1
|
Kim K, Gao H, Li C, Li B. The glutathione biosynthesis is involved in metamorphosis, antioxidant function, and insecticide resistance in Tribolium castaneum. PEST MANAGEMENT SCIENCE 2024; 80:2698-2709. [PMID: 38308415 DOI: 10.1002/ps.7976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/06/2023] [Accepted: 01/13/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Reduced glutathione (GSH) synthesis is vital for redox homeostasis, cell-cycle regulation and apoptosis, and immune function. The glutamate-cysteine ligase catalytic subunit (Gclc) is the first and rate-limiting enzyme in GSH synthesis, suggesting the potential use of Gclc as a pesticide target. However, the functional characterization of Gclc, especially its contribution in metamorphosis, antioxidant status and insecticide resistance, is unclear in Tribolium castaneum. RESULTS In this study, we identified and cloned Gclc from T. castaneum (TcGclc) and found that its expression began to increase significantly from the late larvae (LL) stage (3.491 ± 0.490-fold). Furthermore, RNA interference-mediated knockdown of TcGclc resulted in three types of aberration (100% total aberration rate) caused by the downregulation of genes related to the 20-hydroxyecdysone (20E) pathway. This deficiency was partially rescued by exogenous 20E treatment (53.1% ± 3.2%), but not by antioxidant. Moreover, in the TcGclc knockdown group, GSH content was decreased to 62.3%, and total antioxidant capacity, glutathione peroxidase and total superoxide dismutase activities were reduced by 14.6%, 83.6%, and 82.3%, respectively. In addition, treatment with different insecticides upregulated expression of TcGclc significantly compared with a control group during the late larval stage (P < 0.01). CONCLUSION Our results indicate that TcGclc has an extensive role in metamorphosis, antioxidant function and insecticide resistance in T. castaneum, thereby expanding our understanding of GSH functions and providing a scientific basis for pest control. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- KumChol Kim
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Department of Life-Science, University of Science, Pyongyang, Democratic People's Republic of Korea
| | - Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
2
|
Carlson J, Neidviecky E, Cook I, Cross B, Deng H. Interaction with B-type lamin reveals the function of Drosophila Keap1 xenobiotic response factor in nuclear architecture. Mol Biol Rep 2024; 51:556. [PMID: 38642177 PMCID: PMC11414762 DOI: 10.1007/s11033-024-09471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/22/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND The Keap1-Nrf2 pathway serves as a central regulator that mediates transcriptional responses to xenobiotic and oxidative stimuli. Recent studies have shown that Keap1 and Nrf2 can regulate transcripts beyond antioxidant and detoxifying genes, yet the underlying mechanisms remain unclear. Our research has uncovered that Drosophila Keap1 (dKeap1) and Nrf2 (CncC) proteins can control high-order chromatin structure, including heterochromatin. METHODS AND RESULTS In this study, we identified the molecular interaction between dKeap1 and lamin Dm0, the Drosophila B-type lamin responsible for the architecture of nuclear lamina and chromatin. Ectopic expression of dKeap1 led to an ectopic localization of lamin to the intra-nuclear area, corelated with the spreading of the heterochromatin marker H3K9me2 into euchromatin regions. Additionally, mis-regulated dKeap1 disrupted the morphology of the nuclear lamina. Knocking down of dKeap1 partially rescued the lethality induced by lamin overexpression, suggesting their genetic interaction during development. CONCLUSIONS The discovered dKeap1-lamin interaction suggests a novel role for the Keap1 oxidative/xenobiotic response factor in regulating chromatin architecture.
Collapse
Affiliation(s)
- Jennifer Carlson
- Department of Biology, University of Minnesota Duluth, 253A SSB, 1035 Kirby Drive, Duluth, MN, 55812, USA
| | - Emma Neidviecky
- Department of Biology, University of Minnesota Duluth, 253A SSB, 1035 Kirby Drive, Duluth, MN, 55812, USA
| | - Isabel Cook
- Department of Biology, University of Minnesota Duluth, 253A SSB, 1035 Kirby Drive, Duluth, MN, 55812, USA
| | - Bethany Cross
- Department of Biology, University of Minnesota Duluth, 253A SSB, 1035 Kirby Drive, Duluth, MN, 55812, USA
| | - Huai Deng
- Department of Biology, University of Minnesota Duluth, 253A SSB, 1035 Kirby Drive, Duluth, MN, 55812, USA.
| |
Collapse
|
3
|
Vanderperre S, Merabet S. Visualization of the Association of Dimeric Protein Complexes on Specific Enhancers in the Salivary Gland Nuclei of Drosophila Larva. Cells 2024; 13:613. [PMID: 38607052 PMCID: PMC11012150 DOI: 10.3390/cells13070613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
Transcription factors (TFs) regulate gene expression by recognizing specific target enhancers in the genome. The DNA-binding and regulatory activity of TFs depend on the presence of additional protein partners, leading to the formation of versatile and dynamic multimeric protein complexes. Visualizing these protein-protein interactions (PPIs) in the nucleus is key for decrypting the molecular cues underlying TF specificity in vivo. Over the last few years, Bimolecular Fluorescence Complementation (BiFC) has been developed in several model systems and applied in the analysis of different types of PPIs. In particular, BiFC has been applied when analyzing PPIs with hundreds of TFs in the nucleus of live Drosophila embryos. However, the visualization of PPIs at the level of specific target enhancers or genomic regions of interest awaits the advent of DNA-labelling methods that can be coupled with BiFC. Here, we present a novel experimental strategy that we have called BiFOR and that is based on the coupling of BiFC with the bacterial ANCHOR DNA-labelling system. We demonstrate that BiFOR enables the precise quantification of the enrichment of specific dimeric protein complexes on target enhancers in Drosophila salivary gland nuclei. Given its versatility and sensitivity, BiFOR could be applied more widely to other tissues during Drosophila development. Our work sets up the experimental basis for future applications of this strategy.
