1
|
Abraham E, Kostina A, Volmert B, Roule T, Huang L, Yu J, Williams AE, Megill E, Douglas A, Pericak OM, Morris A, Stronati E, Larrinaga-Zamanillo A, Fueyo R, Zubillaga M, Andrake MD, Akizu N, Aguirre A, Estaras C. A retinoic acid:YAP1 signaling axis controls atrial lineage commitment. Cell Rep 2025; 44:115687. [PMID: 40343798 DOI: 10.1016/j.celrep.2025.115687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/10/2025] [Accepted: 04/18/2025] [Indexed: 05/11/2025] Open
Abstract
In cardiac progenitor cells (CPCs), retinoic acid (RA) signaling induces atrial lineage gene expression and acquisition of an atrial cell fate. To achieve this, RA coordinates a complex regulatory network of downstream effectors that is not fully identified. To address this gap, we applied a functional genomics approach (i.e., scRNA-seq and snATAC-seq) to untreated and RA-treated human embryonic stem cell (hESC)-derived CPCs. Unbiased analysis revealed that the Hippo effectors YAP1 and TEAD4 are integrated with the atrial transcription factor enhancer network and that YAP1 activates RA enhancers in CPCs. Furthermore, Yap1 deletion in mouse embryos compromises the expression of RA-induced genes, such as Nr2f2, in the CPCs of the second heart field. Accordingly, in hESC-derived patterned heart organoids, YAP1 regulates the formation of an atrial chamber but is dispensable for the formation of a ventricle. Overall, our findings revealed that YAP1 cooperates with RA signaling to induce atrial lineages during cardiogenesis.
Collapse
Affiliation(s)
- Elizabeth Abraham
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Aleksandra Kostina
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Brett Volmert
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Thomas Roule
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ling Huang
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jingting Yu
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - April E Williams
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Emily Megill
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Aidan Douglas
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Olivia M Pericak
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Alex Morris
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Eleonora Stronati
- Department of Child and Adolescence Psychiatry, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Arantza Larrinaga-Zamanillo
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Raquel Fueyo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mikel Zubillaga
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Mark D Andrake
- Molecular Modeling Facility, Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Naiara Akizu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Aitor Aguirre
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Conchi Estaras
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
2
|
Duester G. Early retinoic acid signaling organizes the body axis and defines domains for the forelimb and eye. Curr Top Dev Biol 2024; 161:1-32. [PMID: 39870430 PMCID: PMC11969570 DOI: 10.1016/bs.ctdb.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
All-trans RA (ATRA) is a small molecule derived from retinol (vitamin A) that directly controls gene expression at the transcriptional level by serving as a ligand for nuclear ATRA receptors. ATRA is produced by ATRA-generating enzymes that convert retinol to retinaldehyde (retinol dehydrogenase; RDH10) followed by conversion of retinaldehyde to ATRA (retinaldehyde dehydrogenase; ALDH1A1, ALDH1A2, or ALDH1A3). Determining what ATRA normally does during vertebrate development has been challenging as studies employing ATRA gain-of-function (RA treatment) often do not agree with genetic loss-of-function studies that remove ATRA via knockouts of ATRA-generating enzymes. In mouse embryos, ATRA is first generated at stage E7.5 by ATRA-generating enzymes whose genes are first expressed at that stage. This article focuses upon what ATRA normally does at early stages based upon these knockout studies. It has been observed that early-generated ATRA performs three essential functions: (1) activation of genes that control hindbrain and spinal cord patterning; (2) repression of Fgf8 in the heart field and caudal progenitors to provide an FGF8-free region in the trunk essential for somitogenesis, heart morphogenesis, and initiation of forelimb fields; and (3) actions that stimulate invagination of the optic vesicle to form the optic cup.
Collapse
Affiliation(s)
- Gregg Duester
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.
| |
Collapse
|
3
|
Nakamura M, Sandell LL. Multiple roles for retinoid signaling in craniofacial development. Curr Top Dev Biol 2024; 161:33-57. [PMID: 39870438 DOI: 10.1016/bs.ctdb.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Retinoic acid (RA) signaling plays multiple essential roles in development of the head and face. Animal models with mutations in genes involved in RA signaling have enabled understanding of craniofacial morphogenic processes that are regulated by the retinoid pathway. During craniofacial morphogenesis RA signaling is active in spatially restricted domains defined by the expression of genes involved in RA production and RA breakdown. The spatial distribution of RA signaling changes with progressive development, corresponding to a multiplicity of craniofacial developmental processes that are regulated by RA. One important role of RA signaling occurs in the hindbrain. There RA contributes to specification of the anterior-posterior (AP) axis of the developing CNS and to the neural crest cells (NCC) which form the bones and nerves of the face and pharyngeal region. In the optic vesicles and frontonasal process RA orchestrates development of the midface, eyes, and nasal airway. Additional roles for RA in craniofacial development include regulation of submandibular salivary gland development and maintaining patency in the sutures of the cranial vault.
