1
|
Liu W, Du L, Li J, He Y, Tang M. Microenvironment of spermatogonial stem cells: a key factor in the regulation of spermatogenesis. Stem Cell Res Ther 2024; 15:294. [PMID: 39256786 PMCID: PMC11389459 DOI: 10.1186/s13287-024-03893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024] Open
Abstract
Spermatogonial stem cells (SSCs) play a crucial role in the male reproductive system, responsible for maintaining continuous spermatogenesis. The microenvironment or niche of SSCs is a key factor in regulating their self-renewal, differentiation and spermatogenesis. This microenvironment consists of multiple cell types, extracellular matrix, growth factors, hormones and other molecular signals that interact to form a complex regulatory network. This review aims to provide an overview of the main components of the SSCs microenvironment, explore how they regulate the fate decisions of SSCs, and discuss the potential impact of microenvironmental abnormalities on male reproductive health.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Du
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Junjun Li
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Yan He
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.
| | - Mengjie Tang
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.
| |
Collapse
|
2
|
Jokar J, Abdulabbas HT, Alipanah H, Ghasemian A, Ai J, Rahimian N, Mohammadisoleimani E, Najafipour S. Tissue engineering studies in male infertility disorder. HUM FERTIL 2023; 26:1617-1635. [PMID: 37791451 DOI: 10.1080/14647273.2023.2251678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/06/2023] [Indexed: 10/05/2023]
Abstract
Infertility is an important issue among couples worldwide which is caused by a variety of complex diseases. Male infertility is a problem in 7% of all men. In vitro spermatogenesis (IVS) is the experimental approach that has been developed for mimicking seminiferous tubules-like functional structures in vitro. Currently, various researchers are interested in finding and developing a microenvironmental condition or a bioartificial testis applied for fertility restoration via gamete production in vitro. The tissue engineering (TE) has developed new approaches to treat male fertility preservation through development of functional male germ cells. This makes TE a possible future strategy for restoration of male fertility. Although 3D culture systems supply the perception of the effect of cellular interactions in the process of spermatogenesis, formation of a native gradient of autocrine/paracrine factors in 3D culture systems have not been considered. These results collectively suggest that maintaining the microenvironment of testicular cells even in the form of a 3D-culture system is crucial in achieving spermatogenesis ex vivo. It is also possible to engineer the testicular structures using biomaterials to provide a supporting scaffold for somatic and stem cells. The insemination of these cells with GFs is possible for temporally and spatially adjusted release to mimic the microenvironment of the in situ seminiferous epithelium. This review focuses on recent studies and advances in the application of TE strategies to cell-tissue culture on synthetic or natural scaffolds supplemented with growth factors.
Collapse
Affiliation(s)
- Javad Jokar
- Department of Tissue Engineering, Faculty of Medicine, Fasa University of Medical Science, Fasa, Iran
| | | | - Hiva Alipanah
- Department of Physiology, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Rahimian
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Mohammadisoleimani
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sohrab Najafipour
- Department of Microbiology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
3
|
Moreno Acosta OD, Boan AF, Hattori RS, Fernandino JI. Notch pathway is required for protection against heat stress in spermatogonial stem cells in medaka. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:487-500. [PMID: 37126120 DOI: 10.1007/s10695-023-01200-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/20/2023] [Indexed: 05/25/2023]
Abstract
Gamete production is a fundamental process for reproduction; however, exposure to stress, such as increased environmental temperature, can decrease or even interrupt this process, affecting fertility. Thus, the survival of spermatogonial stem cells (SSCs) is crucial for the recovery of spermatogenesis upon stressful situations. Here, we show that the Notch pathway is implicated in such survival, by protecting the SSCs against thermal stress. First, we corroborated the impairment of spermatogenesis under heat stress in medaka, observing an arrest in metaphase I at 10 days of heat treatment, an increase in the number of spermatocytes, and downregulation of ndrg1b and sycp3. In addition, at 30 days of treatment, an interruption of spermatogenesis was observed with a strong loss of spermatocytes and spermatids. Then, the exposure of adult males to thermal stress condition induced apoptosis mainly in spermatogenic and supporting somatic cells, with the exception of the germinal region, where SSCs are located. Concomitantly, the Notch pathway-related genes were upregulated, including the ligands (dll4, jag1-2) and receptors (notch1a-3). Moreover, during thermal stress presenilin enhancer-2 (pen-2), the catalytic subunit of γ-secretase complex of the Notch pathway was restricted to the germinal region of the medaka testis, observed in somatic cells surrounding type A spermatogonia (SGa). The importance of Notch pathway was further supported by an ex vivo approach, in which the inhibition of this pathway activity induced a loss of SSCs. Overall, this study supports the importance of Notch pathways for the protection of SSCs under chronic thermal stress.
Collapse
Affiliation(s)
- Omar D Moreno Acosta
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomus, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomus, Argentina
| | - Agustín F Boan
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomus, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomus, Argentina
| | - Ricardo S Hattori
- Salmonid Experimental Station at Campos Do Jordão, UPD-CJ, Sao Paulo Fisheries Institute (APTA/SAA), Campos Do Jordao, Brazil
| | - Juan Ignacio Fernandino
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomus, Argentina.
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomus, Argentina.
| |
Collapse
|
4
|
Yang Y, Ma Y, Li M, Zhu H, Shi P, An R. STUB1 directs FOXQ1-mediated transactivation of Ldha gene and facilitates lactate production in mouse Sertoli cells. Cell Tissue Res 2023; 392:565-579. [PMID: 36575252 DOI: 10.1007/s00441-022-03705-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/06/2022] [Indexed: 12/29/2022]
Abstract
Sertoli cells (SCs) preferentially use glucose to convert to lactate. As an energy source, lactate is essential for survival of developed germ cells (GCs) due to its anti-apoptotic effect. Failure to maintain lactate metabolism homeostasis leads to infertility or germ cell apoptosis. Several Sertoli cell-expressed genes, such as Foxq1 and Gata4, have been identified as critical regulators for lactate synthesis, but the pathways that potentially modulate their expression remain ill defined. Although recent work from our collaborators pointed to an involvement of STIP1 homology and U-box-containing protein 1 (STUB1) in the modulation of Sertoli cell response to GCs-derived IL-1α, a true physiological function of STUB1 signaling in SCs has not been demonstrated. We therefore conditionally ablated Stub1 in SCs using Amh-Cre. Stub1 knockout males exhibited impaired fertility due to oligozoospermia and asthenospermia, possibly caused by lactate deficiency. Furthermore, by means of chromatin immunoprecipitation, in vivo ubiquitination, and luciferase reporter assays, we showed that STUB1 directed forkhead box Q1 (FOXQ1)-mediated transactivation of the lactate dehydrogenase A (Ldha) gene via K63-linked non-proteolytic polyubiquitination, thus facilitating lactate production in follicle-stimulating hormone (FSH)-stimulated SCs. In agreement, overexpression of LDHA by lentivirus infection effectively rescued the lactate production in TM4Stub1-/- cells. Our results collectively identify STUB1-mediated transactivation of FOXQ1 signaling as a post-translationally modified transcriptional regulatory network underlying nursery function in SCs, which may nutritionally contribute to Sertoli cell dysfunction of male infertility.
Collapse
Affiliation(s)
- Yang Yang
- Department of Gynecology and Obstetrics, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an 710061, Shaanxi, People's Republic of China
- Reproductive Medicine Center, Xi'an People's Hospital (Xi'an NO.4 Hospital), 710004, Shaanxi, People's Republic of China
| | - Yuan Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi, People's Republic of China
| | - Mao Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi, People's Republic of China
| | - Hongli Zhu
- Reproductive Medicine Center, Xi'an People's Hospital (Xi'an NO.4 Hospital), 710004, Shaanxi, People's Republic of China
| | - Panpan Shi
- Reproductive Medicine Center, Xi'an People's Hospital (Xi'an NO.4 Hospital), 710004, Shaanxi, People's Republic of China
| | - Ruifang An
- Department of Gynecology and Obstetrics, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
5
|
Peng YJ, Tang XT, Shu HS, Dong W, Shao H, Zhou BO. Sertoli cells are the source of stem cell factor for spermatogenesis. Development 2023; 150:297262. [PMID: 36861441 PMCID: PMC10112922 DOI: 10.1242/dev.200706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Several cell types have been proposed to create the required microenvironment for spermatogenesis. However, expression patterns of the key growth factors produced by these somatic cells have not been systematically studied and no such factor has been conditionally deleted from its primary source(s), raising the question of which cell type(s) are the physiological sources of these growth factors. Here, using single-cell RNA sequencing and a series of fluorescent reporter mice, we found that stem cell factor (Scf), one of the essential growth factors for spermatogenesis, was broadly expressed in testicular stromal cells, including Sertoli, endothelial, Leydig, smooth muscle and Tcf21-CreER+ stromal cells. Both undifferentiated and differentiating spermatogonia were associated with Scf-expressing Sertoli cells in the seminiferous tubule. Conditional deletion of Scf from Sertoli cells, but not any other Scf-expressing cells, blocked the differentiation of spermatogonia, leading to complete male infertility. Conditional overexpression of Scf in Sertoli cells, but not endothelial cells, significantly increased spermatogenesis. Our data reveal the importance of anatomical localization for Sertoli cells in regulating spermatogenesis and that SCF produced specifically by Sertoli cells is essential for spermatogenesis.
Collapse
Affiliation(s)
- Yi Jacky Peng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Xinyu Thomas Tang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Hui Sophie Shu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Wenjie Dong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Hongfang Shao
- Center of Reproductive Medicine, Department of Gynecology and Obstetrics, Shanghai Jiao Tong University School of Medicine-Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Bo O Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, People's Republic of China
| |
Collapse
|
6
|
Porto-Neto LR, Alexandre PA, Hudson NJ, Bertram J, McWilliam SM, Tan AWL, Fortes MRS, McGowan MR, Hayes BJ, Reverter A. Multi-breed genomic predictions and functional variants for fertility of tropical bulls. PLoS One 2023; 18:e0279398. [PMID: 36701372 PMCID: PMC9879470 DOI: 10.1371/journal.pone.0279398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 12/07/2022] [Indexed: 01/27/2023] Open
Abstract
Worldwide, most beef breeding herds are naturally mated. As such, the ability to identify and select fertile bulls is critically important for both productivity and genetic improvement. Here, we collected ten fertility-related phenotypes for 6,063 bulls from six tropically adapted breeds. Phenotypes were comprised of four bull conformation traits and six traits directly related to the quality of the bull's semen. We also generated high-density DNA genotypes for all the animals. In total, 680,758 single nucleotide polymorphism (SNP) genotypes were analyzed. The genomic correlation of the same trait observed in different breeds was positive for scrotal circumference and sheath score on most breed comparisons, but close to zero for the percentage of normal sperm, suggesting a divergent genetic background for this trait. We confirmed the importance of a breed being present in the reference population to the generation of accurate genomic estimated breeding values (GEBV) in an across-breed validation scenario. Average GEBV accuracies varied from 0.19 to 0.44 when the breed was not included in the reference population. The range improved to 0.28 to 0.59 when the breed was in the reference population. Variants associated with the gene HDAC4, six genes from the spermatogenesis-associated (SPATA) family of proteins, and 29 transcription factors were identified as candidate genes. Collectively these results enable very early in-life selection for bull fertility traits, supporting genetic improvement strategies currently taking place within tropical beef production systems. This study also improves our understanding of the molecular basis of male fertility in mammals.