Collapse
Affiliation(s)
| | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), UMR5242, Ecole Normale Supérieure de Lyon (ENSL), CNRS, Université de Lyon, 69007 Lyon, France;
| |
Collapse
|
4
|
Jéssica Paloma ÁR, Juan Rafael RE. Activation of the Cap'n'collar C pathway (Nrf2 pathway in vertebrates) signaling in insulin pathway compromised Drosophila melanogaster flies ameliorates the diabetic state upon pro-oxidant conditions. Gen Comp Endocrinol 2023; 335:114229. [PMID: 36781022 DOI: 10.1016/j.ygcen.2023.114229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
The insulin pathway is a crucial central system for metabolism and growth. The Nrf2 signaling pathway functions to counteract oxidative stress. Here we sought to study the consequences of an oxidative stress challenge to insulin compromised and control adult flies of different ages, varying the activation state of the Nrf2 pathway in flies, the Cap'n'collar C pathway. For this, we employed two different pro-oxidative conditions: 3 % hydrogen peroxide or 20 mM paraquat laced in the food. In both cases, wild type (control) flies die within a few days, yet there are significant differences between males and females, and also within flies of different ages (seven versus thirty days old flies). We repeated the same conditions with young (seven days old) flies that were heterozygous for a loss-of-function mutation in Keap1. There were no significant differences. We then tested two hypomorphic viable conditions of the insulin pathway (heteroallelic combination for the insulin receptor and the S6 Kinase), challenged in the same way: Whereas they also die in the pro-oxidant conditions, they fare significantly better when heterozygous for Keap1, in contrast to controls. We also monitored locomotion in all of these conditions, and, in general, found significant differences between flies without and with a mutant allele (heterozygous) for Keap1. Our results point to altered oxidative stress conditions in diabetic flies. These findings suggest that modest activation of the Cap'n'collar C pathway may be a treatment for diabetic symptoms.
Collapse
Affiliation(s)
- Álvarez-Rendón Jéssica Paloma
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Programa de posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Riesgo-Escovar Juan Rafael
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Programa de posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Mexico.
| |
Collapse
|
5
|
Neidviecky E, Deng H. Determination of Complex Formation between Drosophila Nrf2 and GATA4 Factors at Selective Chromatin Loci Demonstrates Transcription Coactivation. Cells 2023; 12:938. [PMID: 36980279 PMCID: PMC10047698 DOI: 10.3390/cells12060938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Nrf2 is the dominant cellular stress response factor that protects cells through transcriptional responses to xenobiotic and oxidative stimuli. Nrf2 malfunction is highly correlated with many human diseases, but the underlying molecular mechanisms remain to be fully uncovered. GATA4 is a conserved GATA family transcription factor that is essential for cardiac and dorsal epidermal development. Here, we describe a novel interaction between Drosophila Nrf2 and GATA4 proteins, i.e., cap'n'collar C (CncC) and Pannier (Pnr), respectively. Using the bimolecular fluorescence complementation (BiFC) assay-a unique imaging tool for probing protein complexes in living cells-we detected CncC-Pnr complexes in the nuclei of Drosophila embryonic and salivary gland cells. Visualization of CncC-Pnr BiFC signals on the polytene chromosome revealed that CncC and Pnr tend to form complexes in euchromatic regions, with a preference for loci that are not highly occupied by CncC or Pnr alone. Most genes within these loci are activated by the CncC-Pnr BiFC, but not by individually expressed CncC or Pnr fusion proteins, indicating a novel mechanism whereby CncC and Pnr interact at specific genomic loci and coactivate genes at these loci. Finally, CncC-induced early lethality can be rescued by Pnr depletion, suggesting that CncC and Pnr function in the same genetic pathway during the early development of Drosophila. Taken together, these results elucidate a novel crosstalk between the Nrf2 xenobiotic/oxidative response factor and GATA factors in the transcriptional regulation of development. This study also demonstrates that the polytene chromosome BiFC assay is a valuable tool for mapping genes that are targeted by specific transcription factor complexes.
Collapse
Affiliation(s)
| | - Huai Deng
- Department of Biology, University of Minnesota Duluth, 1035 Kirby Drive, Duluth, MN 55812, USA
| |
Collapse
|
6
|
Jiang H, Meng X, Zhang N, Ge H, Wei J, Qian K, Zheng Y, Park Y, Reddy Palli S, Wang J. The pleiotropic AMPK-CncC signaling pathway regulates the trade-off between detoxification and reproduction. Proc Natl Acad Sci U S A 2023; 120:e2214038120. [PMID: 36853946 PMCID: PMC10013871 DOI: 10.1073/pnas.2214038120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/04/2023] [Indexed: 03/01/2023] Open
Abstract
The association of decreased fecundity with insecticide resistance and the negative sublethal effects of insecticides on insect reproduction indicates the typical trade-off between two highly energy-demanding processes, detoxification and reproduction. However, the underlying mechanisms are poorly understood. The energy sensor adenosine monophosphate-activated protein kinase (AMPK) and the transcription factor Cap "n" collar isoform C (CncC) are important regulators of energy metabolism and xenobiotic response, respectively. In this study, using the beetle Tribolium castaneum as a model organism, we found that deltamethrin-induced oxidative stress activated AMPK, which promoted the nuclear translocation of CncC through its phosphorylation. The CncC not only acts as a transcription activator of cytochrome P450 genes but also regulates the expression of genes coding for ecdysteroid biosynthesis and juvenile hormone (JH) degradation enzymes, resulting in increased ecdysteroid levels as well as decreased JH titer and vitellogenin (Vg) gene expression. These data show that in response to xenobiotic stress, the pleiotropic AMPK-CncC signaling pathway mediates the trade-off between detoxification and reproduction by up-regulating detoxification genes and disturbing hormonal homeostasis.