Collapse
Affiliation(s)
- Masahiro Nakamura
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States.
| |
Collapse
|
4
|
Perfitt TL, Huichalaf C, Gooch R, Kuperman A, Ahn Y, Chen X, Ullas S, Hirenallur-Shanthappa D, Zhan Y, Otis D, Whiteley LO, Bulawa C, Martelli A. A modified mouse model of Friedreich's ataxia with conditional Fxn allele homozygosity delays onset of cardiomyopathy. Am J Physiol Heart Circ Physiol 2024; 326:H357-H369. [PMID: 38038720 DOI: 10.1152/ajpheart.00496.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Friedreich's ataxia (FA) is an autosomal recessive disorder caused by a deficiency in frataxin (FXN), a mitochondrial protein that plays a critical role in the synthesis of iron-sulfur clusters (Fe-S), vital inorganic cofactors necessary for numerous cellular processes. FA is characterized by progressive ataxia and hypertrophic cardiomyopathy, with cardiac dysfunction as the most common cause of mortality in patients. Commonly used cardiac-specific mouse models of FA use the muscle creatine kinase (MCK) promoter to express Cre recombinase in cardiomyocytes and striated muscle cells in mice with one conditional Fxn allele and one floxed-out/null allele. These mice quickly develop cardiomyopathy that becomes fatal by 9-11 wk of age. Here, we generated a cardiac-specific model with floxed Fxn allele homozygosity (MCK-Fxnflox/flox). MCK-Fxnflox/flox mice were phenotypically normal at 9 wk of age, despite no detectable FXN protein expression. Between 13 and 15 wk of age, these mice began to display progressive cardiomyopathy, including decreased ejection fraction and fractional shortening and increased left ventricular mass. MCK-Fxnflox/flox mice began to lose weight around 16 wk of age, characteristically associated with heart failure in other cardiac-specific FA models. By 18 wk of age, MCK-Fxnflox/flox mice displayed elevated markers of Fe-S deficiency, cardiac stress and injury, and cardiac fibrosis. This modified model reproduced important pathophysiological and biochemical features of FA over a longer timescale than previous cardiac-specific mouse models, offering a larger window for studying potential therapeutics.NEW & NOTEWORTHY Previous cardiac-specific frataxin knockout models exhibit rapid and fatal cardiomyopathy by 9 wk of age. This severe phenotype poses challenges for the design and execution of intervention studies. We introduce an alternative cardiac-specific model, MCK-Fxnflox/flox, with increased longevity and delayed onset of all major phenotypes. These phenotypes develop to the same severity as previous models. Thus, this new model provides the same cardiomyopathy-associated mortality with a larger window for potential studies.
Collapse
Affiliation(s)
- Tyler L Perfitt
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Claudia Huichalaf
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Renea Gooch
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Anna Kuperman
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Youngwook Ahn
- Target Sciences, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Xian Chen
- Comparative Medicine, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Soumya Ullas
- Comparative Medicine, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Dinesh Hirenallur-Shanthappa
- Comparative Medicine, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Yutian Zhan
- Drug Safety Research and Development, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Diana Otis
- Drug Safety Research and Development, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Laurence O Whiteley
- Drug Safety Research and Development, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Christine Bulawa
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Alain Martelli
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| |
Collapse
|
5
|
Petrelli B, Oztürk A, Pind M, Ayele H, Fainsod A, Hicks GG. Genetically programmed retinoic acid deficiency during gastrulation phenocopies most known developmental defects due to acute prenatal alcohol exposure in FASD. Front Cell Dev Biol 2023; 11:1208279. [PMID: 37397253 PMCID: PMC10311642 DOI: 10.3389/fcell.2023.1208279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Fetal Alcohol Spectrum Disorder (FASD) arises from maternal consumption of alcohol during pregnancy affecting 2%-5% of the Western population. In Xenopus laevis studies, we showed that alcohol exposure during early gastrulation reduces retinoic acid (RA) levels at this critical embryonic stage inducing craniofacial malformations associated with Fetal Alcohol Syndrome. A genetic mouse model that induces a transient RA deficiency in the node during gastrulation is described. These mice recapitulate the phenotypes characteristic of prenatal alcohol exposure (PAE) suggesting a molecular etiology for the craniofacial malformations seen in children with FASD. Gsc +/Cyp26A1 mouse embryos have a reduced RA domain and expression in the developing frontonasal prominence region and delayed HoxA1 and HoxB1 expression at E8.5. These embryos also show aberrant neurofilament expression during cranial nerve formation at E10.5 and have significant FASD sentinel-like craniofacial phenotypes at E18.5. Gsc +/Cyp26A1 mice develop severe maxillary malocclusions in adulthood. Phenocopying the PAE-induced developmental malformations with a genetic model inducing RA deficiency during early gastrulation strongly supports the alcohol/vitamin A competition model as a major molecular etiology for the neurodevelopmental defects and craniofacial malformations seen in children with FASD.
Collapse
Affiliation(s)
- B. Petrelli
- Department of Biochemistry and Medical Genetics, Regenerative Medicine Program, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - A. Oztürk
- Department of Biochemistry and Medical Genetics, Regenerative Medicine Program, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - M. Pind
- Department of Biochemistry and Medical Genetics, Regenerative Medicine Program, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - H. Ayele
- Department of Biochemistry and Medical Genetics, Regenerative Medicine Program, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - A. Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel–Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - G. G. Hicks
- Department of Biochemistry and Medical Genetics, Regenerative Medicine Program, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Buchner F, Dokuzluoglu Z, Grass T, Rodriguez-Muela N. Spinal Cord Organoids to Study Motor Neuron Development and Disease. Life (Basel) 2023; 13:1254. [PMID: 37374039 PMCID: PMC10303776 DOI: 10.3390/life13061254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Motor neuron diseases (MNDs) are a heterogeneous group of disorders that affect the cranial and/or spinal motor neurons (spMNs), spinal sensory neurons and the muscular system. Although they have been investigated for decades, we still lack a comprehensive understanding of the underlying molecular mechanisms; and therefore, efficacious therapies are scarce. Model organisms and relatively simple two-dimensional cell culture systems have been instrumental in our current knowledge of neuromuscular disease pathology; however, in the recent years, human 3D in vitro models have transformed the disease-modeling landscape. While cerebral organoids have been pursued the most, interest in spinal cord organoids (SCOs) is now also increasing. Pluripotent stem cell (PSC)-based protocols to generate SpC-like structures, sometimes including the adjacent mesoderm and derived skeletal muscle, are constantly being refined and applied to study early human neuromuscular development and disease. In this review, we outline the evolution of human PSC-derived models for generating spMN and recapitulating SpC development. We also discuss how these models have been applied to exploring the basis of human neurodevelopmental and neurodegenerative diseases. Finally, we provide an overview of the main challenges to overcome in order to generate more physiologically relevant human SpC models and propose some exciting new perspectives.