Collapse
Affiliation(s)
| | | | - Nicholas J. Hudson
- School of Animal Studies, The University of Queensland, Gatton, QLD, Australia
| | - John Bertram
- Agriculture Consultant, Livestock Management and Breeding, Toowoomba, QLD, Australia
| | | | - Andre W. L. Tan
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Marina R. S. Fortes
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Michael R. McGowan
- School of Veterinary Sciences, The University of Queensland, Gatton, QLD, Australia
| | - Ben J. Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | | |
Collapse
|
7
|
Malolina EA, Galiakberova AA, Dashinimaev EB, Kulibin AY. ESTABLISHMENT OF A PURE CULTURE OF IMMATURE SERTOLI CELLS BY PDGFRA STAINING AND CELL SORTING. Mol Reprod Dev 2022; 89:243-255. [PMID: 35478364 DOI: 10.1002/mrd.23574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/02/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022]
Abstract
Sertoli cells are key somatic cells in the testis that form seminiferous tubules and support spermatogenesis. The isolation of pure Sertoli cells is important for their study. However, it is a difficult effort because of the close association of Sertoli cells with peritubular myoid cells surrounding seminiferous tubules. Here we propose a novel approach to the establishment of a pure Sertoli cell culture from immature mouse testes. It is based on the staining of testicular cells for platelet-derived growth factor receptor alpha (PDGFRA) followed by fluorescence-activated cell sorting and culturing of a PDGFRA-negative cell population. Cells positive for a Sertoli cell marker WT1 accounted for more than 96% of cells in cultures from 6 and 12 dpp mice. The numbers of peritubular myoid cells identified by ACTA2 staining did not exceed 4%. Cells in the cultures were also positive for Sertoli cell proteins SOX9 and DMRT1. Amh and Hsd17b3 expression decreased and Ar and Gata1 expression increased in 12 dpp cultures compared to 6 dpp cultures, which suggests that cultured Sertoli cells at least partially retained their differentiation status. This method can be employed in various applications including the analysis of differential gene expression and functional studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ekaterina A Malolina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Adelya A Galiakberova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Erdem B Dashinimaev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Andrey Yu Kulibin
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| |
Collapse
|
8
|
Lustofin S, Kaminska A, Brzoskwinia M, Pardyak L, Pawlicki P, Szpregiel I, Bilinska B, Hejmej A. Follicle-stimulating hormone regulates Notch signalling in the seminiferous epithelium of continuously and seasonally breeding rodents. Reprod Fertil Dev 2022; 34:560-575. [PMID: 35143740 DOI: 10.1071/rd21237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
CONTEXT Juxtacrine (contact-dependent) communication between the cells of seminiferous epithelium mediated by Notch signalling is of importance for the proper course of spermatogenesis in mammals. AIMS The present study was designed to evaluate the role of follicle-stimulating hormone (FSH) in the regulation of Notch signalling in rodent seminiferous epithelium. METHODS We explored the effects (1) of pharmacological inhibition of the hypothalamus-pituitary-gonadal (HPG) axis and FSH replacement in pubertal rats, and (2) of photoinhibition of HPG axis followed by FSH substitution in seasonally breeding rodents, bank voles, on Notch pathway activity. Experiments on isolated rat Sertoli cells exposed to FSH were also performed. Gene and protein expressions of Notch pathway components were analysed using RT-qPCR, western blot and immunohistochemistry/immunofluorescence. KEY RESULTS Distribution patterns of Notch pathway proteins in bank vole and rat seminiferous epithelium were comparable; however, levels of activated Notch1 and Notch3, hairy/enhancer of split 1 (HES1) and hairy/enhancer of split-related with YRPW motif 1 (HEY1) in bank voles were dependent on the length of the photoperiod. In response to FSH similar changes in these proteins were found in both species, indicating that FSH is a negative regulator of Notch pathway activity in seminiferous epithelium. CONCLUSIONS Our results support a common mechanism of FSH action on Notch pathway during onset and recrudescence of spermatogenesis in rodents. IMPLICATIONS Interaction between FSH signalling and Notch pathway in Sertoli cells may be involved in spermatogenic activity changes of the testes occurring during puberty or photoperiod shift in continuously and seasonally breeding rodents, respectively.
Collapse
Affiliation(s)
- Sylwia Lustofin
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Alicja Kaminska
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Malgorzata Brzoskwinia
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, 30-248 Krakow, Poland
| | - Piotr Pawlicki
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, 30-248 Krakow, Poland
| | - Izabela Szpregiel
- Department of Animal Physiology and Endocrinology, Faculty of Animal Science, University of Agriculture in Krakow, 30-059 Krakow, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Anna Hejmej
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| |
Collapse
|
9
|
Lustofin S, Kamińska A, Brzoskwinia M, Cyran J, Kotula-Balak M, Bilińska B, Hejmej A. Nuclear and Membrane Receptors for Sex Steroids Are Involved in the Regulation of Delta/Serrate/LAG-2 Proteins in Rodent Sertoli Cells. Int J Mol Sci 2022; 23:ijms23042284. [PMID: 35216398 PMCID: PMC8876387 DOI: 10.3390/ijms23042284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Delta/Serrate/LAG-2 (DSL) proteins, which serve as ligands for Notch receptors, mediate direct cell–cell interactions involved in the determination of cell fate and functioning. The present study aimed to explore the role of androgens and estrogens, and their receptors in the regulation of DSL proteins in Sertoli cells. To this end, primary rat Sertoli cells and TM4 Sertoli cell line were treated with either testosterone or 17β-estradiol and antagonists of their receptors. To confirm the role of particular receptors, knockdown experiments were performed. mRNA and protein expressions of Jagged1 (JAG1), Delta-like1 (DLL1), and Delta-like4 (DLL4) were analyzed using RT-qPCR, Western blot, and immunofluorescence. Testosterone caused downregulation of JAG1 and DLL1 expression, acting through membrane androgen receptor ZRT- and Irt-like protein 9 (ZIP9) or nuclear androgen receptor (AR), respectively. DLL4 was stimulated by testosterone in the manner independent of AR and ZIP9 in Sertoli cells. The expression of all studied DSL proteins was upregulated by 17β-estradiol. Estrogen action on JAG1 and DLL1 was mediated chiefly via estrogen receptor α (ERα), while DLL4 was controlled via estrogen receptor β (ERβ) and membrane G-protein-coupled estrogen receptor (GPER). To summarize, the co-operation of nuclear and membrane receptors for sex steroids controls DSL proteins in Sertoli cells, contributing to balanced Notch signaling activity in seminiferous epithelium.
Collapse
Affiliation(s)
- Sylwia Lustofin
- Department of EndocrinologyInstitute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (S.L.); (A.K.); (M.B.); (J.C.); (B.B.)
| | - Alicja Kamińska
- Department of EndocrinologyInstitute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (S.L.); (A.K.); (M.B.); (J.C.); (B.B.)
| | - Małgorzata Brzoskwinia
- Department of EndocrinologyInstitute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (S.L.); (A.K.); (M.B.); (J.C.); (B.B.)
| | - Joanna Cyran
- Department of EndocrinologyInstitute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (S.L.); (A.K.); (M.B.); (J.C.); (B.B.)
| | - Małgorzata Kotula-Balak
- Department of Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, 30-059 Krakow, Poland;
| | - Barbara Bilińska
- Department of EndocrinologyInstitute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (S.L.); (A.K.); (M.B.); (J.C.); (B.B.)
| | - Anna Hejmej
- Department of EndocrinologyInstitute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (S.L.); (A.K.); (M.B.); (J.C.); (B.B.)
- Correspondence:
| |
Collapse
|
10
|
Hofmann MC, McBeath E. Sertoli Cell-Germ Cell Interactions Within the Niche: Paracrine and Juxtacrine Molecular Communications. Front Endocrinol (Lausanne) 2022; 13:897062. [PMID: 35757413 PMCID: PMC9226676 DOI: 10.3389/fendo.2022.897062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022] Open
Abstract
Male germ cell development depends on multiple biological events that combine epigenetic reprogramming, cell cycle regulation, and cell migration in a spatio-temporal manner. Sertoli cells are a crucial component of the spermatogonial stem cell niche and provide essential growth factors and chemokines to developing germ cells. This review focuses mainly on the activation of master regulators of the niche in Sertoli cells and their targets, as well as on novel molecular mechanisms underlying the regulation of growth and differentiation factors such as GDNF and retinoic acid by NOTCH signaling and other pathways.
Collapse
|
11
|
Sengupta A, Nanda M, Tariq SB, Kiesel T, Perlmutter K, Vigodner M. Sumoylation and its regulation in testicular Sertoli cells. Biochem Biophys Res Commun 2021; 580:56-62. [PMID: 34624570 PMCID: PMC8556874 DOI: 10.1016/j.bbrc.2021.09.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022]
Abstract
The molecular regulation of Sertoli cells and their crosstalk with germ cells has not been fully characterized. SUMO proteins are essential for normal development and are expressed in mouse and human Sertoli cells; However, the cell-specific role of sumoylation in those cells has only started to be elucidated. In other cell types, including granulosa cells, sumoylation is regulated by a SUMO ligase KAP1/Trim28. Deletion of KAP1 in Sertoli cells causes testicular degeneration; However, the role of KAP1 in those cells has not been identified. Here we show that both mouse and human Sertoli undergo apoptosis upon inhibition of sumoylation with a chemical inhibitor or via a siRNA technology. We have additionally detected changes in the Sertoli cell proteome upon the inhibition of sumoylation, and our data suggest that among others, the expression of ER/stress-related proteins is highly affected by this inhibition. Sumoylation may also regulate the NOTCH signaling which is important for the maintenance of the developing germ cells. Furthermore, we show that a siRNA-down-regulation of KAP1 in a Sertoli-derived cell line causes an almost complete inactivation of sumoylation. In conclusion, sumoylation regulates important survival and signaling pathways in Sertoli cells, and KAP1 can be a major regulator of sumoylation in these cells.
Collapse
Affiliation(s)
- Amitabha Sengupta
- Department of Biology, Stern College, Yeshiva University, New York, NY, 10016, USA
| | - Manveet Nanda
- Biotechnology Management and Entrepreneurship Program, Katz School of Science and Health, Yeshiva University, New York, NY, 10016, USA
| | - Shanza Baseer Tariq
- Biotechnology Management and Entrepreneurship Program, Katz School of Science and Health, Yeshiva University, New York, NY, 10016, USA
| | - Tania Kiesel
- Department of Biology, Stern College, Yeshiva University, New York, NY, 10016, USA
| | - Kayla Perlmutter
- Department of Biology, Stern College, Yeshiva University, New York, NY, 10016, USA
| | - Margarita Vigodner
- Department of Biology, Stern College, Yeshiva University, New York, NY, 10016, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
12
|
Zhang Y, Liu T, Hu X, Wang M, Wang J, Zou B, Tan P, Cui T, Dou Y, Ning L, huang Y, Rao S, Wang D, Zhao X. CellCall: integrating paired ligand-receptor and transcription factor activities for cell-cell communication. Nucleic Acids Res 2021; 49:8520-8534. [PMID: 34331449 PMCID: PMC8421219 DOI: 10.1093/nar/gkab638] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/24/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022] Open
Abstract
With the dramatic development of single-cell RNA sequencing (scRNA-seq) technologies, the systematic decoding of cell-cell communication has received great research interest. To date, several in-silico methods have been developed, but most of them lack the ability to predict the communication pathways connecting the insides and outsides of cells. Here, we developed CellCall, a toolkit to infer inter- and intracellular communication pathways by integrating paired ligand-receptor and transcription factor (TF) activity. Moreover, CellCall uses an embedded pathway activity analysis method to identify the significantly activated pathways involved in intercellular crosstalk between certain cell types. Additionally, CellCall offers a rich suite of visualization options (Circos plot, Sankey plot, bubble plot, ridge plot, etc.) to present the analysis results. Case studies on scRNA-seq datasets of human testicular cells and the tumor immune microenvironment demonstrated the reliable and unique functionality of CellCall in intercellular communication analysis and internal TF activity exploration, which were further validated experimentally. Comparative analysis of CellCall and other tools indicated that CellCall was more accurate and offered more functions. In summary, CellCall provides a sophisticated and practical tool allowing researchers to decipher intercellular communication and related internal regulatory signals based on scRNA-seq data. CellCall is freely available at https://github.com/ShellyCoder/cellcall.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tianyuan Liu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuesong Hu
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mei Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bohao Zou
- Department of Statistics, University of California Davis, Davis, CA, USA
| | - Puwen Tan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tianyu Cui
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yiying Dou
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin Ning
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan huang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
13
|
Mori Y, Takashima S, Kanatsu-Shinohara M, Yi Z, Shinohara T. Cdc42 is required for male germline niche development in mice. Cell Rep 2021; 36:109550. [PMID: 34407418 DOI: 10.1016/j.celrep.2021.109550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are maintained in a special microenvironment called a niche. However, much is unknown about components that constitute the niche. Here, we report that Cdc42 is essential for germline niche development. Sertoli cell-specific Cdc42-deficient mice showed normal premeiotic spermatogenesis. However, germ cells gradually disappeared during haploid cell formation and few germ cells remained in the mature testes. Spermatogonial transplantation experiments revealed a significant loss of SSCs in Cdc42-deficient testes. Moreover, Cdc42 deficiency in Sertoli cells downregulated GDNF, a critical factor for SSC maintenance. Cdc42-deficient Sertoli cells also exhibited lower nuclear MAPK1/3 staining. Inhibition of MAP2K1 or depletion of Pea15a scaffold protein downregulated GDNF expression. A screen of transcription factors revealed that Cdc42-deficient Sertoli cells downregulate DMRT1 and SOX9, both of which are critical for Sertoli cell development. These results indicate that Cdc42 is essential for niche function via MAPK1/3-dependent GDNF secretion.