Collapse
Affiliation(s)
- Heng Jiang
- College of Plant Protection, Yangzhou University, Yangzhou225009, China
| | - Xiangkun Meng
- College of Plant Protection, Yangzhou University, Yangzhou225009, China
| | - Nan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou225009, China
| | - Huichen Ge
- College of Plant Protection, Yangzhou University, Yangzhou225009, China
| | - Jiaping Wei
- College of Plant Protection, Yangzhou University, Yangzhou225009, China
| | - Kun Qian
- College of Plant Protection, Yangzhou University, Yangzhou225009, China
| | - Yang Zheng
- College of Plant Protection, Yangzhou University, Yangzhou225009, China
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS66506
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY40546
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou225009, China
| |
Collapse
|
7
|
Burns VE, Kerppola TK. Keap1 moderates the transcription of virus induced genes through G9a-GLP and NFκB p50 recruitment. Immunology 2022; 167:105-121. [PMID: 35751391 DOI: 10.1111/imm.13527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022] Open
Abstract
Cells must control genes that are induced by virus infection to mitigate deleterious consequences of inflammation. We investigated the mechanisms whereby Keap1 moderates the transcription of genes that are induced by Sendai virus infection in mouse embryo fibroblasts (MEFs). Keap1-/- deletions increased the transcription of virus induced genes independently of Nrf2. Keap1 moderated early virus induced gene transcription. Virus infection induced Keap1 to bind Ifnb1, Tnf and Il6, and reduced Keap1 binding at Cdkn1a and Ccng1. Virus infection induced G9a-GLP and NFκB p50 recruitment, and H3K9me2 deposition. Keap1-/- deletions eliminated G9a-GLP and NFκB p50 recruitment, and H3K9me2 deposition, but they did not affect NFκB p65, IRF3 or cJun recruitment. G9a-GLP inhibitors (BIX01294, MS012, BRD4770) enhanced virus induced gene transcription in MEFs with intact Keap1, but not in MEFs with Keap1-/- deletions. G9a-GLP inhibitors augmented Keap1 binding to virus induced genes in infected MEFs, and to cell cycle genes in uninfected MEFs. G9a-GLP inhibitors augmented NFκB subunit recruitment in MEFs with intact Keap1. G9a-GLP inhibitors stabilized Keap1 retention in permeabilized MEFs. G9a-GLP lysine methyltransferase activity was required for Keap1 to moderate transcription, and it moderated Keap1 binding to chromatin. The interdependent effects of Keap1 and G9a-GLP on the recruitment of each other and on the moderation of virus induced gene transcription constitute a feedback circuit. Keap1 and the electrophile tBHQ reduced virus induced gene transcription through different mechanisms, and they regulated the recruitment of different NFκB subunits. Characterization of the mechanisms whereby Keap1, G9a-GLP and NFκB p50 moderate virus induced gene transcription can facilitate the development of immunomodulatory agents. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Tom Klaus Kerppola
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI
| |
Collapse
|
8
|
Drosophila Keap1 xenobiotic response factor regulates developmental transcription through binding to chromatin. Dev Biol 2022; 481:139-147. [PMID: 34662537 PMCID: PMC9502878 DOI: 10.1016/j.ydbio.2021.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 01/03/2023]
Abstract
The Keap1-Nrf2 complex is a central regulator that mediates transcriptional responses to xenobiotic stimuli and is highly related with multiple human diseases. The molecular mechanisms and biological functions of Keap1 and Nrf2 are not fully understood. The Drosophila Keap1 homolog (dKeap1) is conserved with mammalian Keap1 except that dKeap1 contains a 156 aa C-terminal tail (CTD). A dKeap1 truncation with the CTD removed (dKeap1-ΔCTD) shows abolished nuclear localization and chromatin-binding. Expression of dKeap1-ΔCTD in the dKeap1 null background significantly rescues this mutant to the adult stage, but the files showed partial lethality, sterility and defects in adipose tissue. In the rescued flies, expression levels of ecdysone-response genes, ecdysone-synthetic genes and adipogenesis genes were down-regulated in specific tissues, indicating that the chromatin-binding of dKeap1 mediates the activation of these developmental genes. At the same time, dKeap1-ΔCTD can still suppress the basal expression of detoxifying genes and mediate the activation of these genes in response to xenobiotic stimuli, suggesting that the chromatin-binding of dKeap1 is not required for the regulation of detoxifying genes. These results support a model in which dKeap1 on one hand functions as an inhibitor for the Nrf2-mediated transcription in the xenobiotic response pathway and on the other hand functions as a chromatin-binding transcription activator in the developmental pathway. Our study reveals a novel mechanism whereby Keap1-Nrf2 xenobiotic response signaling regulates development using a mechanism independent of redox signaling.