Collapse
Affiliation(s)
- Felix Buchner
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Zeynep Dokuzluoglu
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Tobias Grass
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Natalia Rodriguez-Muela
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
7
|
Afzal Z, Lange JJ, Nolte C, McKinney S, Wood C, Paulson A, De Kumar B, Unruh J, Slaughter BD, Krumlauf R. Shared retinoic acid responsive enhancers coordinately regulate nascent transcription of Hoxb coding and non-coding RNAs in the developing mouse neural tube. Development 2023; 150:dev201259. [PMID: 37102683 PMCID: PMC10233718 DOI: 10.1242/dev.201259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Signaling pathways regulate the patterns of Hox gene expression that underlie their functions in the specification of axial identity. Little is known about the properties of cis-regulatory elements and underlying transcriptional mechanisms that integrate graded signaling inputs to coordinately control Hox expression. Here, we optimized a single molecule fluorescent in situ hybridization (smFISH) technique with probes spanning introns to evaluate how three shared retinoic acid response element (RARE)-dependent enhancers in the Hoxb cluster regulate patterns of nascent transcription in vivo at the level of single cells in wild-type and mutant embryos. We predominately detect nascent transcription of only a single Hoxb gene in each cell, with no evidence for simultaneous co-transcriptional coupling of all or specific subsets of genes. Single and/or compound RARE mutations indicate that each enhancer differentially impacts global and local patterns of nascent transcription, suggesting that selectivity and competitive interactions between these enhancers is important to robustly maintain the proper levels and patterns of nascent Hoxb transcription. This implies that rapid and dynamic regulatory interactions potentiate transcription of genes through combined inputs from these enhancers in coordinating the retinoic acid response.
Collapse
Affiliation(s)
- Zainab Afzal
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Anatomy and Cell Biology Department, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Jeffrey J. Lange
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Christof Nolte
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Christopher Wood
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ariel Paulson
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jay Unruh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Anatomy and Cell Biology Department, Kansas University Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
8
|
Lopez-Perez G, Wijayatunge R, McCrum KB, Holmstrom SR, Mgbemena VE, Ross TS. BRCA1 and TP53 codeficiency causes a PARP inhibitor-sensitive erythroproliferative neoplasm. JCI Insight 2022; 7:158257. [PMID: 36346676 PMCID: PMC9869974 DOI: 10.1172/jci.insight.158257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
Mutations in the BRCA1 tumor suppressor gene, such as 5382insC (BRCA1insC), give carriers an increased risk for breast, ovarian, prostate, and pancreatic cancers. We have previously reported that, in mice, Brca1 deficiency in the hematopoietic system leads to pancytopenia and, as a result, early lethality. We explored the cellular consequences of Brca1-null and BRCA1insC alleles in combination with Trp53 deficiency in the murine hematopoietic system. We found that Brca1 and Trp53 codeficiency led to a highly penetrant erythroproliferative disorder that is characterized by hepatosplenomegaly and by expanded megakaryocyte erythroid progenitor (MEP) and immature erythroid blast populations. The expanded erythroid progenitor populations in both BM and spleen had the capacity to transmit the disease into secondary mouse recipients, suggesting that Brca1 and Trp53 codeficiency provides a murine model of hematopoietic neoplasia. This Brca1/Trp53 model replicated Poly (ADP-ribose) polymerase (PARP) inhibitor olaparib sensitivity seen in existing Brca1/Trp53 breast cancer models and had the benefits of monitoring disease progression and drug responses via peripheral blood analyses without sacrificing experimental animals. In addition, this erythroid neoplasia developed much faster than murine breast cancer, allowing for increased efficiency of future preclinical studies.
Collapse
|
9
|
Pierro JD, Ahir BK, Baker NC, Kleinstreuer NC, Xia M, Knudsen TB. Computational model for fetal skeletal defects potentially linked to disruption of retinoic acid signaling. Front Pharmacol 2022; 13:971296. [PMID: 36172177 PMCID: PMC9511990 DOI: 10.3389/fphar.2022.971296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
All-trans retinoic acid (ATRA) gradients determine skeletal patterning morphogenesis and can be disrupted by diverse genetic or environmental factors during pregnancy, leading to fetal skeleton defects. Adverse Outcome Pathway (AOP) frameworks for ATRA metabolism, signaling, and homeostasis allow for the development of new approach methods (NAMs) for predictive toxicology with less reliance on animal testing. Here, a data-driven model was constructed to identify chemicals associated with both ATRA pathway bioactivity and prenatal skeletal defects. The phenotype data was culled from ToxRefDB prenatal developmental toxicity studies and produced a list of 363 ToxRefDB chemicals with altered skeletal observations. Defects were classified regionally as cranial, post-cranial axial, appendicular, and other (unspecified) features based on ToxRefDB descriptors. To build a multivariate statistical model, high-throughput screening bioactivity data from >8,070 chemicals in ToxCast/Tox21 across 10 in vitro assays relevant to the retinoid signaling system were evaluated and compared to literature-based candidate reference chemicals in the dataset. There were 48 chemicals identified for effects on both in vivo skeletal defects and in vitro ATRA pathway targets for computational modeling. The list included 28 chemicals with prior evidence of skeletal defects linked to retinoid toxicity and 20 chemicals without prior evidence. The combination of thoracic cage defects and DR5 (direct repeats of 5 nucleotides for RAR/RXR transactivation) disruption was the most frequently occurring phenotypic and target disturbance, respectively. This data model provides valuable AOP elucidation and validates current mechanistic understanding. These findings also shed light on potential avenues for new mechanistic discoveries related to ATRA pathway disruption and associated skeletal dysmorphogenesis due to environmental exposures.