Collapse
Affiliation(s)
- Yoshifumi Mori
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Seiji Takashima
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan
| | - Zheng Yi
- Division of Experimental Hematology, Molecular Developmental Biology Graduate Program, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
14
|
Hoque M, Chen D, Hess RA, Li FQ, Takemaru KI. CEP164 is essential for efferent duct multiciliogenesis and male fertility. Reproduction 2021; 162:129-139. [PMID: 34085951 DOI: 10.1530/rep-21-0042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/03/2021] [Indexed: 01/07/2023]
Abstract
Cilia are evolutionarily conserved microtubule-based structures that perform diverse biological functions. Cilia are assembled on basal bodies and anchored to the plasma membrane via distal appendages. In the male reproductive tract, multicilia in efferent ducts (EDs) move in a whip-like motion to prevent sperm agglutination. Previously, we demonstrated that the distal appendage protein CEP164 recruits Chibby1 (Cby1) to basal bodies to facilitate basal body docking and ciliogenesis. Mice lacking CEP164 in multiciliated cells (MCCs) (FoxJ1-Cre;CEP164fl/fl) show a significant loss of multicilia in the trachea, oviduct, and ependyma. In addition, we observed male sterility; however, the precise role of CEP164 in male fertility remained unknown. Here, we report that the seminiferous tubules and rete testis of FoxJ1-Cre;CEP164fl/fl mice exhibit substantial dilation, indicative of dysfunctional multicilia in the EDs. We found that multicilia were hardly detectable in the EDs of FoxJ1-Cre;CEP164fl/fl mice although FoxJ1-positive immature cells were present. Sperm aggregation and agglutination were commonly noticeable in the lumen of the seminiferous tubules and EDs of FoxJ1-Cre;CEP164fl/fl mice. In FoxJ1-Cre;CEP164fl/fl mice, the apical localization of Cby1 and the transition zone marker NPHP1 was severely diminished, suggesting basal body docking defects. TEM analysis of EDs further confirmed basal body accumulation in the cytoplasm of MCCs. Collectively, we conclude that male infertility in FoxJ1-Cre;CEP164fl/fl mice is caused by sperm agglutination and obstruction of EDs due to loss of multicilia. Our study, therefore, unravels an essential role of the distal appendage protein CEP164 in male fertility.
Collapse
Affiliation(s)
- Mohammed Hoque
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, New York, USA.,Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Danny Chen
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Feng-Qian Li
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Ken-Ichi Takemaru
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, New York, USA.,Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
15
|
Jia GX, Lin Z, Yan RG, Wang GW, Zhang XN, Li C, Tong MH, Yang QE. WTAP Function in Sertoli Cells Is Essential for Sustaining the Spermatogonial Stem Cell Niche. Stem Cell Reports 2021; 15:968-982. [PMID: 33053361 PMCID: PMC7566211 DOI: 10.1016/j.stemcr.2020.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
Sertoli cells are the major component of the spermatogonial stem cell (SSC) niche; however, regulatory mechanisms in Sertoli cells that dictate SSC fate decisions remain largely unknown. Here we revealed features of the N6-methyladenosine (m6A) mRNA modification in Sertoli cells and demonstrated the functions of WTAP, the key subunit of the m6A methyltransferase complex in spermatogenesis. m6A-sequencing analysis identified 21,909 m6A sites from 15,365 putative m6A-enriched transcripts within 6,122 genes, including many Sertoli cell-specific genes. Conditional deletion of Wtap in Sertoli cells resulted in sterility and the progressive loss of the SSC population. RNA sequencing and ribosome nascent-chain complex-bound mRNA sequencing analyses suggested that alternative splicing events of transcripts encoding SSC niche factors were sharply altered and translation of these transcripts were severely dysregulated by Wtap deletion. Collectively, this study uncovers a novel regulatory mechanism of the SSC niche and provide insights into molecular interactions between stem cells and their cognate niches in mammals. WTAP is highly expressed in Sertoli cell and is essential in spermatogenesis Wtap knockout in Sertoli cell causes defective spermatogonial stem cell maintenance WTAP regulates transcription and translation of m6A-enriched genes in Sertoli cell
Collapse
Affiliation(s)
- Gong-Xue Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Rong-Ge Yan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Guo-Wen Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Na Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cen Li
- Qinghai Provincial Key Laboratory of Tibetan Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Ming-Han Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.
| |
Collapse
|
16
|
Bai X, Tang Y, Li Q, Liu D, Liu G, Fan X, Liu Z, Yu S, Tang T, Wang S, Li L, Zhou K, Zheng Y, Liu Z. An Integrated Analysis of Network Pharmacology, Molecular Docking, and Experiment Validation to Explore the New Candidate Active Component and Mechanism of Cuscutae Semen-Mori Fructus Coupled-Herbs in Treating Oligoasthenozoospermia. Drug Des Devel Ther 2021; 15:2059-2089. [PMID: 34040346 PMCID: PMC8139735 DOI: 10.2147/dddt.s307015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE One of the most common types of male infertility is recognized as oligoasthenozoospermia (OA), characterized by low sperm count and quality in males. As a traditional Chinese medicine (TCM), Cuscutae Semen-Mori Fructus coupled-herbs (CSMFCH) has been known to act a curative effect on OA for thousands of years. Nevertheless, the substantial basis and molecular mechanism of CSMFCH in treating OA remain elusive. METHODS Herein, an integrated approach, including network pharmacology, molecular docking, and experiment validation, was utilized to reveal the new candidate active component and mechanism of CSMFCH in treating OA. RESULTS The results show that kaempferol is the most significant bioactive component of CSMFCH on OA. The mechanism and targets of CSMFCH against OA are relevant to hormone regulation, oxidant stress, and reproductive promotion. In order to validate network pharmacology results, molecular docking and experiment validation were conducted. In detail, molecular docking was employed to verify the strong binding interactions between kaempferol and the core targets. UHPLC-Q-Orbitrap-MS was used to identify kaempferol in the CSMFCH extract. In vitro and in vivo experiments further proved CSMFCH and kaempferol could enhance the mouse Leydig (TM3) and mouse Sertoli (TM4) cell viability, improve the male reproductive organ weights, sperm quality, and decrease testis tissue damage in the OA mouse model induced by CP. CONCLUSION Our results not only identify the new candidate active component of CSMFCH in treating OA but also provide new insights into the mechanisms of CSMFCH against OA.
Collapse
Affiliation(s)
- Xue Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yibo Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Qiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Dan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Guimin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xiaolei Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Zhejun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shujun Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Tian Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shuyan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Kailin Zhou
- School of Humanities, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Zhenquan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
17
|
Yuan L, Wang H, Wang Q, Li C, Yang D. INSL-3 protein expression in normal and cryptorchid testes of Ziwuling black goats. Reprod Domest Anim 2021; 56:725-735. [PMID: 33544931 DOI: 10.1111/rda.13911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Ziwuling black goats are typically found in loess plateaus regions and the Ziwuling Nature Reserve. Cryptorchidism is a common disease in this inbred goat, and its pathogenesis has been linked with the expression of insulin-like factor 3 (INSL-3). Therefore, this study aimed to investigate anatomical alterations caused by cryptorchism and the expression and distribution of INSL-3 in normal and cryptorchid testicular tissues. The testicular tissues of 6-month-old Ziwuling black goats were collected for microscopic analyses using histochemical, immunohistochemical, immunofluorescence and biometrical methods, as well as Western blotting to compare the expression and distribution of INSL-3. A lower expression of INSL-3 was observed in cryptorchid compared with normal testicular tissues (p < .01). Cryptorchidism caused a significant reduction in layers of spermatogenic epithelium and tubule areas in Ziwuling black goat (p < .01). The interstitial to seminiferous tubule area ratio was larger in cryptorchid than in normal group. Periodic Acid-Schiff (PAS) staining revealed pronounced positive bands in the interstitial tissue, while positive Alcian blue (AB) staining was not clear, and AB-PAS staining revealed a positive red band in the basement membrane of cryptorchid group. Immunofluorescence revealed a strong signal of INSL-3 expression in Sertoli and peritubular myoid cells, and moderate signal in Leydig and spermatogenic cells in the normal group. However, in cryptorchid testicular tissues, the signal of INSL-3 expression was strong in primary spermatocytes, occasional in Sertoli cells, limited in Leydig cells and absent in peritubular myoid cells. Furthermore, immunohistochemistry showed that INSL-3 expression was higher in normal testes compared with cryptorchid testicular tissues (p < .05), especially in primary spermatocytes and Sertoli cells. Collectively, our results indicate that cryptorchidism is closely related to the disorder of acid glycoprotein metabolism and the reduction in release of INSL-3 from Leydig cells. Moreover, Sertoli and peritubular myoid cells are crucial for INSL signalling and could underpin further research on the mechanism of cryptorchidism in animal.
Collapse
Affiliation(s)
- Ligang Yuan
- College of Veterinary Medicine, Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Hua Wang
- College of Veterinary Medicine, Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Qianmei Wang
- College of Veterinary Medicine, Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Chengye Li
- College of Veterinary Medicine, Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Dapeng Yang
- College of Veterinary Medicine, Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
18
|
Jorgez CJ, Seth A, Wilken N, Bournat JC, Chen CH, Lamb DJ. E2F1 regulates testicular descent and controls spermatogenesis by influencing WNT4 signaling. Development 2021; 148:dev191189. [PMID: 33441379 PMCID: PMC7823160 DOI: 10.1242/dev.191189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
Cryptorchidism is the most common urologic birth defect in men and is a predisposing factor of male infertility and testicular cancer, yet the etiology remains largely unknown. E2F1 microdeletions and microduplications contribute to cryptorchidism, infertility and testicular tumors. Although E2f1 deletion or overexpression in mice causes spermatogenic failure, the mechanism by which E2f1 influences testicular function is unknown. This investigation revealed that E2f1-null mice develop cryptorchidism with severe gubernacular defects and progressive loss of germ cells resulting in infertility and, in rare cases, testicular tumors. It was hypothesized that germ cell depletion resulted from an increase in WNT4 levels. To test this hypothesis, the phenotype of a double-null mouse model lacking both Wnt4 and E2f1 in germ cells was analyzed. Double-null mice are fertile. This finding indicates that germ cell maintenance is dependent on E2f1 repression of Wnt4, supporting a role for Wnt4 in germ cell survival. In the future, modulation of WNT4 expression in men with cryptorchidism and spermatogenic failure due to E2F1 copy number variations may provide a novel approach to improve their spermatogenesis and perhaps their fertility potential after orchidopexy.