Collapse
|
9
|
Coombs GS, Rios-Monterrosa JL, Lai S, Dai Q, Goll AC, Ketterer MR, Valdes MF, Uche N, Benjamin IJ, Wallrath LL. Modulation of muscle redox and protein aggregation rescues lethality caused by mutant lamins. Redox Biol 2021; 48:102196. [PMID: 34872044 PMCID: PMC8646998 DOI: 10.1016/j.redox.2021.102196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 12/28/2022] Open
Abstract
Mutations in the human LMNA gene cause a collection of diseases called laminopathies, which includes muscular dystrophy and dilated cardiomyopathy. The LMNA gene encodes lamins, filamentous proteins that form a meshwork on the inner side of the nuclear envelope. How mutant lamins cause muscle disease is not well understood, and treatment options are currently limited. To understand the pathological functions of mutant lamins so that therapies can be developed, we generated new Drosophila models and human iPS cell-derived cardiomyocytes. In the Drosophila models, muscle-specific expression of the mutant lamins caused nuclear envelope defects, cytoplasmic protein aggregation, activation of the Nrf2/Keap1 redox pathway, and reductive stress. These defects reduced larval motility and caused death at the pupal stage. Patient-derived cardiomyocytes expressing mutant lamins showed nuclear envelope deformations. The Drosophila models allowed for genetic and pharmacological manipulations at the organismal level. Genetic interventions to increase autophagy, decrease Nrf2/Keap1 signaling, or lower reducing equivalents partially suppressed the lethality caused by mutant lamins. Moreover, treatment of flies with pamoic acid, a compound that inhibits the NADPH-producing malic enzyme, partially suppressed lethality. Taken together, these studies have identified multiple new factors as potential therapeutic targets for LMNA-associated muscular dystrophy.
Collapse
Affiliation(s)
- Gary S Coombs
- Biology Department, Waldorf University, Forest City, IA, USA
| | | | - Shuping Lai
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Qiang Dai
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashley C Goll
- Department of Biochemistry & Molecular Biology, University of Iowa, Iowa City, IA, USA
| | - Margaret R Ketterer
- Department of Biochemistry & Molecular Biology, University of Iowa, Iowa City, IA, USA
| | - Maria F Valdes
- Biology Department, Waldorf University, Forest City, IA, USA
| | - Nnamdi Uche
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WO, USA
| | - Ivor J Benjamin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lori L Wallrath
- Department of Biochemistry & Molecular Biology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
10
|
Burns VE, Kerppola TK. Virus Infection Induces Keap1 Binding to Cytokine Genes, Which Recruits NF-κB p50 and G9a-GLP and Represses Cytokine Transcription. THE JOURNAL OF IMMUNOLOGY 2021; 207:1437-1447. [PMID: 34400522 DOI: 10.4049/jimmunol.2100355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022]
Abstract
Proinflammatory cytokine gene transcription must be moderated to avoid the pathological consequences of excess cytokine production. The relationships between virus infection and the mechanisms that moderate cytokine transcription are incompletely understood. We investigated the influence of Keap1 on cytokine gene induction by Sendai virus infection in mouse embryo fibroblasts. Virus infection induced Keap1 binding to the Ifnb1, Tnf, and Il6 genes. Keap1 moderated viral induction of their transcription by mechanisms that did not require Nrf2. Keap1 was required for NF-κB p50 recruitment, but not for NF-κB p65 or IRF3 recruitment, to these genes. Keap1 formed complexes with NF-κB p50 and NF-κB p65, which were visualized using bimolecular fluorescence complementation analysis. These bimolecular fluorescence complementation complexes bound chromosomes in live cells, suggesting that Keap1 could bind chromatin in association with NF-κB proteins. Keap1 was required for viral induction of G9a-GLP lysine methyltransferase binding and H3K9me2 modification at cytokine genes. G9a-GLP inhibitors counteracted transcription repression by Keap1 and enhanced Keap1 and NF-κB recruitment to cytokine genes. The interrelationships among Keap1, NF-κB, and G9a-GLP recruitment, activities, and transcriptional effects suggest that they form a feedback circuit, which moderates viral induction of cytokine transcription. Nrf2 counteracted Keap1 binding to cytokine genes and the recruitment of NF-κB p50 and G9a-GLP by Keap1. Whereas Keap1 has been reported to influence cytokine expression indirectly through its functions in the cytoplasm, these findings provide evidence that Keap1 regulates cytokine transcription directly in the nucleus. Keap1 binds to cytokines genes upon virus infection and moderates their induction by recruiting NF-κB p50 and G9a-GLP.
Collapse
Affiliation(s)
| | - Tom Klaus Kerppola
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI
| |
Collapse
|
11
|
Chew LY, Zhang H, He J, Yu F. The Nrf2-Keap1 pathway is activated by steroid hormone signaling to govern neuronal remodeling. Cell Rep 2021; 36:109466. [PMID: 34348164 DOI: 10.1016/j.celrep.2021.109466] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/30/2022] Open
Abstract
The evolutionarily conserved Nrf2-Keap1 pathway is a key antioxidant response pathway that protects cells/organisms against detrimental effects of oxidative stress. Impaired Nrf2 function is associated with cancer and neurodegenerative diseases in humans. However, the function of the Nrf2-Keap1 pathway in the developing nervous systems has not been established. Here we demonstrate a cell-autonomous role of the Nrf2-Keap1 pathway, composed of CncC/Nrf2, Keap1, and MafS, in governing neuronal remodeling during Drosophila metamorphosis. Nrf2-Keap1 signaling is activated downstream of the steroid hormone ecdysone. Mechanistically, the Nrf2-Keap1 pathway is activated via cytoplasmic-to-nuclear translocation of CncC in an importin- and ecdysone-signaling-dependent manner. Moreover, Nrf2-Keap1 signaling regulates dendrite pruning independent of its canonical antioxidant response pathway, acting instead through proteasomal degradation. This study reveals an epistatic link between the Nrf2-Keap1 pathway and steroid hormone signaling and demonstrates an antioxidant-independent but proteasome-dependent role of the Nrf2-Keap1 pathway in neuronal remodeling.