Collapse
Affiliation(s)
- Jocylin D. Pierro
- Center for Computational Toxicology and Exposure (CCTE), Computational Toxicology and Bioinformatics Branch (CTBB), Office of Research and Development (ORD), U.S. Environmental Protection Agency (USEPA), Research Triangle Park, NC, United States
| | - Bhavesh K. Ahir
- Eurofins Medical Device Testing, Lancaster, PA, United States
| | - Nancy C. Baker
- Scientific Computing and Data Curation Division (SCDCD), Leidos Contractor, Center for Computational Toxicology and Exposure (CCTE), USEPA/ORD, Research Triangle Park, NC, United States
| | - Nicole C. Kleinstreuer
- Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), National Toxicology Program, National Institutes of Health, Research Triangle Park, NC, United States
| | - Menghang Xia
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Thomas B. Knudsen
- Center for Computational Toxicology and Exposure (CCTE), Computational Toxicology and Bioinformatics Branch (CTBB), Office of Research and Development (ORD), U.S. Environmental Protection Agency (USEPA), Research Triangle Park, NC, United States
| |
Collapse
|
10
|
Pinglay S, Bulajić M, Rahe DP, Huang E, Brosh R, Mamrak NE, King BR, German S, Cadley JA, Rieber L, Easo N, Lionnet T, Mahony S, Maurano MT, Holt LJ, Mazzoni EO, Boeke JD. Synthetic regulatory reconstitution reveals principles of mammalian Hox cluster regulation. Science 2022; 377:eabk2820. [PMID: 35771912 PMCID: PMC9648154 DOI: 10.1126/science.abk2820] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Precise Hox gene expression is crucial for embryonic patterning. Intra-Hox transcription factor binding and distal enhancer elements have emerged as the major regulatory modules controlling Hox gene expression. However, quantifying their relative contributions has remained elusive. Here, we introduce "synthetic regulatory reconstitution," a conceptual framework for studying gene regulation, and apply it to the HoxA cluster. We synthesized and delivered variant rat HoxA clusters (130 to 170 kilobases) to an ectopic location in the mouse genome. We found that a minimal HoxA cluster recapitulated correct patterns of chromatin remodeling and transcription in response to patterning signals, whereas the addition of distal enhancers was needed for full transcriptional output. Synthetic regulatory reconstitution could provide a generalizable strategy for deciphering the regulatory logic of gene expression in complex genomes.
Collapse
Affiliation(s)
- Sudarshan Pinglay
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Milica Bulajić
- Department of Biology, New York University, New York, NY 10003, USA
| | - Dylan P. Rahe
- Department of Biology, New York University, New York, NY 10003, USA
| | - Emily Huang
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Ran Brosh
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Nicholas E. Mamrak
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Benjamin R. King
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Sergei German
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - John A. Cadley
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Lila Rieber
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Nicole Easo
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Timothée Lionnet
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
- Department of Cell Biology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew T. Maurano
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Liam J. Holt
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | | | - Jef D. Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
11
|
Belpaire M, Taminiau A, Geerts D, Rezsohazy R. HOXA1, a breast cancer oncogene. Biochim Biophys Acta Rev Cancer 2022; 1877:188747. [PMID: 35675857 DOI: 10.1016/j.bbcan.2022.188747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
More than 25 years ago, the first literature records mentioned HOXA1 expression in human breast cancer. A few years later, HOXA1 was confirmed as a proper oncogene in mammary tissue. In the following two decades, molecular data about the mode of action of the HOXA1 protein, the factors contributing to activate and maintain HOXA1 gene expression and the identity of its target genes have accumulated and provide a wider view on the association of this transcription factor to breast oncogenesis. Large-scale transcriptomic data gathered from wide cohorts of patients further allowed refining the relationship between breast cancer type and HOXA1 expression. Several recent reports have reviewed the connection between cancer hallmarks and the biology of HOX genes in general. Here we take HOXA1 as a paradigm and propose an extensive overview of the molecular data centered on this oncoprotein, from what its expression modulators, to the interactors contributing to its oncogenic activities, and to the pathways and genes it controls. The data converge to an intricate picture that answers questions on the multi-modality of its oncogene activities, point towards better understanding of breast cancer aetiology and thereby provides an appraisal for treatment opportunities.
