is a cell biological phenomenon of crucial importance for the birth of new life in a variety of multicellular and sexual reproduction species such as algae, animal and plants. Fertilization involves a sequence of events, in which the female gamete "egg" and the male gamete "spermatozoon (sperm)" develop, acquire their functions, meet and fuse with each other, to initiate embryonic and zygotic development. Here, it will be briefly reviewed how oocyte cytoplasmic components are orchestrated to undergo hormone-induced oocyte maturation and sperm-induced activation of development. I then review how sperm-egg membrane interaction/fusion and activation of development in the fertilized egg are accomplished and regulated through egg coat- or egg plasma membrane-associated components, highlighting recent findings and future directions in the studies using Xenopus laevis as a model experimental animal.
Collapse
Affiliation(s)
- Ken-ichi Sato
- Laboratory of Cell Signaling and Development, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan.
| |
Collapse
|
16
|
Iwao Y, Shiga K, Shiroshita A, Yoshikawa T, Sakiie M, Ueno T, Ueno S, Ijiri TW, Sato KI. The need of MMP-2 on the sperm surface for Xenopus fertilization: Its role in a fast electrical block to polyspermy. Mech Dev 2014; 134:80-95. [DOI: 10.1016/j.mod.2014.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 01/31/2023]
|
17
|
Calcium signaling and meiotic exit at fertilization in Xenopus egg. Int J Mol Sci 2014; 15:18659-76. [PMID: 25322156 PMCID: PMC4227238 DOI: 10.3390/ijms151018659] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/01/2014] [Accepted: 10/09/2014] [Indexed: 11/16/2022] Open
Abstract
Calcium is a universal messenger that mediates egg activation at fertilization in all sexually reproducing species studied. However, signaling pathways leading to calcium generation and the mechanisms of calcium-induced exit from meiotic arrest vary substantially among species. Here, we review the pathways of calcium signaling and the mechanisms of meiotic exit at fertilization in the eggs of the established developmental model, African clawed frog, Xenopus laevis. We also discuss calcium involvement in the early fertilization-induced events in Xenopus egg, such as membrane depolarization, the increase in intracellular pH, cortical granule exocytosis, cortical contraction, contraction wave, cortical rotation, reformation of the nuclear envelope, sperm chromatin decondensation and sister chromatid segregation.
Collapse
|