Collapse
Affiliation(s)
- Liang Yuh Chew
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Heng Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Jianzheng He
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Fengwei Yu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
12
|
Li X, Deng Z, Chen X. Regulation of insect P450s in response to phytochemicals. CURRENT OPINION IN INSECT SCIENCE 2021; 43:108-116. [PMID: 33385580 DOI: 10.1016/j.cois.2020.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Insect herbivores use phytochemicals as signals to induce expression of their phytochemical-detoxifying cytochrome P450 monooxygenases (P450s). The regulatory cascades that transduce phytochemical signals to enhanced expression of P450s are the focus of this review. At least seven signaling pathways, including RTK/MAPK, GPCR/CREB, GPCR/NFκB, ROS/CncC/Keap1, AhR/ARNT, cytosol NR, and nucleus-located NR, may be involved in phytochemical induction of P450s. Constitutive overexpression, overphosphorylation, and/or activation of one or more effectors in the corresponding pathway are common causes of P450 overexpression that lead to phytochemical or insecticide resistance. Future research should pay more attentions to the starting point of each pathway, the number of pathways and their cross talk for a given phytochemical, and the pathways for downregulation of P450s.
Collapse
Affiliation(s)
- Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, United States.
| | - Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xuewei Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
13
|
Carlson J, Price L, Deng H. Nrf2 and the Nrf2-Interacting Network in Respiratory Inflammation and Diseases. NRF2 AND ITS MODULATION IN INFLAMMATION 2020. [PMCID: PMC7241096 DOI: 10.1007/978-3-030-44599-7_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Atmospheric pollutants and cigarette smoke influence the human respiratory system and induce airway inflammation, injury, and pathogenesis. Activation of the NF-E2-related factor 2 (Nrf2) transcription factor and downstream antioxidant response element (ARE)-mediated transcriptions play a central role in protecting respiratory cells against reactive oxidative species (ROS) that are induced by airway toxins and inflammation. Recent studies have revealed that Nrf2 can also target and activate many genes involved in developmental programs such as cell proliferation, cell differentiation, cell death, and metabolism. Nrf2 is closely regulated by the interaction with kelch-like ECH-associated protein 1 (Keap1), while also directly interacts with a number of other proteins, including inflammatory factors, transcription factors, autophagy mediators, kinases, epigenetic modifiers, etc. It is believed that the multiple target genes and the complicated interacting network of Nrf2 account for the roles of Nrf2 in physiologies and pathogeneses. This chapter summarizes the molecular functions and protein interactions of Nrf2, as well as the roles of Nrf2 and the Nrf2-interacting network in respiratory inflammation and diseases, including acute lung injury (ALI), asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), cystic fibrosis (CF), viral/bacterial infections, and lung cancers. Therapeutic applications that target Nrf2 and its interacting proteins in respiratory diseases are also reviewed.
Collapse
|
14
|
Carlson J, Swisse T, Smith C, Deng H. Regulation of position effect variegation at pericentric heterochromatin by Drosophila Keap1-Nrf2 xenobiotic response factors. Genesis 2019; 57:e23290. [PMID: 30888733 DOI: 10.1002/dvg.23290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/30/2022]
Abstract
The Keap1-Nrf2 signaling pathway plays a central role in the regulation of transcriptional responses to oxidative species and xenobiotic stimuli. The complete range of molecular mechanisms and biological functions of Keap1 and Nrf2 remain to be fully elucidated. To determine the potential roles of Keap1 and Nrf2 in chromatin architecture, we examined the effects of their Drosophila homologs (dKeap1 and CncC) on position effect variegation (PEV), which is a transcriptional reporter for heterochromatin formation and spreading. Loss of function mutations in cncC, dKeap1, and cncC/dKeap1 double mutants all suppressed the variegation of wm4 and SbV PEV alleles, indicating that reduction of CncC or dKeap1 causes a decrease of heterochromatic silencing at pericentric region. Depletion of CncC or dKeap1 in embryos reduced the level of the H3K9me2 heterochromatin marker, but had no effect on the transcription of the genes encoding Su(var)3-9 and HP1. These results support a potential role of dKeap1 and CncC in the establishment and/or maintenance of pericentric heterochromatin. Our study provides preliminary evidence for a novel epigenetic function of Keap1-Nrf2 oxidative/xenobiotic response factors in chromatin remodeling.
Collapse
Affiliation(s)
- Jennifer Carlson
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota
| | - Thane Swisse
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota
| | - Charles Smith
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota
| | - Huai Deng
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota
| |
Collapse
|
15
|
Bhide S, Trujillo AS, O'Connor MT, Young GH, Cryderman DE, Chandran S, Nikravesh M, Wallrath LL, Melkani GC. Increasing autophagy and blocking Nrf2 suppress laminopathy-induced age-dependent cardiac dysfunction and shortened lifespan. Aging Cell 2018; 17:e12747. [PMID: 29575479 PMCID: PMC5946079 DOI: 10.1111/acel.12747] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2018] [Indexed: 12/16/2022] Open
Abstract
Mutations in the human LMNA gene cause a collection of diseases known as laminopathies. These include myocardial diseases that exhibit age-dependent penetrance of dysrhythmias and heart failure. The LMNA gene encodes A-type lamins, intermediate filaments that support nuclear structure and organize the genome. Mechanisms by which mutant lamins cause age-dependent heart defects are not well understood. To address this issue, we modeled human disease-causing mutations in the Drosophila melanogaster Lamin C gene and expressed mutant Lamin C exclusively in the heart. This resulted in progressive cardiac dysfunction, loss of adipose tissue homeostasis, and a shortened adult lifespan. Within cardiac cells, mutant Lamin C aggregated in the cytoplasm, the CncC(Nrf2)/Keap1 redox sensing pathway was activated, mitochondria exhibited abnormal morphology, and the autophagy cargo receptor Ref2(P)/p62 was upregulated. Genetic analyses demonstrated that simultaneous over-expression of the autophagy kinase Atg1 gene and an RNAi against CncC eliminated the cytoplasmic protein aggregates, restored cardiac function, and lengthened lifespan. These data suggest that simultaneously increasing rates of autophagy and blocking the Nrf2/Keap1 pathway are a potential therapeutic strategy for cardiac laminopathies.