Collapse
Affiliation(s)
- Carolina J Jorgez
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Surgery, Texas Children's Hospital, Houston, TX 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abhishek Seth
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Surgery, Texas Children's Hospital, Houston, TX 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nathan Wilken
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Juan C Bournat
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ching H Chen
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dolores J Lamb
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Brady Urology Department, Center for Reproductive Genomics and Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
19
|
Parekh PA, Garcia TX, Hofmann MC. Regulation of GDNF expression in Sertoli cells. Reproduction 2020; 157:R95-R107. [PMID: 30620720 DOI: 10.1530/rep-18-0239] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
Abstract
Sertoli cells regulate male germ cell proliferation and differentiation and are a critical component of the spermatogonial stem cell (SSC) niche, where homeostasis is maintained by the interplay of several signaling pathways and growth factors. These factors are secreted by Sertoli cells located within the seminiferous epithelium, and by interstitial cells residing between the seminiferous tubules. Sertoli cells and peritubular myoid cells produce glial cell line-derived neurotrophic factor (GDNF), which binds to the RET/GFRA1 receptor complex at the surface of undifferentiated spermatogonia. GDNF is known for its ability to drive SSC self-renewal and proliferation of their direct cell progeny. Even though the effects of GDNF are well studied, our understanding of the regulation its expression is still limited. The purpose of this review is to discuss how GDNF expression in Sertoli cells is modulated within the niche, and how these mechanisms impact germ cell homeostasis.
Collapse
Affiliation(s)
- Parag A Parekh
- Department of Endocrine Neoplasia, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Thomas X Garcia
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA.,Department of Biological and Environmental Sciences, University of Houston-Clear Lake, Houston, Texas, USA
| | - Marie-Claude Hofmann
- Department of Endocrine Neoplasia, UT MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
20
|
Zomer HD, Reddi PP. Characterization of rodent Sertoli cell primary cultures. Mol Reprod Dev 2020; 87:857-870. [PMID: 32743879 PMCID: PMC7685524 DOI: 10.1002/mrd.23402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 07/16/2020] [Indexed: 12/25/2022]
Abstract
Sertoli cells play a vital role in spermatogenesis by offering physical and nutritional support to the differentiating male germ cells. They form the blood-testis barrier and secrete growth factors essential for germ cell differentiation. Sertoli cell primary cultures are critical for understanding the regulation of spermatogenesis; however, obtaining pure cultures has been a challenge. Rodent Sertoli cell isolation protocols do not rule out contamination by the interstitial or connective tissue cells. Sertoli cell-specific markers could be helpful, but there is no consensus. Vimentin, the most commonly used marker, is not specific for Sertoli cells since its expression has been reported in peritubular myoid cells, mesenchymal stem cells, fibroblasts, macrophages, and endothelial cells, which contaminate Sertoli cell preparations. Markers based on transcription and growth factors also have limitations. Thus, the impediment to obtaining pure Sertoli cell cultures pertains to both the method of isolation and marker usage. The aim of this review is to discuss improvements to current methods of rodent Sertoli cell primary cultures, assess the properties of prepubertal versus mature Sertoli cell cultures, and propose steps to improve cellular characterization. Potential benefits of using contemporary approaches, including lineage tracing, specific cell ablation, and RNA-seq for obtaining Sertoli-specific transcript markers are discussed. Evaluating the specificity and applicability of these markers at the protein level to characterize Sertoli cells in culture would be critical. This review is expected to positively impact future work using primary cultures of rodent Sertoli cells.
Collapse
Affiliation(s)
- Helena D Zomer
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana Champaign, Urbana, Illinois
| | - Prabhakara P Reddi
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana Champaign, Urbana, Illinois
| |
Collapse
|
21
|
Zomer HD, Reddi PP. Mouse Sertoli cells isolation by lineage tracing and sorting. Mol Reprod Dev 2020; 87:871-879. [PMID: 32735067 DOI: 10.1002/mrd.23406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 11/05/2022]
Abstract
Sertoli cells play a key role in spermatogenesis by supporting the germ cells throughout differentiation. The isolation of Sertoli cells is essential to study their functions. However, the close contact of Sertoli cells with other testicular cell types and the high proliferation of contaminating cells are obstacles to obtain pure primary cultures. Current rodent Sertoli cell isolation protocols result in enriched, rather than pure Sertoli cells. Therefore, novel approaches are necessary to improve the purity of Sertoli cell primary cultures. The goal of this study is to obtain pure mouse Sertoli cells using lineage tracing and fluorescence-activated cell sorting (FACS). We bred the Amh-Cre mouse line with tdTomato line to generate mice constitutively expressing red fluorescence specifically in Sertoli cells. Primary cultures of Sertoli cells isolated from prepubertal mice showed that 79% of cells expressed tdTomato, as evaluated by fluorescence microscopy and flow cytometry; however, nearly all adherent cells were positive for vimentin. Most of the tomato-negative cells expressed α-smooth muscle actin (α-SMA), a peritubular myoid cell marker, but double-negative populations were also present. These findings suggest that vimentin lacks Sertoli cell-specificity and that α-SMA is not adequate to identify all of the contaminating cells. Upon FACS sorting; however, virtually 100% of the cells were tdTomato positive, expressed vimentin, but not α-SMA. Prepubertal mice yielded a higher number of Sertoli cells compared to adults, but both could be adequately sorted. In conclusion, our study shows that lineage tracing and sorting is an efficient strategy for acquiring pure populations of murine Sertoli cells.
Collapse
Affiliation(s)
- Helena D Zomer
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Prabhakara P Reddi
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
22
|
Kamińska A, Marek S, Pardyak L, Brzoskwinia M, Pawlicki P, Bilińska B, Hejmej A. Disruption of androgen signaling during puberty affects Notch pathway in rat seminiferous epithelium. Reprod Biol Endocrinol 2020; 18:30. [PMID: 32299422 PMCID: PMC7161021 DOI: 10.1186/s12958-020-00582-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/04/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Onset of spermatogenesis at puberty is critically dependent on the activity of hypothalamic-pituitary-gonadal axis and testosterone production by Leydig cells. The aim of this study was to examine whether activation of Notch receptors and expression of Notch ligands and effector genes in rat seminiferous epithelium are controlled by androgen signaling during puberty. METHODS Peripubertal (5-week-old) Wistar rats received injections of flutamide (50 mg/kg bw) daily for 7 days to reduce androgen receptor (AR) signaling or a single injection of ethanedimethane sulphonate (EDS; 75 mg/kg bw) to reduce testosterone production. Gene and protein expressions were analyzed by real-time RT-PCR and western blotting, respectively, protein distribution by immunohistochemistry, and steroid hormone concentrations by enzyme-linked immunosorbent assay. Statistical analyses were performed using one-way ANOVA followed by Tukey's post hoc test or by Kruskal-Wallis test, followed by Dunn's test. RESULTS In both experimental models changes of a similar nature in the expression of Notch pathway components were found. Androgen deprivation caused the reduction of mRNA and protein expression of DLL4 ligand, activated forms of Notch1 and Notch2 receptors and HES1 and HEY1 effector genes (p < 0.05, p < 0.01, p < 0.001). In contrast, DLL1, JAG1 and HES5 expressions increased in seminiferous epithelium of both flutamide and EDS-treated rats (p < 0.05, p < 0.01, p < 0.001). CONCLUSIONS Androgens and androgen receptor signaling may be considered as factors regulating Notch pathway activity and the expression of Hes and Hey genes in rat seminiferous epithelium during pubertal development. Further studies should focus on functional significance of androgen-Notch signaling cross-talk in the initiation and maintenance of spermatogenesis.
Collapse
Affiliation(s)
- Alicja Kamińska
- Department of Endocrinology, Faculty of Biology, Institute of Zoology & Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Sylwia Marek
- Department of Endocrinology, Faculty of Biology, Institute of Zoology & Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Laura Pardyak
- Department of Endocrinology, Faculty of Biology, Institute of Zoology & Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Małgorzata Brzoskwinia
- Department of Endocrinology, Faculty of Biology, Institute of Zoology & Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Piotr Pawlicki
- Department of Endocrinology, Faculty of Biology, Institute of Zoology & Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Barbara Bilińska
- Department of Endocrinology, Faculty of Biology, Institute of Zoology & Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Anna Hejmej
- Department of Endocrinology, Faculty of Biology, Institute of Zoology & Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|
23
|
A framework for high-resolution phenotyping of candidate male infertility mutants: from human to mouse. Hum Genet 2020; 140:155-182. [PMID: 32248361 DOI: 10.1007/s00439-020-02159-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Male infertility is a heterogeneous condition of largely unknown etiology that affects at least 7% of men worldwide. Classical genetic approaches and emerging next-generation sequencing studies support genetic variants as a frequent cause of male infertility. Meanwhile, the barriers to transmission of this disease mean that most individual genetic cases will be rare, but because of the large percentage of the genome required for spermatogenesis, the number of distinct causal mutations is potentially large. Identifying bona fide causes of male infertility thus requires advanced filtering techniques to select for high-probability candidates, including the ability to test causality in animal models. The mouse remains the gold standard for defining the genotype-phenotype connection in male fertility. Here, we present a best practice guide consisting of (a) major points to consider when interpreting next-generation sequencing data performed on infertile men, and, (b) a systematic strategy to categorize infertility types and how they relate to human male infertility. Phenotyping infertility in mice can involve investigating the function of multiple cell types across the testis and epididymis, as well as sperm function. These findings will feed into the diagnosis and treatment of male infertility as well as male health broadly.
Collapse
|
24
|
Hubbard N, Prasasya RD, Mayo KE. Activation of Notch Signaling by Oocytes and Jag1 in Mouse Ovarian Granulosa Cells. Endocrinology 2019; 160:2863-2876. [PMID: 31609444 PMCID: PMC6850001 DOI: 10.1210/en.2019-00564] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
The Notch pathway plays diverse and complex roles in cell signaling during development. In the mammalian ovary, Notch is important for the initial formation and growth of follicles, and for regulating the proliferation and differentiation of follicular granulosa cells during the periovulatory period. This study seeks to determine the contribution of female germ cells toward the initial activation and subsequent maintenance of Notch signaling within somatic granulosa cells of the ovary. To address this issue, transgenic Notch reporter (TNR) mice were crossed with Sohlh1-mCherry (S1CF) transgenic mice to visualize Notch-active cells (EGFP) and germ cells (mCherry) simultaneously in the neonatal ovary. To test the involvement of oocytes in activation of Notch signaling in ovarian somatic cells, we ablated germ cells using busulfan, a chemotherapeutic alkylating agent, or investigated KitWv/Wv (viable dominant white-spotting) mice that lack most germ cells. The data reveal that Notch pathway activation in granulosa cells is significantly suppressed when germ cells are reduced. We further demonstrate that disruption of the gene for the Notch ligand Jag1 in oocytes similarly impacts Notch activation and that recombinant JAG1 enhances Notch target gene expression in granulosa cells. These data are consistent with the hypothesis that germ cells provide a ligand, such as Jag1, that is necessary for activation of Notch signaling in the developing ovary.