Collapse
Affiliation(s)
- Magali Belpaire
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Arnaud Taminiau
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Dirk Geerts
- Heart Failure Research Center, Amsterdam University Medical Center (AMC), Universiteit van Amsterdam, Amsterdam, the Netherlands.
| | - René Rezsohazy
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
12
|
Duester G. Towards a Better Vision of Retinoic Acid Signaling during Eye Development. Cells 2022; 11:cells11030322. [PMID: 35159132 PMCID: PMC8834304 DOI: 10.3390/cells11030322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Retinoic acid (RA) functions as an essential signal for development of the vertebrate eye by controlling the transcriptional regulatory activity of RA receptors (RARs). During eye development, the optic vesicles and later the retina generate RA as a metabolite of vitamin A (retinol). Retinol is first converted to retinaldehyde by retinol dehydrogenase 10 (RDH10) and then to RA by all three retinaldehyde dehydrogenases (ALDH1A1, ALDH1A2, and ALDH1A3). In early mouse embryos, RA diffuses to tissues throughout the optic placode, optic vesicle, and adjacent mesenchyme to stimulate folding of the optic vesicle to form the optic cup. RA later generated by the retina is needed for further morphogenesis of the optic cup and surrounding perioptic mesenchyme; loss of RA at this stage leads to microphthalmia and cornea plus eyelid defects. RA functions by binding to nuclear RARs at RA response elements (RAREs) that either activate or repress transcription of key genes. Binding of RA to RARs regulates recruitment of transcriptional coregulators such as nuclear receptor coactivator (NCOA) or nuclear receptor corepressor (NCOR), which in turn control binding of the generic coactivator p300 or the generic corepressor PRC2. No genes have been identified as direct targets of RA signaling during eye development, so future studies need to focus on identifying such genes and their RAREs. Studies designed to learn how RA normally controls eye development in vivo will provide basic knowledge valuable for determining how developmental eye defects occur and for improving strategies to treat eye defects.
Collapse
Affiliation(s)
- Gregg Duester
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
13
|
Su G, Wang W, Zhao X, Chen J, Zheng J, Liu M, Bi J, Guo D, Chen B, Zhao Z, Shi J, Zhang L, Lu W. Enhancer architecture-dependent multilayered transcriptional regulation orchestrates RA signaling-induced early lineage differentiation of ESCs. Nucleic Acids Res 2021; 49:11575-11595. [PMID: 34723340 PMCID: PMC8599802 DOI: 10.1093/nar/gkab1001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/16/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
Signaling pathway-driven target gene transcription is critical for fate determination of embryonic stem cells (ESCs), but enhancer-dependent transcriptional regulation in these processes remains poorly understood. Here, we report enhancer architecture-dependent multilayered transcriptional regulation at the Halr1–Hoxa1 locus that orchestrates retinoic acid (RA) signaling-induced early lineage differentiation of ESCs. We show that both homeobox A1 (Hoxa1) and Hoxa adjacent long non-coding RNA 1 (Halr1) are identified as direct downstream targets of RA signaling and regulated by RARA/RXRA via RA response elements (RAREs). Chromosome conformation capture-based screens indicate that RA signaling promotes enhancer interactions essential for Hoxa1 and Halr1 expression and mesendoderm differentiation of ESCs. Furthermore, the results also show that HOXA1 promotes expression of Halr1 through binding to enhancer; conversely, loss of Halr1 enhances interaction between Hoxa1 chromatin and four distal enhancers but weakens interaction with chromatin inside the HoxA cluster, leading to RA signaling-induced Hoxa1 overactivation and enhanced endoderm differentiation. These findings reveal complex transcriptional regulation involving synergistic regulation by enhancers, transcription factors and lncRNA. This work provides new insight into intrinsic molecular mechanisms underlying ESC fate determination during RA signaling-induced early differentiation.
Collapse
Affiliation(s)
- Guangsong Su
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Wenbin Wang
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Xueyuan Zhao
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Jun Chen
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Jian Zheng
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Man Liu
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Jinfang Bi
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Dianhao Guo
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Bohan Chen
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Zhongfang Zhao
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Jiandang Shi
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Lei Zhang
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Wange Lu
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| |
Collapse
|
14
|
Rifes P, Isaksson M, Rathore GS, Aldrin-Kirk P, Møller OK, Barzaghi G, Lee J, Egerod KL, Rausch DM, Parmar M, Pers TH, Laurell T, Kirkeby A. Modeling neural tube development by differentiation of human embryonic stem cells in a microfluidic WNT gradient. Nat Biotechnol 2020; 38:1265-1273. [PMID: 32451506 PMCID: PMC7616963 DOI: 10.1038/s41587-020-0525-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 04/14/2020] [Indexed: 12/27/2022]
Abstract
The study of brain development in humans is limited by the lack of tissue samples and suitable in vitro models. Here, we model early human neural tube development using human embryonic stem cells cultured in a microfluidic device. The approach, named microfluidic-controlled stem cell regionalization (MiSTR), exposes pluripotent stem cells to signaling gradients that mimic developmental patterning. Using a WNT-activating gradient, we generated a neural tissue exhibiting progressive caudalization from forebrain to midbrain to hindbrain, including formation of isthmic organizer characteristics. Single-cell transcriptomics revealed that rostro-caudal organization was already established at 24 h of differentiation, and that the first markers of a neural-specific transcription program emerged in the rostral cells at 48 h. The transcriptomic hallmarks of rostro-caudal organization recapitulated gene expression patterns of the early rostro-caudal neural plate in mouse embryos. Thus, MiSTR will facilitate research on the factors and processes underlying rostro-caudal neural tube patterning.
Collapse
Affiliation(s)
- Pedro Rifes
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Marc Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Gaurav Singh Rathore
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Patrick Aldrin-Kirk
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | | | - Guido Barzaghi
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Julie Lee
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer Lihme Egerod
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Dylan M Rausch
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Malin Parmar
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tune H Pers
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Laurell
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Agnete Kirkeby
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark.