Collapse
Affiliation(s)
- Shruti Bhide
- Department of Biology, Molecular Biology and Heart Institutes; San Diego State University; San Diego CA USA
| | - Adriana S. Trujillo
- Department of Biology, Molecular Biology and Heart Institutes; San Diego State University; San Diego CA USA
| | - Maureen T. O'Connor
- Department of Biochemistry; Carver College of Medicine; University of Iowa; Iowa City IA USA
| | - Grant H. Young
- Department of Biochemistry; Carver College of Medicine; University of Iowa; Iowa City IA USA
| | - Diane E. Cryderman
- Department of Biochemistry; Carver College of Medicine; University of Iowa; Iowa City IA USA
| | - Sahaana Chandran
- Department of Biology, Molecular Biology and Heart Institutes; San Diego State University; San Diego CA USA
| | - Mastaneh Nikravesh
- Department of Biology, Molecular Biology and Heart Institutes; San Diego State University; San Diego CA USA
| | - Lori L. Wallrath
- Department of Biochemistry; Carver College of Medicine; University of Iowa; Iowa City IA USA
| | - Girish C. Melkani
- Department of Biology, Molecular Biology and Heart Institutes; San Diego State University; San Diego CA USA
| |
Collapse
|
16
|
Dual Roles of Glutathione in Ecdysone Biosynthesis and Antioxidant Function During Larval Development in Drosophila. Genetics 2017; 207:1519-1532. [PMID: 29021278 PMCID: PMC5714463 DOI: 10.1534/genetics.117.300391] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 10/08/2017] [Indexed: 01/08/2023] Open
Abstract
Ecdysteroids, including the biologically active hormone 20-hydroxyecdysone (20E), play essential roles in controlling many developmental and physiological events in insects. Ecdysteroid biosynthesis is achieved by a series of specialized enzymes encoded by the Halloween genes. Recently, a new class of Halloween gene, noppera-bo (nobo), encoding a glutathione S-transferase (GST) in dipteran and lepidopteran species, has been identified and characterized. GSTs are well known to conjugate substrates with the reduced form of glutathione (GSH), a bioactive tripeptide composed of glutamate, cysteine, and glycine. We hypothesized that GSH itself is required for ecdysteroid biosynthesis. However, the role of GSH in steroid hormone biosynthesis has not been examined in any organisms. Here, we report phenotypic analysis of a complete loss-of-function mutant in the γ-glutamylcysteine synthetase catalytic subunit (Gclc) gene in the fruit fly Drosophila melanogaster. Gclc encodes the evolutionarily conserved catalytic component of the enzyme that conjugates glutamate and cysteine in the GSH biosynthesis pathway. Complete Gclc loss-of-function leads to drastic GSH deficiency in the larval body fluid. Gclc mutant animals show a larval-arrest phenotype. Ecdysteroid titer in Gclc mutant larvae decreases, and the larval-arrest phenotype is rescued by oral administration of 20E or cholesterol. Moreover, Gclc mutant animals exhibit abnormal lipid deposition in the prothoracic gland, a steroidogenic organ during larval development. All of these phenotypes are reminiscent to nobo loss-of-function animals. On the other hand, Gclc mutant larvae also exhibit a significant reduction in antioxidant capacity. Consistent with this phenotype, Gclc mutant larvae are more sensitive to oxidative stress response as compared to wild-type. Nevertheless, the ecdysteroid biosynthesis defect in Gclc mutant animals is not associated with loss of antioxidant function. Our data raise the unexpected hypothesis that a primary role of GSH in early D. melanogaster larval development is ecdysteroid biosynthesis, independent from the antioxidant role of GSH.
Collapse
|
17
|
Sun QK, Meng QW, Xu QY, Deng P, Guo WC, Li GQ. Leptinotarsa cap 'n' collar isoform C/Kelch-like ECH associated protein 1 signaling is critical for the regulation of ecdysteroidogenesis in the larvae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 85:1-10. [PMID: 28408149 DOI: 10.1016/j.ibmb.2017.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/27/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Drosophila cap 'n' collar isoform C (CncC) and Kelch-like ECH associated protein 1 (Keap1) regulate metamorphosis by transcriptional control of a subset of genes involved in ecdysteroidogenesis, 20-hydroxyecdysone (20E) signaling, and juvenile hormone (JH) degradation. In the present paper, we found that prothoracicotropic hormone signal was required for the activation of LdCncC and LdKeap1 in Leptinotarsa decemlineata. Moreover, RNA interference of LdCncC or LdKeap1 in the fourth-instar larvae delayed development. As a result, the treated larvae obtained heavier larval and pupal fresh weights and had larger body sizes than the controls. Furthermore, knockdown of LdCncC or LdKeap1 significantly reduced the mRNA levels of four ecdysone biosynthetic genes (Ldspo, Ldphm, Lddib and Ldsad), lowered 20E titer and decreased the transcript levels of five 20E response genes (LdEcR, LdUSP, LdE75, LdHR3 and LdFTZ-F1). However, the expression of two JH epoxide hydrolase genes and JH contents were not affected in the LdCncC and LdKeap1 RNAi larvae. Dietary supplementation with 20E shortened the developmental period to normal length, rescued the larval and pupal body mass rises, and recovered or even overcompensated the expression levels of the five 20E response genes in either LdCncC or LdKeap1 RNAi hypomorphs. Therefore, LdCncC/LdKeap1 signaling regulates several ecdysteroidogenesis genes, and consequently 20E pulse, to modulate the onset of metamorphosis in L. decemlineata.