Collapse
Affiliation(s)
- Nisan Hubbard
- Department of Molecular Biosciences, Center for Reproductive Science, Northwestern University, Evanston, Illinois
| | - Rexxi D Prasasya
- Department of Molecular Biosciences, Center for Reproductive Science, Northwestern University, Evanston, Illinois
| | - Kelly E Mayo
- Department of Molecular Biosciences, Center for Reproductive Science, Northwestern University, Evanston, Illinois
- Correspondence: Kelly E. Mayo, PhD, Department of Molecular Biosciences, Center for Reproductive Science, Northwestern University, 1115 Pancoe Pavilion, Evanston, Illinois 60208. E-mail:
| |
Collapse
|
25
|
Mariniello K, Ruiz-Babot G, McGaugh EC, Nicholson JG, Gualtieri A, Gaston-Massuet C, Nostro MC, Guasti L. Stem Cells, Self-Renewal, and Lineage Commitment in the Endocrine System. Front Endocrinol (Lausanne) 2019; 10:772. [PMID: 31781041 PMCID: PMC6856655 DOI: 10.3389/fendo.2019.00772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
The endocrine system coordinates a wide array of body functions mainly through secretion of hormones and their actions on target tissues. Over the last decades, a collective effort between developmental biologists, geneticists, and stem cell biologists has generated a wealth of knowledge related to the contribution of stem/progenitor cells to both organogenesis and self-renewal of endocrine organs. This review provides an up-to-date and comprehensive overview of the role of tissue stem cells in the development and self-renewal of endocrine organs. Pathways governing crucial steps in both development and stemness maintenance, and that are known to be frequently altered in a wide array of endocrine disorders, including cancer, are also described. Crucially, this plethora of information is being channeled into the development of potential new cell-based treatment modalities for endocrine-related illnesses, some of which have made it through clinical trials.
Collapse
Affiliation(s)
- Katia Mariniello
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gerard Ruiz-Babot
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Emily C. McGaugh
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - James G. Nicholson
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Angelica Gualtieri
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
26
|
Kamińska A, Pardyak L, Marek S, Wróbel K, Kotula-Balak M, Bilińska B, Hejmej A. Notch signaling regulates nuclear androgen receptor AR and membrane androgen receptor ZIP9 in mouse Sertoli cells. Andrology 2019; 8:457-472. [PMID: 31468707 DOI: 10.1111/andr.12691] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/24/2019] [Accepted: 07/14/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Notch signaling pathway is involved in contact-dependent communication between the cells of seminiferous epithelium, and its proper activity is important for undisturbed spermatogenesis. OBJECTIVES The aim was to assess the effect of Notch pathway inhibition on the expression of nuclear (AR) and membrane (ZIP9) androgen receptors and androgen-regulated genes, claudin-5 and claudin-11, in TM4 mouse Sertoli cell line. MATERIALS AND METHODS DAPT (γ-secretase inhibitor) treatment and recombination signal binding protein silencing were employed to reduce Notch signaling, whereas immobilized ligands were used to activate Notch pathway in TM4 cells. To reveal specific effect of each androgen receptor, AR or ZIP9 silencing was performed. RESULTS Notch pathway inhibition increased the expression of AR and ZIP9 mRNA and proteins (p < 0.01; p < 0.05) in TM4 cells, whereas incubation with Notch ligands, rDLL1 or rJAG1, reduced AR (p < 0.01; p < 0.001) and ZIP9 (p < 0.05; p < 0.01) expressions, respectively. Testosterone enhanced the expression of both receptors (p < 0.05; p < 0.01). Androgen-regulated claudin-5 and claudin-11 (p < 0.01; p < 0.001) and cAMP (p < 0.001) were elevated in Notch-inhibited cells, while activation of Notch signaling by DLL1 or JAG1 reduced claudin-11 or claudin-5 level (p < 0.01; p < 0.001), respectively. DISCUSSION Our findings indicate opposite effect of Notch and androgen signaling on the expression of androgen receptors in TM4 cells. We demonstrated that AR expression is regulated by DLL1-mediated Notch signaling, whereas JAG1 is involved in the regulation of ZIP9. The expression of both claudins and cAMP production is under inhibitory influence of Notch pathway. The effects of Notch signaling on claudin-5 and claudin-11 expression are mediated by ZIP9 and AR, respectively. CONCLUSION Notch signaling may be considered as an important pathway controlling Sertoli cell physiology, and its alterations may contribute to disturbed response of Sertoli cells to androgens.
Collapse
Affiliation(s)
- A Kamińska
- Department of Endocrinology, Faculty of Biology, Institute of Zoology & Biomedical Research, Jagiellonian University, Krakow, Poland
| | - L Pardyak
- Department of Endocrinology, Faculty of Biology, Institute of Zoology & Biomedical Research, Jagiellonian University, Krakow, Poland
| | - S Marek
- Department of Endocrinology, Faculty of Biology, Institute of Zoology & Biomedical Research, Jagiellonian University, Krakow, Poland
| | - K Wróbel
- Department of Endocrinology, Faculty of Biology, Institute of Zoology & Biomedical Research, Jagiellonian University, Krakow, Poland
| | - M Kotula-Balak
- Department of Endocrinology, Faculty of Biology, Institute of Zoology & Biomedical Research, Jagiellonian University, Krakow, Poland.,University Centre of Veterinary Medicine, University of Agriculture in Krakow, Krakow, Poland
| | - B Bilińska
- Department of Endocrinology, Faculty of Biology, Institute of Zoology & Biomedical Research, Jagiellonian University, Krakow, Poland
| | - A Hejmej
- Department of Endocrinology, Faculty of Biology, Institute of Zoology & Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
27
|
Ni FD, Hao SL, Yang WX. Multiple signaling pathways in Sertoli cells: recent findings in spermatogenesis. Cell Death Dis 2019; 10:541. [PMID: 31316051 PMCID: PMC6637205 DOI: 10.1038/s41419-019-1782-z] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022]
Abstract
The functions of Sertoli cells in spermatogenesis have attracted much more attention recently. Normal spermatogenesis depends on Sertoli cells, mainly due to their influence on nutrient supply, maintenance of cell junctions, and support for germ cells' mitosis and meiosis. Accumulating evidence in the past decade has highlighted the dominant functions of the MAPK, AMPK, and TGF-β/Smad signaling pathways during spermatogenesis. Among these pathways, the MAPK signaling pathway regulates dynamics of tight junctions and adherens junctions, proliferation and meiosis of germ cells, proliferation and lactate production of Sertoli cells; the AMPK and the TGF-β/Smad signaling pathways both affect dynamics of tight junctions and adherens junctions, as well as the proliferation of Sertoli cells. The AMPK signaling pathway also regulates lactate supply. These signaling pathways combine to form a complex regulatory network for spermatogenesis. In testicular tumors or infertile patients, the activities of these signaling pathways in Sertoli cells are abnormal. Clarifying the mechanisms of signaling pathways in Sertoli cells on spermatogenesis provides new insights into the physiological functions of Sertoli cells in male reproduction, and also serves as a pre-requisite to identify potential therapeutic targets in abnormal spermatogenesis including testicular tumor and male infertility.
Collapse
Affiliation(s)
- Fei-Da Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
28
|
Seminiferous tubule molecular imaging for evaluation of male fertility: Seeing is believing. Tissue Cell 2019; 58:24-32. [PMID: 31133243 DOI: 10.1016/j.tice.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/28/2019] [Accepted: 04/05/2019] [Indexed: 01/15/2023]
Abstract
The proper assessment of male fertility is essential for diagnosing and treating male infertility. Currently, spermiogram and Johnsen testicular biopsy score counts are used to assess male fertility. However, spermiogram is not a suitable option for non-obstructive azoospermia patients, and Johnsen testicular biopsy scores only represent localized and not the overall spermatogenesis. Whole-mount staining was a novel method for evaluating protein expression in the tissue. Thus, we explored its application in human seminiferous tubules. Testicular biopsies from 57 azoospermia patients were categorized as obstructive azoospermia (OA), maturation arrest (MA) and Sertoli-cells only syndrome (SCOS). We performed whole-mount staining of their seminiferous tubules and evaluated the spermatogonial stem cells (SSCs), differentiated spermatogonia (SG), spermatocytes (SPC) and spermatids (SD) with their respective markers (GFRA1, CD117, SYCP3, and PNA) to assess fertility. GFRA1, CD117, SYCP3, and PNA were not expressed in SCOS patients, whereas all of them were detected in OA patients. In MA patients with arrested spermatogenesis at the SPC stage, GFRA1, CD117, and SYCP3, but not PNA were expressed in the seminiferous tubules. In MA patients with arrested spermatogenesis at the spermatogonia stage, only GFRA1 was expressed in the seminiferous tubules. These results were consistent with the Johnsen testicular biopsy score counts except for one patient, where although only Sertoli cells were indicated by the score, SSCs were also detected in the whole-mounts. Collectively, whole-mount staining could be used to analyze the inherent spermatogenesis of seminiferous tubules through staining of germ cells at different stages. It offers a more accurate and promising faster method for assessing male fertility compared with traditional biopsy screening. And it could have potential value for the clinical purpose for male fertility management.
Collapse
|
29
|
Parekh PA, Garcia TX, Waheeb R, Jain V, Gandhi P, Meistrich ML, Shetty G, Hofmann MC. Undifferentiated spermatogonia regulate Cyp26b1 expression through NOTCH signaling and drive germ cell differentiation. FASEB J 2019; 33:8423-8435. [PMID: 30991836 DOI: 10.1096/fj.201802361r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cytochrome P450 family 26 subfamily B member 1 (CYP26B1) regulates the concentration of all-trans retinoic acid (RA) and plays a key role in germ cell differentiation by controlling local distribution of RA. The mechanisms regulating Cyp26b1 expression in postnatal Sertoli cells, the main components of the stem cell niche, are so far unknown. During gonad development, expression of Cyp26b1 is maintained by Steroidogenic Factor 1 (SF-1) and Sex-Determining Region Y Box-9 (SOX9), which ensure that RA is degraded and germ cell differentiation is blocked. Here, we show that the NOTCH target Hairy/Enhancer-of-Split Related with YRPW Motif 1 (HEY1), a transcriptional repressor, regulates germ cell differentiation via direct binding to the Cyp26b1 promoter and thus inhibits its expression in Sertoli cells. Further, using in vivo germ cell ablation, we demonstrate that undifferentiated type A spermatogonia are the cells that activate NOTCH signaling in Sertoli cells through their expression of the NOTCH ligand JAGGED-1 (JAG1) at stage VIII of the seminiferous epithelium cycle, therefore mediating germ cell differentiation by a ligand concentration-dependent process. These data therefore provide more insights into the mechanisms of germ cell differentiation after birth and potentially explain the spatiotemporal RA pulses driving the transition between undifferentiated to differentiating spermatogonia.-Parekh, P. A., Garcia, T. X., Waheeb, R., Jain, V., Gandhi, P., Meistrich, M. L., Shetty, G., Hofmann, M.-C. Undifferentiated spermatogonia regulate Cyp26b1 expression through NOTCH signaling and drive germ cell differentiation.
Collapse
Affiliation(s)
- Parag A Parekh
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Thomas X Garcia
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA.,Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, Texas, USA
| | - Reham Waheeb
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.,Department of Theriogenology, University of Alexandria, Alexandria, Egypt
| | - Vivek Jain
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.,Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, Texas, USA
| | - Pooja Gandhi
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Marvin L Meistrich
- Department of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Gunapala Shetty
- Department of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Marie-Claude Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
30
|
Morohoshi A, Nakagawa T, Nakano S, Nagasawa Y, Nakayama K. The ubiquitin ligase subunit β-TrCP in Sertoli cells is essential for spermatogenesis in mice. Dev Biol 2019; 445:178-188. [DOI: 10.1016/j.ydbio.2018.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
|
31
|
Yoshida S. Open niche regulation of mouse spermatogenic stem cells. Dev Growth Differ 2018; 60:542-552. [PMID: 30443901 PMCID: PMC11520966 DOI: 10.1111/dgd.12574] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023]
Abstract
In mammalian testes, robust stem cell functions ensure the continual production of sperm. In testicular seminiferous tubules, spermatogenic stem cells (SSCs) are highly motile and are interspersed between their differentiating progeny, while undergoing self-renewal and differentiation. In such an "open niche" microenvironment, some SSCs proliferate, while others exit the stem cell compartment through differentiation; therefore, self-renewal and differentiation are perfectly balanced at the population (or tissue) level, a dynamics termed "population asymmetry." This is in stark contrast to the classical perception of tissue stem cells being cells that are clustered in a specialized "closed niche" region and that invariantly undergo asymmetric divisions. However, despite its importance, how the self-renewal and differentiation of SSCs are balanced in an open niche environment is poorly understood. Recent studies have thrown light on the key mechanism that enables SSCs to follow heterogeneous fates, although they are equally exposed to signaling molecules controlling self-renewal and differentiation. In particular, SSCs show heterogeneous susceptibilities to differentiation-promoting signals such as Wnt and retinoic acid. Heterogeneous susceptibility to the ubiquitously distributed fate-controlling extracellular signal might be a key generic mechanism for the heterogeneous fate of tissue stem cells in open niche microenvironments.