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
15
|
Su G, Guo D, Chen J, Liu M, Zheng J, Wang W, Zhao X, Yin Q, Zhang L, Zhao Z, Shi J, Lu W. A distal enhancer maintaining Hoxa1 expression orchestrates retinoic acid-induced early ESCs differentiation. Nucleic Acids Res 2020; 47:6737-6752. [PMID: 31147716 PMCID: PMC6649716 DOI: 10.1093/nar/gkz482] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 11/17/2022] Open
Abstract
Retinoic acid (RA) induces rapid differentiation of embryonic stem cells (ESCs), partly by activating expression of the transcription factor Hoxa1, which regulates downstream target genes that promote ESCs differentiation. However, mechanisms of RA-induced Hoxa1 expression and ESCs early differentiation remain largely unknown. Here, we identify a distal enhancer interacting with the Hoxa1 locus through a long-range chromatin loop. Enhancer deletion significantly inhibited expression of RA-induced Hoxa1 and endoderm master control genes such as Gata4 and Gata6. Transcriptome analysis revealed that RA-induced early ESCs differentiation was blocked in Hoxa1 enhancer knockout cells, suggesting a requirement for the enhancer. Restoration of Hoxa1 expression partly rescued expression levels of ∼40% of genes whose expression changed following enhancer deletion, and ∼18% of promoters of those rescued genes were directly bound by Hoxa1. Our data show that a distal enhancer maintains Hoxa1 expression through long-range chromatin loop and that Hoxa1 directly regulates downstream target genes expression and then orchestrates RA-induced early differentiation of ESCs. This discovery reveals mechanisms of a novel enhancer regulating RA-induced Hoxa genes expression and early ESCs differentiation.
Collapse
Affiliation(s)
- Guangsong Su
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Dianhao Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Jun Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Man Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Jian Zheng
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Wenbin Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Xueyuan Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Qingqing Yin
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Zhongfang Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Jiandang Shi
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Wange Lu
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
16
|
Parker HJ, Krumlauf R. A Hox gene regulatory network for hindbrain segmentation. Curr Top Dev Biol 2020; 139:169-203. [DOI: 10.1016/bs.ctdb.2020.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Paço A, Freitas R. HOX genes as transcriptional and epigenetic regulators during tumorigenesis and their value as therapeutic targets. Epigenomics 2019; 11:1539-1552. [PMID: 31556724 DOI: 10.2217/epi-2019-0090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Several HOX genes are aberrantly expressed in a wide range of cancers interfering with their development and resistance to treatment. This seems to be often caused by alterations in the methylation profiles of their promoters. The role of HOX gene products in cancer is highly 'tissue specific', relying ultimately on their ability to regulate oncogenes or tumor-suppressor genes, directly as transcriptional regulators or indirectly interfering with the levels of epigenetic regulators. Nowadays, different strategies have been tested the use of HOX genes as therapeutic targets for cancer diagnosis and treatment. Here, we trace the history of the research concerning the involvement of HOX genes in cancer, their connection with epigenetic regulation and their potential use as therapeutic targets.
Collapse
Affiliation(s)
- Ana Paço
- Laboratório de Microbiologia do Solo, Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, 7006-554 Évora, Portugal
| | - Renata Freitas
- I3S - Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal.,IBMC - Institute for Molecular & Cell Biology, University of Porto, 4200-135 Porto, Portugal.,ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
18
|
Uematsu A, Kido K, Takahashi H, Takahashi C, Yanagihara Y, Saeki N, Yoshida S, Maekawa M, Honda M, Kai T, Shimizu K, Higashiyama S, Imai Y, Tokunaga F, Sawasaki T. The E3 ubiquitin ligase MIB2 enhances inflammation by degrading the deubiquitinating enzyme CYLD. J Biol Chem 2019; 294:14135-14148. [PMID: 31366726 DOI: 10.1074/jbc.ra119.010119] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Indexed: 12/25/2022] Open
Abstract
The tumor suppressor CYLD is a deubiquitinating enzyme that suppresses polyubiquitin-dependent signaling pathways, including the proinflammatory and cell growth-promoting NF-κB pathway. Missense mutations in the CYLD gene are present in individuals with syndromes such as multiple familial trichoepithelioma (MFT), but the pathogenic roles of these mutations remain unclear. Recent studies have shown that CYLD interacts with a RING finger domain protein, mind bomb homologue 2 (MIB2), in the regulation of NOTCH signaling. However, whether MIB2 is an E3 ubiquitin ligase that acts on CYLD is unknown. Here, using the cell-free-based AlphaScreen and pulldown assays to detect protein-protein interactions, along with immunofluorescence assays and murine Mib2 knockout cells and animals, we demonstrate that MIB2 promotes proteasomal degradation of CYLD and enhances NF-κB signaling. Of note, arthritic inflammation was suppressed in Mib2-deficient mice. We further observed that the ankyrin repeat in MIB2 interacts with the third CAP domain in CYLD and that MIB2 catalyzes Lys-48-linked polyubiquitination of CYLD at Lys-338 and Lys-530. MIB2-dependent CYLD degradation activated NF-κB signaling via tumor necrosis factor alpha (TNFα) stimulation and the linear ubiquitination assembly complex (LUBAC). Mib2-knockout mice had reduced serum interleukin-6 (IL-6) and exhibited suppressed inflammatory responses in the K/BxN serum-transfer arthritis model. Interestingly, MIB2 significantly enhanced the degradation of a CYLDP904L variant identified in an individual with MFT, although the molecular pathogenesis of the disease was not clarified here. Together, these results suggest that MIB2 enhances NF-κB signaling in inflammation by promoting the ubiquitin-dependent degradation of CYLD.