Collapse
Affiliation(s)
- Qiang-Kun Sun
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qing-Wei Meng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qing-Yu Xu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Pan Deng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wen-Chao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
18
|
Cap-n-Collar Promotes Tissue Regeneration by Regulating ROS and JNK Signaling in the Drosophila melanogaster Wing Imaginal Disc. Genetics 2017; 206:1505-1520. [PMID: 28512185 DOI: 10.1534/genetics.116.196832] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 05/10/2017] [Indexed: 01/03/2023] Open
Abstract
Regeneration is a complex process that requires an organism to recognize and repair tissue damage, as well as grow and pattern new tissue. Here, we describe a genetic screen to identify novel regulators of regeneration. We ablated the Drosophila melanogaster larval wing primordium by inducing apoptosis in a spatially and temporally controlled manner and allowed the tissue to regenerate and repattern. To identify genes that regulate regeneration, we carried out a dominant-modifier screen by assessing the amount and quality of regeneration in adult wings heterozygous for isogenic deficiencies. We have identified 31 regions on the right arm of the third chromosome that modify the regenerative response. Interestingly, we observed several distinct phenotypes: mutants that regenerated poorly, mutants that regenerated faster or better than wild-type, and mutants that regenerated imperfectly and had patterning defects. We mapped one deficiency region to cap-n-collar (cnc), the Drosophila Nrf2 ortholog, which is required for regeneration. Cnc regulates reactive oxygen species levels in the regenerating epithelium, and affects c-Jun N-terminal protein kinase (JNK) signaling, growth, debris localization, and pupariation timing. Here, we present the results of our screen and propose a model wherein Cnc regulates regeneration by maintaining an optimal level of reactive oxygen species to promote JNK signaling.
Collapse
|
19
|
Deng H, Kerppola TK. Visualization of the Genomic Loci That Are Bound by Specific Multiprotein Complexes by Bimolecular Fluorescence Complementation Analysis on Drosophila Polytene Chromosomes. Methods Enzymol 2017; 589:429-455. [PMID: 28336073 DOI: 10.1016/bs.mie.2017.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
We have developed a procedure that enables visualization of the genomic loci that are bound by complexes formed by a specific combination of chromatin-binding proteins. This procedure is based on imaging bimolecular fluorescence complementation (BiFC) complexes on Drosophila polytene chromosomes. BiFC complexes are formed by the facilitated association of two fluorescent protein fragments that are fused to proteins that interact with, or are in close proximity to, each other. The intensity of BiFC complex fluorescence at individual genomic loci is greatly enhanced by the parallel alignment of hundreds of chromatids within the polytene chromosomes. The loci that are bound by the complexes are mapped by comparing the locations of BiFC complex fluorescence with the stereotypical banding patterns of the chromosomes. We describe strategies for the design, expression, and validation of fusion proteins for the analysis of BiFC complex binding on polytene chromosomes. We detail protocols for the preparation of polytene chromosome spreads that have been optimized for the purpose of BiFC complex visualization. Finally, we provide guidance for the interpretation of results from studies of BiFC complex binding on polytene chromosomes and for comparison of the genomic loci that are bound by BiFC complexes with those that are bound by subunits of the corresponding endogenous complexes. The visualization of BiFC complex binding on polytene chromosomes provides a unique method to visualize multiprotein complex binding at specific loci, throughout the genome, in individual cells.
Collapse
Affiliation(s)
- Huai Deng
- University of Michigan, Ann Arbor, MI, United States
| | | |
Collapse
|
20
|
Ng CT, Yong LQ, Hande MP, Ong CN, Yu LE, Bay BH, Baeg GH. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int J Nanomedicine 2017; 12:1621-1637. [PMID: 28280330 PMCID: PMC5339013 DOI: 10.2147/ijn.s124403] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Although zinc oxide nanoparticles (ZnO NPs) have been widely used, there has been an increasing number of reports on the toxicity of ZnO NPs. However, study on the underlying mechanisms under in vivo conditions is insufficient. Methods In this study, we investigated the toxicological profiles of ZnO NPs in MRC5 human lung fibroblasts in vitro and in an in vivo model using the fruit fly Drosophila melanogaster. A comprehensive study was conducted to evaluate the uptake, cytotoxicity, reactive oxygen species (ROS) formation, gene expression profiling and genotoxicity induced by ZnO NPs. Results For in vitro toxicity, the results showed that there was a significant release of extracellular lactate dehydrogenase and decreased cell viability in ZnO NP-treated MRC5 lung cells, indicating cellular damage and cytotoxicity. Generation of ROS was observed to be related to significant expression of DNA Damage Inducible Transcript (DDIT3) and endoplasmic reticulum (ER) to nucleus signaling 1 (ERN1) genes, which are ER stress-related genes. Oxidative stress induced DNA damage was further verified by a significant release of DNA oxidation product, 8-hydroxydeoxyguanosine (8-OHdG), as well as by the Comet assay. For the in vivo study using the fruit fly D. melanogaster as a model, significant toxicity was observed in F1 progenies upon ingestion of ZnO NPs. ZnO NPs induced significant decrease in the egg-to-adult viability of the flies. We further showed that the decreased viability is closely associated with ROS induction by ZnO NPs. Removal of one copy of the D. melanogaster Nrf2 alleles further decreased the ZnO NPs-induced lethality due to increased production of ROS, indicating that nuclear factor E2-related factor 2 (Nrf2) plays important role in ZnO NPs-mediated ROS production. Conclusion The present study suggests that ZnO NPs induced significant oxidative stress-related cytotoxicity and genotoxicity in human lung fibroblasts in vitro and in D. melanogaster in vivo. More extensive studies would be needed to verify the safety issues related to increased usage of ZnO NPs by consumers.