Collapse
Affiliation(s)
- Shosei Yoshida
- Division of Germ Cell BiologyNational Institute for Basic BiologyNational Institutes of Natural SciencesOkazakiJapan
- Department of Basic BiologySchool of Life ScienceSOKENDAI (Graduate University for Advanced Studies)OkazakiJapan
| |
Collapse
|
32
|
Dudar R. Testicular Microlithiasis: Case Report and Current Knowledge. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2018. [DOI: 10.1177/8756479318793851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sonographic evaluation is the gold standard in diagnosing of testicular microlithiasis, the nature of which has raised controversy in opinions regarding its premalignant or benign tendency. Testicular microlithiasis is often an incidental finding on sonographic examination with indications for other disease processes, and it may or may not require additional follow-up. This pathology has raised equal interest among domestic and foreign researchers, and studies have been performed on both adult and pediatric populations, yet there is no standard recommendation for follow-up care of testicular microlithiasis. Isolated testicular microlithiasis and that with additional risk factors may require different approaches to testing and care. In this publication, a case study is reviewed and two approaches to follow-up care of testicular microlithiasis based on the associated risk factors or a lack of thereof are discussed.
Collapse
Affiliation(s)
- Rymma Dudar
- Parkland Health and Hospital System, Dallas, TX, USA
| |
Collapse
|
33
|
Ge X, Pan P, Jing J, Hu X, Chen L, Qiu X, Ma R, Jueraitetibaike K, Huang X, Yao B. Rosiglitazone ameliorates palmitic acid-induced cytotoxicity in TM4 Sertoli cells. Reprod Biol Endocrinol 2018; 16:98. [PMID: 30333041 PMCID: PMC6192158 DOI: 10.1186/s12958-018-0416-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022] Open
Abstract
The Sertoli cell is the only somatic cell within the seminiferous tubules, and is vital for testis development and spermatogenesis. Rosiglitazone (RSG) is a member of the thiazolidinedione family and is a peroxisome proliferator-activated receptor-γ (PPARγ) agonist. It has been reported that RSG protects various types of cells from fatty acid-induced damage. However, whether RSG serves a protective role in Sertoli cells against palmitic acid (PA)-induced toxicity remains to be elucidated. Therefore, the aim of the present study was to investigate the effect of RSG on PA-induced cytotoxicity in Sertoli cells. MTT assay and Oil Red O staining revealed that RSG ameliorated the PA-induced decrease in TM4 cell viability, which was accompanied by an alleviation of PA-induced lipid accumulation in cells. In primary mouse Sertoli cells, RSG also showed similar protective effects against PA-induced lipotoxicity. Knockdown of PPARγ verified that RSG exerted its protective role in TM4 cells through a PPARγ-dependent pathway. To evaluate the mechanism underlying the protective role of RSG on PA-induced lipotoxicity, the present study analyzed the effects of RSG on PA uptake, and the expression of genes associated with both fatty acid oxidation and triglyceride synthesis. The results demonstrated that although RSG did not affect the endocytosis of PA, it significantly elevated the expression of carnitine palmitoyltransferase (CPT)-1A, a key enzyme involved in fatty acid oxidation, which indicated that the protective effect of RSG may have an important role in fatty acid oxidation. On the other hand, the expression of CPT1B was not affected by RSG. Moreover, the expression levels of diacylglycerol O-acyltransferase (DGAT)-1 and DGAT2, both of which encode enzymes catalyzing the synthesis of triglycerides, were not suppressed by RSG. The results indicated that RSG reduced PA-induced lipid accumulation by promoting fatty acid oxidation mediated by CPT1A. The effect of RSG in protecting cells from lipotoxicity was also found to be specific to Sertoli cells and hepatocytes, and not to other cell types that do not store excess lipid in large quantities, such as human umbilical vein endothelial cells. These findings provide insights into the cytoprotective effects of RSG on Sertoli cells and suggest that PPARγ activation may be a useful therapeutic method for the treatment of Sertoli cell dysfunction caused by dyslipidemia.
Collapse
Affiliation(s)
- Xie Ge
- 0000 0001 2314 964Xgrid.41156.37Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002 Jiangsu China
| | - Peng Pan
- 0000 0001 2314 964Xgrid.41156.37Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002 Jiangsu China
| | - Jun Jing
- 0000 0001 2314 964Xgrid.41156.37Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002 Jiangsu China
| | - Xuechun Hu
- 0000 0001 2314 964Xgrid.41156.37Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002 Jiangsu China
| | - Li Chen
- 0000 0001 2314 964Xgrid.41156.37Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002 Jiangsu China
| | - Xuhua Qiu
- 0000 0001 2314 964Xgrid.41156.37Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002 Jiangsu China
| | - Rujun Ma
- 0000 0001 2314 964Xgrid.41156.37Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002 Jiangsu China
| | - Kadiliya Jueraitetibaike
- 0000 0001 2314 964Xgrid.41156.37Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002 Jiangsu China
| | - Xuan Huang
- 0000 0001 2314 964Xgrid.41156.37Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002 Jiangsu China
| | - Bing Yao
- 0000 0001 2314 964Xgrid.41156.37Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002 Jiangsu China
| |
Collapse
|
34
|
Takashima S. Biology and manipulation technologies of male germline stem cells in mammals. Reprod Med Biol 2018; 17:398-406. [PMID: 30377393 PMCID: PMC6194257 DOI: 10.1002/rmb2.12220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/24/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Spermatogonial stem cells (SSCs) are the origin of sperm and defined by their functions of "colonization in the testis" and "spermatogenesis". In vitro manipulation techniques of SSCs contribute to a wide variety of fields including reproductive medicine and molecular breeding. This review presents the recent progress of the biology and manipulation technologies of SSCs. METHODS Research articles regarding SSC biology and technologies were collected and summarized. MAIN FINDINGS Dr. Ralph Brinster developed the spermatogonial transplantation technique that enables SSC detection by functional markers. Using this technique, cultured SSCs, termed germline stem (GS) cells, were established from the mouse. GS cells provide the opportunity to produce genome-edited animals without using zygotes. In vitro spermatogenesis allows production of haploid germ cells from GS cells without spermatogonial transplantation. The recent advancement of pluripotent stem cell culture techniques has also achieved production of functional GS-like cells in addition to male/female germ cells. CONCLUSION Although in vitro manipulation techniques of GS cells have been developed for the mouse, it appears to be difficult to apply these techniques to other species. Understanding and control of interspecies barriers are required to extend this technology to nonrodent mammals.
Collapse
Affiliation(s)
- Seiji Takashima
- Faculty of Textile Science and TechnologyShinshu UniversityUedaJapan
- Graduate school of Science and TechnologyShinshu UniversityUedaJapan
| |
Collapse
|
35
|
La HM, Chan AL, Legrand JMD, Rossello FJ, Gangemi CG, Papa A, Cheng Q, Morand EF, Hobbs RM. GILZ-dependent modulation of mTORC1 regulates spermatogonial maintenance. Development 2018; 145:dev.165324. [PMID: 30126904 DOI: 10.1242/dev.165324] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
Abstract
Male fertility is dependent on spermatogonial stem cells (SSCs) that self-renew and produce differentiating germ cells. Growth factors produced within the testis are essential for SSC maintenance but intrinsic factors that dictate the SSC response to these stimuli are poorly characterised. Here, we have studied the role of GILZ, a TSC22D family protein and spermatogenesis regulator, in spermatogonial function and signalling. Although broadly expressed in the germline, GILZ was prominent in undifferentiated spermatogonia and Gilz deletion in adults resulted in exhaustion of the GFRα1+ SSC-containing population and germline degeneration. GILZ loss was associated with mTORC1 activation, suggesting enhanced growth factor signalling. Expression of deubiquitylase USP9X, an mTORC1 modulator required for spermatogenesis, was disrupted in Gilz mutants. Treatment with an mTOR inhibitor rescued GFRα1+ spermatogonial failure, indicating that GILZ-dependent mTORC1 inhibition is crucial for SSC maintenance. Analysis of cultured undifferentiated spermatogonia lacking GILZ confirmed aberrant activation of ERK MAPK upstream mTORC1 plus USP9X downregulation and interaction of GILZ with TSC22D proteins. Our data indicate an essential role for GILZ-TSC22D complexes in ensuring the appropriate response of undifferentiated spermatogonia to growth factors via distinct inputs to mTORC1.
Collapse
Affiliation(s)
- Hue M La
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria 3800, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Ai-Leen Chan
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria 3800, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Julien M D Legrand
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria 3800, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Fernando J Rossello
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria 3800, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Christina G Gangemi
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria 3800, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Antonella Papa
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Qiang Cheng
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria 3800, Australia
| | - Eric F Morand
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria 3800, Australia
| | - Robin M Hobbs
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria 3800, Australia .,Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
36
|
Roy A, Basak R, Rai U. In silico analysis, seasonal variation and gonadotropic regulation of jag1 and its receptor notch1 in testis of spotted snakehead Channa punctatus. Gen Comp Endocrinol 2018; 266:166-177. [PMID: 29772210 DOI: 10.1016/j.ygcen.2018.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/27/2018] [Accepted: 05/13/2018] [Indexed: 01/03/2023]
Abstract
The present study in seasonally breeding spotted snakehead Channa punctatus, for the first time in nonmammalian vertebrates, demonstrated correlation between reproductive phase-dependent testicular expression of ligand Jag1/receptor Notch1 and spermatogenic events. Testicular transcriptome sequencing data from our earlier study in C. punctatus was used in the present study to select the best transcript for jag1 (cpjag1) and notch1 (cpnotch1). The transcripts cpjag1 and cpnotch1 encoded full-length putative proteins of 1215 (cpJag1) and 2475 (cpNotch1) amino acids, respectively. A marked homology in the extracellular domains of Jag1 and Notch1 was observed following their alignment with respective proteins from different vertebrates, suggesting conservation in ligand-receptor interaction in C. punctatus. Both cpJag1 and cpNotch1 showed phylogenetic closeness with their teleostean counterparts, especially with that of Perciformes. Temporal expression of cpjag1 and cpnotch1 in testis depending on reproductive phases showed an appreciably high expression during spermatogenically inactive resting and postspawning phases when seminiferous lobules consisted of spermatogonial stem cells and undifferentiated spermatogonia. Their expression sharply declined during spermatogenically active preparatory and spawning phases. It appears that involvement of cpjag1/cpnotch1 is restricted to inactive phases when spermatogonial stem cells renew themselves and replenish undifferentiated spermatogonia. This assumption is ascertained by an experimental study in which high level of testicular cpjag1/cpnotch1 expression in control fish of resting phase markedly decreased after administration of human chorionic gonadotropin that is known to induce proliferation and differentiation of spermatogonia and spawning of spermatozoa.