Collapse
Affiliation(s)
- Atsushi Uematsu
- Division of Cell-Free Sciences, Proteo-Science Center (PROS), 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kohki Kido
- Division of Cell-Free Sciences, Proteo-Science Center (PROS), 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hirotaka Takahashi
- Division of Cell-Free Sciences, Proteo-Science Center (PROS), 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Chikako Takahashi
- Division of Cell-Free Sciences, Proteo-Science Center (PROS), 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Yuta Yanagihara
- Division of Integrative Pathophysiology, PROS, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Noritaka Saeki
- Division of Integrative Pathophysiology, PROS, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Shuhei Yoshida
- Division of Integrative Pathophysiology, PROS, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Masashi Maekawa
- Division of Cell Growth and Tumor Regulation, PROS, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577.,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Mamoru Honda
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., Nishinokyo-Shimoaicho, Nakagyo-ku, Kyoto 604-8436, Japan
| | - Tsutomu Kai
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., Nishinokyo-Shimoaicho, Nakagyo-ku, Kyoto 604-8436, Japan
| | - Kouhei Shimizu
- Division of Cell-Free Sciences, Proteo-Science Center (PROS), 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, PROS, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577.,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, PROS, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Fuminori Tokunaga
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Tatsuya Sawasaki
- Division of Cell-Free Sciences, Proteo-Science Center (PROS), 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
19
|
Identification of an acute myeloid leukaemia associated noncoding somatic mutation at 3 $$^\prime $$ ′ end of HOXA cluster. J Genet 2019. [DOI: 10.1007/s12041-019-1081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Perl E, Waxman JS. Reiterative Mechanisms of Retinoic Acid Signaling during Vertebrate Heart Development. J Dev Biol 2019; 7:jdb7020011. [PMID: 31151214 PMCID: PMC6631158 DOI: 10.3390/jdb7020011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 01/07/2023] Open
Abstract
Tightly-regulated levels of retinoic acid (RA) are critical for promoting normal vertebrate development. The extensive history of research on RA has shown that its proper regulation is essential for cardiac progenitor specification and organogenesis. Here, we discuss the roles of RA signaling and its establishment of networks that drive both early and later steps of normal vertebrate heart development. We focus on studies that highlight the drastic effects alternative levels of RA have on early cardiomyocyte (CM) specification and cardiac chamber morphogenesis, consequences of improper RA synthesis and degradation, and known effectors downstream of RA. We conclude with the implications of these findings to our understanding of cardiac regeneration and the etiologies of congenital heart defects.
Collapse
Affiliation(s)
- Eliyahu Perl
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- The Heart Institute and Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Joshua S Waxman
- The Heart Institute and Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
21
|
Nolte C, De Kumar B, Krumlauf R. Hox genes: Downstream "effectors" of retinoic acid signaling in vertebrate embryogenesis. Genesis 2019; 57:e23306. [PMID: 31111645 DOI: 10.1002/dvg.23306] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022]
Abstract
One of the major regulatory challenges of animal development is to precisely coordinate in space and time the formation, specification, and patterning of cells that underlie elaboration of the basic body plan. How does the vertebrate plan for the nervous and hematopoietic systems, heart, limbs, digestive, and reproductive organs derive from seemingly similar population of cells? These systems are initially established and patterned along the anteroposterior axis (AP) by opposing signaling gradients that lead to the activation of gene regulatory networks involved in axial specification, including the Hox genes. The retinoid signaling pathway is one of the key signaling gradients coupled to the establishment of axial patterning. The nested domains of Hox gene expression, which provide a combinatorial code for axial patterning, arise in part through a differential response to retinoic acid (RA) diffusing from anabolic centers established within the embryo during development. Hence, Hox genes are important direct effectors of retinoid signaling in embryogenesis. This review focuses on describing current knowledge on the complex mechanisms and regulatory processes, which govern the response of Hox genes to RA in several tissue contexts including the nervous system during vertebrate development.
Collapse
Affiliation(s)
- Christof Nolte
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, Missouri.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas
| |
Collapse
|
22
|
Parker HJ, Bronner ME, Krumlauf R. An atlas of anterior hox gene expression in the embryonic sea lamprey head: Hox-code evolution in vertebrates. Dev Biol 2019; 453:19-33. [PMID: 31071313 DOI: 10.1016/j.ydbio.2019.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/05/2019] [Accepted: 05/01/2019] [Indexed: 10/26/2022]
Abstract
In the hindbrain and the adjacent cranial neural crest (NC) cells of jawed vertebrates (gnathostomes), nested and segmentally-restricted domains of Hox gene expression provide a combinatorial Hox-code for specifying regional properties during head development. Extant jawless vertebrates, such as the sea lamprey (Petromyzon marinus), can provide insights into the evolution and diversification of this Hox-code in vertebrates. There is evidence for gnathostome-like spatial patterns of Hox expression in lamprey; however, the expression domains of the majority of lamprey hox genes from paralogy groups (PG) 1-4 are yet to be characterized, so it is unknown whether they are coupled to hindbrain segments (rhombomeres) and NC. In this study, we systematically describe the spatiotemporal expression of all 14 sea lamprey hox genes from PG1-PG4 in the developing hindbrain and pharynx to investigate the extent to which their expression conforms to the archetypal gnathostome hindbrain and pharyngeal hox-codes. We find many similarities in Hox expression between lamprey and gnathostome species, particularly in rhombomeric domains during hindbrain segmentation and in the cranial neural crest, enabling inference of aspects of Hox expression in the ancestral vertebrate embryonic head. These data are consistent with the idea that a Hox regulatory network underlying hindbrain segmentation is a pan vertebrate trait. We also reveal differences in hindbrain domains at later stages, as well as expression in the endostyle and in pharyngeal arch (PA) 1 mesoderm. Our analysis suggests that many Hox expression domains that are observed in extant gnathostomes were present in ancestral vertebrates but have been partitioned differently across Hox clusters in gnathostome and cyclostome lineages after duplication.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
23
|
Frank D, Sela-Donenfeld D. Hindbrain induction and patterning during early vertebrate development. Cell Mol Life Sci 2019; 76:941-960. [PMID: 30519881 PMCID: PMC11105337 DOI: 10.1007/s00018-018-2974-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/28/2022]
Abstract
The hindbrain is a key relay hub of the central nervous system (CNS), linking the bilaterally symmetric half-sides of lower and upper CNS centers via an extensive network of neural pathways. Dedicated neural assemblies within the hindbrain control many physiological processes, including respiration, blood pressure, motor coordination and different sensations. During early development, the hindbrain forms metameric segmented units known as rhombomeres along the antero-posterior (AP) axis of the nervous system. These compartmentalized units are highly conserved during vertebrate evolution and act as the template for adult brainstem structure and function. TALE and HOX homeodomain family transcription factors play a key role in the initial induction of the hindbrain and its specification into rhombomeric cell fate identities along the AP axis. Signaling pathways, such as canonical-Wnt, FGF and retinoic acid, play multiple roles to initially induce the hindbrain and regulate Hox gene-family expression to control rhombomeric identity. Additional transcription factors including Krox20, Kreisler and others act both upstream and downstream to Hox genes, modulating their expression and protein activity. In this review, we will examine the earliest embryonic signaling pathways that induce the hindbrain and subsequent rhombomeric segmentation via Hox and other gene expression. We will examine how these signaling pathways and transcription factors interact to activate downstream targets that organize the segmented AP pattern of the embryonic vertebrate hindbrain.