Collapse
Affiliation(s)
- Cheng Teng Ng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Environmental Research Institute, National University of Singapore, Singapore
| | - Liang Qing Yong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Choon Nam Ong
- Environmental Research Institute, National University of Singapore, Singapore
| | - Liya E Yu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gyeong Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
21
|
Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 2016; 73:3221-47. [PMID: 27100828 PMCID: PMC4967105 DOI: 10.1007/s00018-016-2223-0] [Citation(s) in RCA: 1665] [Impact Index Per Article: 208.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 12/12/2022]
Abstract
The multifunctional regulator nuclear factor erythroid 2-related factor (Nrf2) is considered not only as a cytoprotective factor regulating the expression of genes coding for anti-oxidant, anti-inflammatory and detoxifying proteins, but it is also a powerful modulator of species longevity. The vertebrate Nrf2 belongs to Cap 'n' Collar (Cnc) bZIP family of transcription factors and shares a high homology with SKN-1 from Caenorhabditis elegans or CncC found in Drosophila melanogaster. The major characteristics of Nrf2 are to some extent mimicked by Nrf2-dependent genes and their proteins including heme oxygenase-1 (HO-1), which besides removing toxic heme, produces biliverdin, iron ions and carbon monoxide. HO-1 and their products exert beneficial effects through the protection against oxidative injury, regulation of apoptosis, modulation of inflammation as well as contribution to angiogenesis. On the other hand, the disturbances in the proper HO-1 level are associated with the pathogenesis of some age-dependent disorders, including neurodegeneration, cancer or macular degeneration. This review summarizes our knowledge about Nrf2 and HO-1 across different phyla suggesting their conservative role as stress-protective and anti-aging factors.
Collapse
Affiliation(s)
- Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Faculty of Biology and Earth Sciences, Jagiellonian University, Krakow, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Faculty of Biology and Earth Sciences, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
22
|
El-Khoury R, Kaulio E, Lassila KA, Crowther DC, Jacobs HT, Rustin P. Expression of the alternative oxidase mitigates beta-amyloid production and toxicity in model systems. Free Radic Biol Med 2016; 96:57-66. [PMID: 27094492 DOI: 10.1016/j.freeradbiomed.2016.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 04/05/2016] [Accepted: 04/09/2016] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunction has been widely associated with the pathology of Alzheimer's disease, but there is no consensus on whether it is a cause or consequence of disease, nor on the precise mechanism(s). We addressed these issues by testing the effects of expressing the alternative oxidase AOX from Ciona intestinalis, in different models of AD pathology. AOX can restore respiratory electron flow when the cytochrome segment of the mitochondrial respiratory chain is inhibited, supporting ATP synthesis, maintaining cellular redox homeostasis and mitigating excess superoxide production at respiratory complexes I and III. In human HEK293-derived cells, AOX expression decreased the production of beta-amyloid peptide resulting from antimycin inhibition of respiratory complex III. Because hydrogen peroxide was neither a direct product nor substrate of AOX, the ability of AOX to mimic antioxidants in this assay must be indirect. In addition, AOX expression was able to partially alleviate the short lifespan of Drosophila models neuronally expressing human beta-amyloid peptides, whilst abrogating the induction of markers of oxidative stress. Our findings support the idea of respiratory chain dysfunction and excess ROS production as both an early step and as a pathologically meaningful target in Alzheimer's disease pathogenesis, supporting the concept of a mitochondrial vicious cycle underlying the disease.
Collapse
Affiliation(s)
- Riyad El-Khoury
- INSERM UMR 1141 and Université Paris 7, Faculté de Médecine Denis Diderot, Hôpital Robert Debré, 48, Boulevard Sérurier, 75019 Paris, France; American University of Beirut Medical Center, Department of Pathology and Laboratory Medicine, Cairo Street, Hamra, Beirut, Lebanon
| | - Eveliina Kaulio
- BioMediTech and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Katariina A Lassila
- BioMediTech and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Damian C Crowther
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK and MedImmune Ltd, Aaron Klug Building, Granta Park, Cambridge CB21 6GH, UK
| | - Howard T Jacobs
- BioMediTech and Tampere University Hospital, FI-33014 University of Tampere, Finland; Institute of Biotechnology, FI-00014 University of Helsinki, Finland.
| | - Pierre Rustin
- INSERM UMR 1141 and Université Paris 7, Faculté de Médecine Denis Diderot, Hôpital Robert Debré, 48, Boulevard Sérurier, 75019 Paris, France
| |
Collapse
|
23
|
Pitoniak A, Bohmann D. Mechanisms and functions of Nrf2 signaling in Drosophila. Free Radic Biol Med 2015; 88:302-313. [PMID: 26117322 PMCID: PMC5458735 DOI: 10.1016/j.freeradbiomed.2015.06.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/10/2015] [Accepted: 06/15/2015] [Indexed: 12/30/2022]
Abstract
The Nrf2 transcription factor belongs to the Cap'n'collar family, named after the founding member of this group, the product of the Drosophila Cap'n'collar gene. The encoded protein, Cap'n'collar, abbreviated Cnc, offers a convenient and accessible model to study the structure, function, and biology of Nrf2 transcription factors at the organismic, tissular, cellular, and molecular levels, using the powerful genetic, genomic, and biochemical tools available in Drosophila. In this review we provide an account of the original identification of Cnc as a regulator of embryonic development. We then describe the discovery of Nrf2-like functions of Cnc and its role in acute stress signaling and aging. The establishment of Drosophila as a model organism in which the mechanisms and functions of Nrf2 signaling can be studied has led to several discoveries: the regulation of stem cell activity by an Nrf2-mediated redox mechanism, the interaction of Nrf2 with p62 and Myc in the control of tissue growth and the unfolded protein response, and more. Several of these more recent lines of investigation are highlighted. Model organisms such as the fly and the worm remain powerful experimental platforms that can help to unravel the many remaining puzzles regarding the role of Nrf2 and its relatives in controlling the physiology and maintaining the health of multicellular organisms.
Collapse
Affiliation(s)
- Andrew Pitoniak
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dirk Bohmann
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|