Collapse
Affiliation(s)
- Alivia Roy
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Reetuparna Basak
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
37
|
Curley M, Milne L, Smith S, Atanassova N, Rebourcet D, Darbey A, Hadoke PWF, Wells S, Smith LB. Leukemia Inhibitory Factor-Receptor is Dispensable for Prenatal Testis Development but is Required in Sertoli cells for Normal Spermatogenesis in Mice. Sci Rep 2018; 8:11532. [PMID: 30068994 PMCID: PMC6070476 DOI: 10.1038/s41598-018-30011-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/19/2018] [Indexed: 12/14/2022] Open
Abstract
Leukemia inhibitory factor (LIF), a pleiotropic cytokine belonging to the interleukin-6 family, is most often noted for its role in maintaining the balance between stem cell proliferation and differentiation. In rodents, LIF is expressed in both the fetal and adult testis; with the peritubular myoid (PTM) cells thought to be the main site of production. Given their anatomical location, LIF produced by PTM cells may act both on intratubular and interstitial cells to influence spermatogenesis and steroidogenesis respectively. Indeed, the leukemia inhibitory factor receptor (LIFR) is expressed in germ cells, Sertoli cells, Leydig cells, PTM cells and testicular macrophages, suggesting that LIF signalling via LIFR may be a key paracrine regulator of testicular function. However, a precise role(s) for testicular LIFR-signalling in vivo has not been established. To this end, we generated and characterised the testicular phenotype of mice lacking LIFR either in germ cells, Sertoli cells or both, to identify a role for LIFR-signalling in testicular development/function. Our analyses reveal that LIFR is dispensable in germ cells for normal spermatogenesis. However, Sertoli cell LIFR ablation results in a degenerative phenotype, characterised by abnormal germ cell loss, sperm stasis, seminiferous tubule distention and subsequent atrophy of the seminiferous tubules.
Collapse
Affiliation(s)
- Michael Curley
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Laura Milne
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Sarah Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Nina Atanassova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Diane Rebourcet
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Annalucia Darbey
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Patrick W F Hadoke
- The British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, EH16 4TJ, United Kingdom
| | - Sara Wells
- Mary Lyons Centre, MRC Harwell, Harwell Campus, Oxfordshire, OX11 ORD, United Kingdom
| | - Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom. .,School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
38
|
Kamińska A, Pardyak L, Marek S, Górowska-Wójtowicz E, Kotula-Balak M, Bilińska B, Hejmej A. Bisphenol A and dibutyl phthalate affect the expression of juxtacrine signaling factors in rat testis. CHEMOSPHERE 2018; 199:182-190. [PMID: 29438945 DOI: 10.1016/j.chemosphere.2018.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/28/2017] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
The study was designed to examine the effects of model plastic derived compounds, bisphenol A (BPA) and dibutyl phthalate (DBP), on juxtacrine communication in adult rat testis, by evaluating the expression of Notch pathway components. Testicular explant were exposed in vitro to BPA (5 × 10-6 M, 2.5 × 10-5 M, 5 × 10-5 M) or DBP (10-6 M, 10-5 M, 10-4 M) for 24 h. To determine the expression of Notch1, Dll4, Hey1, Hes1 and Hey5 real-time RT-PCR was used. Protein levels and localization of NOTCH1 receptor, its ligand DLL4 as well as HEY1, HES1 and HEY5 factors were detected by western blot analysis and immunohistochemistry, respectively. Upregulation of Notch1, Dll4 and Hey1 at the mRNA and protein level was demonstrated in testis explants after BPA and DBP treatment (p < 0.05; p < 0.01; p < 0.001). Hes5 expression decreased after BPA (p < 0.05; p < 0.01; p < 0.001), whereas Hes1 expression was not altered by either BPA or DBP. Tested chemicals altered immunoexpression of activated NOTCH1, DLL4, HEY1 and HES5 both in seminiferous epithelium and interstitial tissue, exerting differential effects on particular cell types. In conclusion, BPA and DBP affect Notch signaling pathway in rat testis, which indicates that juxtacrine communication is a potential target for the action of plastic derived compounds in male gonad.
Collapse
Affiliation(s)
- Alicja Kamińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Laura Pardyak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Sylwia Marek
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Ewelina Górowska-Wójtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Małgorzata Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Barbara Bilińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Anna Hejmej
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
39
|
Masaki K, Sakai M, Kuroki S, Jo JI, Hoshina K, Fujimori Y, Oka K, Amano T, Yamanaka T, Tachibana M, Tabata Y, Shiozawa T, Ishizuka O, Hochi S, Takashima S. FGF2 Has Distinct Molecular Functions from GDNF in the Mouse Germline Niche. Stem Cell Reports 2018; 10:1782-1792. [PMID: 29681540 PMCID: PMC5989648 DOI: 10.1016/j.stemcr.2018.03.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 01/15/2023] Open
Abstract
Both glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2) are bona fide self-renewal factors for spermatogonial stem cells, whereas retinoic acid (RA) induces spermatogonial differentiation. In this study, we investigated the functional differences between FGF2 and GDNF in the germline niche by providing these factors using a drug delivery system in vivo. Although both factors expanded the GFRA1+ subset of undifferentiated spermatogonia, the FGF2-expanded subset expressed RARG, which is indispensable for proper differentiation, 1.9-fold more frequently than the GDNF-expanded subset, demonstrating that FGF2 expands a differentiation-prone subset in the testis. Moreover, FGF2 acted on the germline niche to suppress RA metabolism and GDNF production, suggesting that FGF2 modifies germline niche functions to be more appropriate for spermatogonial differentiation. These results suggest that FGF2 contributes to induction of differentiation rather than maintenance of undifferentiated spermatogonia, indicating reconsideration of the role of FGF2 in the germline niche.
Collapse
Affiliation(s)
- Kaito Masaki
- Department of Textile Science and Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
| | - Mizuki Sakai
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Shunsuke Kuroki
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8501, Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Kazuo Hoshina
- Nagano Animal Industry Experiment Station, Shiojiri 399-0711, Japan
| | - Yuki Fujimori
- Nagano Animal Industry Experiment Station, Shiojiri 399-0711, Japan
| | - Kenji Oka
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Toshiyasu Amano
- Department of Urology, Nagano Red Cross Hospital, Nagano 380-8582, Japan
| | - Takahiro Yamanaka
- Department of Textile Science and Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
| | - Makoto Tachibana
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8501, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Tanri Shiozawa
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Osamu Ishizuka
- Department of Urology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Shinichi Hochi
- Department of Textile Science and Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan; Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Seiji Takashima
- Department of Textile Science and Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan; Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan.
| |
Collapse
|
40
|
Sakai M, Masaki K, Aiba S, Tone M, Takashima S. Expression dynamics of self-renewal factors for spermatogonial stem cells in the mouse testis. J Reprod Dev 2018; 64:267-275. [PMID: 29657241 PMCID: PMC6021615 DOI: 10.1262/jrd.2018-015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2) are bona fide self-renewal factors for spermatogonial stem cells (SSCs). Although GDNF is indispensable for the maintenance of SSCs, the role of FGF2 in the testis remains to be elucidated. To clarify this, the expression dynamics and regulatory mechanisms of Fgf2 and Gdnf in the mouse testes were analyzed. It is well known that Sertoli cells express Gdnf, and its receptor is expressed in a subset of undifferentiated spermatogonia, including SSCs. However, we found that Fgf2 was mainly expressed in the germ cells and its receptors were expressed not only in the cultured spermatogonial cell line, but also in testicular somatic cells. Aging, hypophysectomy, retinoic acid treatment, and testicular injury induced distinct Fgf2 and Gdnf expression dynamics, suggesting a difference in the expression mechanism of Fgf2 and Gdnf in the testis. Such differences might cause a dynamic fluctuation of Gdnf/Fgf2 ratio depending on the intrinsic/extrinsic cues. Considering that FGF2-cultured spermatogonia exhibit more differentiated phenotype than those cultured with GDNF, FGF2 might play a role distinct from that of GDNF in the testis, despite the fact that both factors are self-renewal factor for SSC in vitro.
Collapse
Affiliation(s)
- Mizuki Sakai
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Kaito Masaki
- Department of Textile Science and Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Shota Aiba
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Masaaki Tone
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Seiji Takashima
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan.,Department of Textile Science and Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Ueda 386-8567, Japan
| |
Collapse
|
41
|
Jia Y, Wang F, Zhang R, Liang T, Zhang W, Ji X, Du Q, Chang Z. Identification of suh gene and evidence for involvement of notch signaling pathway on gonadal differentiation of Yellow River carp (Cyprinus carpio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:375-386. [PMID: 29164452 DOI: 10.1007/s10695-017-0441-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
The suh gene is crucial in Notch pathway and regulates mammalian gonad development. In this study, the sequences of suh1 and suh2 genes in Yellow River carp (Cyprinus carpio) were verified. The partial 5'-flanking regions of suh1 and suh2 were analyzed and several potential transcription factor-binding sites were identified. Phylogenetic, gene structure, and chromosome synteny analyses revealed that carp suh1 and suh2 were orthologs and homologous to vertebrate suh. Investigation of the expression profiles of suh1 and suh2 with qPCR showed that these genes were abundant in the brain and gonad of carp, with suh1 exhibiting sexual dimorphism expression pattern in gonad. To study the relationship between gonad differentiation and Notch signaling, primordial gonads were exposed to DAPT, an inhibitor of Notch signaling, in vitro and in vivo. The results revealed a significant downregulation of suh1 and other Notch genes in vitro. In addition, expression of male-biased genes, such as amh, dmrt1, etc., was downregulated, whereas that of female-biased genes, such as foxl2, gdf9, etc., was upregulated. When the primordial gonads were subjected to long-term DAPT exposure, an increased proportion of ovary and delay in testis development were observed. These results suggest that suh gene may have a conservative function between teleosts and mammals. Furthermore, Notch signaling was found to be involved in gonad differentiation in Yellow River carp, and DAPT was noted to inhibit and enhance the expression of male- and female-biased genes, respectively, and induce the increase in number of females.
Collapse
Affiliation(s)
- Yongfang Jia
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Fang Wang
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Ruihua Zhang
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Tingting Liang
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - WanWan Zhang
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Xiaolin Ji
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Qiyan Du
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China.
| |
Collapse
|
42
|
Regulatory Mechanism of Spermatogenic Stem Cells in Mice: Their Dynamic and Context-Dependent Behavior. DIVERSITY AND COMMONALITY IN ANIMALS 2018. [DOI: 10.1007/978-4-431-56609-0_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Skaftnesmo KO, Edvardsen RB, Furmanek T, Crespo D, Andersson E, Kleppe L, Taranger GL, Bogerd J, Schulz RW, Wargelius A. Integrative testis transcriptome analysis reveals differentially expressed miRNAs and their mRNA targets during early puberty in Atlantic salmon. BMC Genomics 2017; 18:801. [PMID: 29047327 PMCID: PMC5648517 DOI: 10.1186/s12864-017-4205-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Our understanding of the molecular mechanisms implementing pubertal maturation of the testis in vertebrates is incomplete. This topic is relevant in Atlantic salmon aquaculture, since precocious male puberty negatively impacts animal welfare and growth. We hypothesize that certain miRNAs modulate mRNAs relevant for the initiation of puberty. To explore which miRNAs regulate mRNAs during initiation of puberty in salmon, we performed an integrated transcriptome analysis (miRNA and mRNA-seq) of salmon testis at three stages of development: an immature, long-term quiescent stage, a prepubertal stage just before, and a pubertal stage just after the onset of single cell proliferation activity in the testis. RESULTS Differentially expressed miRNAs clustered into 5 distinct expression profiles related to the immature, prepubertal and pubertal salmon testis. Potential mRNA targets of these miRNAs were predicted with miRmap and filtered for mRNAs displaying negatively correlated expression patterns. In summary, this analysis revealed miRNAs previously known to be regulated in immature vertebrate testis (miR-101, miR-137, miR-92b, miR-18a, miR-20a), but also miRNAs first reported here as regulated in the testis (miR-new289, miR-30c, miR-724, miR-26b, miR-new271, miR-217, miR-216a, miR-135a, miR-new194 and the novel predicted n268). By KEGG enrichment analysis, progesterone signaling and cell cycle pathway genes were found regulated by these differentially expressed miRNAs. During the transition into puberty we found differential expression of miRNAs previously associated (let7a/b/c), or newly associated (miR-15c, miR-2184, miR-145 and the novel predicted n7a and b) with this stage. KEGG enrichment analysis revealed that mRNAs of the Wnt, Hedgehog and Apelin signaling pathways were potential regulated targets during the transition into puberty. Likewise, several regulated miRNAs in the pubertal stage had earlier been associated (miR-20a, miR-25, miR-181a, miR-202, let7c/d/a, miR-125b, miR-222a/b, miR-190a) or have now been found connected (miR-2188, miR-144, miR-731, miR-8157 and the novel n2) to the initiation of puberty. CONCLUSIONS This study has - for the first time - linked testis maturation to specific miRNAs and their inversely correlated expressed targets in Atlantic salmon. The study indicates a broad functional conservation of already known miRNAs and associated pathways involved in the transition into puberty in vertebrates. The analysis also reveals miRNAs not previously associated with testis tissue or its maturation, which calls for further functional studies in the testis.
Collapse
Affiliation(s)
- K O Skaftnesmo
- Institute of Marine Research, Postboks 1870 Nordnes, 5817, Bergen, Norway.
| | - R B Edvardsen
- Institute of Marine Research, Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - T Furmanek
- Institute of Marine Research, Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - D Crespo
- Reproductive Biology group, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - E Andersson
- Institute of Marine Research, Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - L Kleppe
- Institute of Marine Research, Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - G L Taranger
- Institute of Marine Research, Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - J Bogerd
- Reproductive Biology group, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - R W Schulz
- Institute of Marine Research, Postboks 1870 Nordnes, 5817, Bergen, Norway.,Reproductive Biology group, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - A Wargelius
- Institute of Marine Research, Postboks 1870 Nordnes, 5817, Bergen, Norway
| |
Collapse
|
44
|
Garcia TX, Parekh P, Gandhi P, Sinha K, Hofmann MC. The NOTCH Ligand JAG1 Regulates GDNF Expression in Sertoli Cells. Stem Cells Dev 2017; 26:585-598. [PMID: 28051360 DOI: 10.1089/scd.2016.0318] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the seminiferous epithelium of the testis, Sertoli cells are key niche cells directing proliferation and differentiation of spermatogonial stem cells (SSCs) into spermatozoa. Sertoli cells produce glial cell line-derived neurotrophic factor (GDNF), which is essential for SSC self-renewal and progenitor expansion. While the role of GDNF in the testis stem cell niche is established, little is known about how this factor is regulated. Our previous studies on NOTCH activity in Sertoli cells demonstrated a role of this pathway in limiting stem/progenitor cell numbers, thus ultimately downregulating sperm cell output. In this study we demonstrate through a double-mutant mouse model that NOTCH signaling in Sertoli cells functions solely through the canonical pathway. Further, we demonstrate through Dual luciferase assay and chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) analysis that the NOTCH targets HES1 and HEY1, which are transcriptional repressors, directly downregulate GDNF expression by binding to the Gdnf promoter, thus antagonizing the effects of FSH/cAMP. Finally, we demonstrate that testicular stem/progenitors cells are activating NOTCH signaling in Sertoli cells in vivo and in vitro through the NOTCH ligand JAG1 at their surface, indicating that these cells may ensure their own homeostasis through negative feedback regulation.
Collapse
Affiliation(s)
- Thomas X Garcia
- 1 Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas, MD Anderson Cancer Center , Houston, Texas.,2 Department of Biology, University of Houston-Clear Lake , Houston, Texas
| | - Parag Parekh
- 1 Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas, MD Anderson Cancer Center , Houston, Texas
| | - Pooja Gandhi
- 1 Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas, MD Anderson Cancer Center , Houston, Texas
| | - Krishna Sinha
- 1 Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas, MD Anderson Cancer Center , Houston, Texas.,3 Department of Orthopedic Surgery, University of Texas Health Science Center , Houston, Texas
| | - Marie-Claude Hofmann
- 1 Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas, MD Anderson Cancer Center , Houston, Texas
| |
Collapse
|
45
|
Marjault HB, Allemand I. Consequences of irradiation on adult spermatogenesis: Between infertility and hereditary risk. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:340-348. [DOI: 10.1016/j.mrrev.2016.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022]
|
46
|
Chen SR, Tang JX, Cheng JM, Li J, Jin C, Li XY, Deng SL, Zhang Y, Wang XX, Liu YX. Loss of Gata4 in Sertoli cells impairs the spermatogonial stem cell niche and causes germ cell exhaustion by attenuating chemokine signaling. Oncotarget 2016; 6:37012-27. [PMID: 26473289 PMCID: PMC4741912 DOI: 10.18632/oncotarget.6115] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/28/2015] [Indexed: 02/07/2023] Open
Abstract
Sertoli cells, the primary somatic cell in the seminiferous epithelium, provide the spermatogonial stem cell (SSC) microenvironment (niche) through physical support and the expression of paracrine factors. However, the regulatory mechanisms within the SSC niche, which is primarily controlled by Sertoli cells, remain largely unknown. GATA4 is a Sertoli cell marker, involved in genital ridge initiation, sex determination and differentiation during the embryonic stage. Here, we showed that neonatal mice with a targeted disruption of Gata4 in Sertoli cells (Gata4(flox/flox); Amh-Cre; hereafter termed Gata4 cKO) displayed a loss of the establishment and maintenance of the SSC pool and apoptosis of both gonocyte-derived differentiating spermatogonia and meiotic spermatocytes. Thus, progressive germ cell depletion and a Sertoli-cell-only syndrome were observed as early as the first wave of murine spermatogenesis. Transplantation of germ cells from postnatal day 5 (P5) Gata4 cKO mice into Kit(W/W-v) recipient seminiferous tubules restored spermatogenesis. In addition, microarray analyses of P5 Gata4 cKO mouse testes showed alterations in chemokine signaling factors, including Cxcl12, Ccl3, Cxcr4 (CXCL12 receptor), Ccr1 (CCL3 receptor), Ccl9, Xcl1 and Ccrl2. Deletion of Gata4 in Sertoli cells markedly attenuated Sertoli cell chemotaxis, which guides SSCs or prospermatogonia to the stem cell niche. Finally, we showed that GATA4 transcriptionally regulated Cxcl12 and Ccl9, and the addition of CXCL12 and CCL9 to an in vitro testis tissue culture system increased the number of PLZF+ undifferentiated spermatogonia within Gata4 cKO testes. Together, these results reveal a novel role for GATA4 in controlling the SSC niche via the transcriptional regulation of chemokine signaling shortly after birth.
Collapse
Affiliation(s)
- Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China
| | - Ji-Xin Tang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China.,University of the Chinese Academy of Sciences, Beijing, RP China
| | - Jin-Mei Cheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China.,University of the Chinese Academy of Sciences, Beijing, RP China
| | - Jian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China.,University of the Chinese Academy of Sciences, Beijing, RP China
| | - Cheng Jin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China.,University of the Chinese Academy of Sciences, Beijing, RP China
| | - Xiao-Yu Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China.,University of the Chinese Academy of Sciences, Beijing, RP China
| | - Shou-Long Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China
| | - Yan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China
| | - Xiu-Xia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China
| |
Collapse
|
47
|
Okada R, Hara T, Sato T, Kojima N, Nishina Y. The mechanism and control of Jagged1 expression in Sertoli cells. Regen Ther 2016; 3:75-81. [PMID: 31245476 PMCID: PMC6581826 DOI: 10.1016/j.reth.2016.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 01/25/2023] Open
Abstract
The regulation of Sertoli cells by some hormones and signaling factors is important for normal spermatogenesis. Notch signaling is considered to be necessary for normal spermatogenesis in mouse. In this study, we revealed two new facts about Sertoli cells by western blotting experiments on different types of primary cells and microdissected tubules. The first is that Sertoli cells express the Jagged1 ligand in mice testes. The second is that the expression level of Jagged1 oscillates in the seminiferous epithelial cycle. Therefore, we inferred that Jagged1 in Sertoli cells contributes to the Notch signaling involved in spermatogenesis. Furthermore, we examined the regulation of Jagged1 expression and found that Jagged1 expression was suppressed by cAMP signaling and was promoted by TNF-α signaling in Sertoli cells. When cAMP and TNF-α were simultaneously added to Sertoli cells, Jagged1 expression was suppressed. Therefore, cAMP signaling dominates Jagged1 expression over TNF-α signaling. These results suggest that cAMP signaling may cause the periodicity of Jagged1 expression in the seminiferous epithelial cycle, and controlling Jagged1 expression by adding TNF-α or cAMP may contribute to normal spermatogenesis in vitro. Jagged1 was expressed in Sertoli cells in mouse testes. The expression of Jagged1 oscillated in the seminiferous epithelial cycle. The expression of Jagged1 in Sertoli cells was upregulated by TNF-α and downregulated by cAMP.
Collapse
Affiliation(s)
- Ryu Okada
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Taro Hara
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Tomomi Sato
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Nobuhiko Kojima
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Yukio Nishina
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
48
|
França LR, Hess RA, Dufour JM, Hofmann MC, Griswold MD. The Sertoli cell: one hundred fifty years of beauty and plasticity. Andrology 2016; 4:189-212. [PMID: 26846984 DOI: 10.1111/andr.12165] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 12/18/2022]
Abstract
It has been one and a half centuries since Enrico Sertoli published the seminal discovery of the testicular 'nurse cell', not only a key cell in the testis, but indeed one of the most amazing cells in the vertebrate body. In this review, we begin by examining the three phases of morphological research that have occurred in the study of Sertoli cells, because microscopic anatomy was essentially the only scientific discipline available for about the first 75 years after the discovery. Biochemistry and molecular biology then changed all of biological sciences, including our understanding of the functions of Sertoli cells. Immunology and stem cell biology were not even topics of science in 1865, but they have now become major issues in our appreciation of Sertoli cell's role in spermatogenesis. We end with the universal importance and plasticity of function by comparing Sertoli cells in fish, amphibians, and mammals. In these various classes of vertebrates, Sertoli cells have quite different modes of proliferation and epithelial maintenance, cystic vs. tubular formation, yet accomplish essentially the same function but in strikingly different ways.
Collapse
Affiliation(s)
- L R França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - R A Hess
- Reproductive Biology and Toxicology, Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - J M Dufour
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - M C Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M D Griswold
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
49
|
Abstract
Mammalian spermatogenesis is a complex and highly ordered process by which male germ cells proceed through a series of differentiation steps to produce haploid flagellated spermatozoa. Underlying this process is a pool of adult stem cells, the spermatogonial stem cells (SSCs), which commence the spermatogenic lineage by undertaking a differentiation fate decision to become progenitor spermatogonia. Subsequently, progenitors acquire a differentiating spermatogonia phenotype and undergo a series of amplifying mitoses while becoming competent to enter meiosis. After spermatocytes complete meiosis, post-meiotic spermatids must then undergo a remarkable transformation from small round spermatids to a flagellated spermatozoa with extremely compacted nuclei. This chapter reviews the current literature pertaining to spermatogonial differentiation with an emphasis on the mechanisms controlling stem cell fate decisions and early differentiation events in the life of a spermatogonium.
Collapse
Affiliation(s)
- Jennifer M Mecklenburg
- Department of Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Brian P Hermann
- Department of Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
50
|
Busada JT, Geyer CB. The Role of Retinoic Acid (RA) in Spermatogonial Differentiation. Biol Reprod 2015; 94:10. [PMID: 26559678 PMCID: PMC4809555 DOI: 10.1095/biolreprod.115.135145] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/06/2015] [Indexed: 12/22/2022] Open
Abstract
Retinoic acid (RA) directs the sequential, but distinct, programs of spermatogonial differentiation and meiotic differentiation that are both essential for the generation of functional spermatozoa. These processes are functionally and temporally decoupled, as they occur in distinct cell types that arise over a week apart, both in the neonatal and adult testis. However, our understanding is limited in terms of what cellular and molecular changes occur downstream of RA exposure that prepare differentiating spermatogonia for meiotic initiation. In this review, we describe the process of spermatogonial differentiation and summarize the current state of knowledge regarding RA signaling in spermatogonia.
Collapse
Affiliation(s)
- Jonathan T Busada
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Christopher B Geyer
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| |
Collapse
|