Collapse
Affiliation(s)
- Dale Frank
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 31096, Haifa, Israel.
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
24
|
Li J, Zhao Y, He L, Huang Y, Yang X, Yu L, Zhao Q, Dong X. Znfl1s are essential for patterning the anterior-posterior axis of zebrafish posterior hindbrain by acting as direct target genes of retinoic acid. Mech Dev 2018; 155:27-33. [PMID: 30472261 DOI: 10.1016/j.mod.2018.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/29/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
Abstract
RA (retinoic acid) signaling is essential for the patterning the hindbrain of vertebrates. Although hundreds of potential RA targets genes are identified, the ones other than hox genes playing roles in patterning anterior-posterior axis of hindbrain by mediating RA signaling remains largely unknown. Previously, we reported that znfl1s play essential roles in the formation of posterior neuroectoderm in zebrafish embryos. Here, we revealed that znfl1s play a critical role in patterning the posterior axis of hindbrain by maintaining the homeostasis of RA signaling in zebrafish embryos. Knocking down znfl1s shortened the length of the posterior hindbrain in a similar way of reducing RA signaling in zebrafish embryos and the defective posterior hindbrain was effectively rescued by elevating RA signaling. By performing mutagenesis assays and chromatin immunoprecipitation assays on the promoter of znfl1s, we demonstrated that znfl1s are direct target genes of RA to mediate RA signaling through a functional DR1 RA response element. Taken together, our results showed that Znfl1s are essential for patterning the anterior-posterior axis development of posterior hindbrain by acting as direct target genes of RA signaling.
Collapse
Affiliation(s)
- Jingyun Li
- Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yingmin Zhao
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, China
| | - Luqingqing He
- Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Yun Huang
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, China
| | - Xiaojing Yang
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, China
| | - Lingling Yu
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, China
| | - Qingshun Zhao
- Model Animal Research Center, Nanjing University, Nanjing 210061, China.
| | - Xiaohua Dong
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, China.
| |
Collapse
|
25
|
Deficiency of the Endocytic Protein Hip1 Leads to Decreased Gdpd3 Expression, Low Phosphocholine, and Kypholordosis. Mol Cell Biol 2018; 38:MCB.00385-18. [PMID: 30224518 DOI: 10.1128/mcb.00385-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/12/2018] [Indexed: 11/20/2022] Open
Abstract
Deficiency of huntingtin-interacting protein 1 (Hip1) results in degenerative phenotypes. Here we generated a Hip1 deficiency allele where a floxed transcriptional stop cassette and a human HIP1 cDNA were knocked into intron 1 of the mouse Hip1 locus. CMV-Cre-mediated germ line excision of the stop cassette resulted in expression of HIP1 and rescue of the Hip1 knockout phenotype. Mx1-Cre-mediated excision led to HIP1 expression in spleen, kidney and liver, and also rescued the phenotype. In contrast, hGFAP-Cre-mediated, brain-specific HIP1 expression did not rescue the phenotype. Metabolomics and microarrays of several Hip1 knockout tissues identified low phosphocholine (PC) levels and low glycerophosphodiester phosphodiesterase domain containing 3 (Gdpd3) gene expression. Since Gdpd3 has lysophospholipase D activity that results in the formation of choline, a precursor of PC, Gdpd3 downregulation could lead to the low PC levels. To test whether Gdpd3 contributes to the Hip1 deficiency phenotype, we generated Gdpd3 knockout mice. Double knockout of Gdpd3 and Hip1 worsened the Hip1 phenotype. This suggests that Gdpd3 compensates for Hip1 loss. More-detailed knowledge of how Hip1 deficiency leads to low PC will improve our understanding of HIP1 in choline metabolism in normal and disease states.
Collapse
|
26
|
Role of HOX Genes in Stem Cell Differentiation and Cancer. Stem Cells Int 2018; 2018:3569493. [PMID: 30154863 PMCID: PMC6081605 DOI: 10.1155/2018/3569493] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/08/2018] [Accepted: 05/15/2018] [Indexed: 02/07/2023] Open
Abstract
HOX genes encode an evolutionarily conserved set of transcription factors that control how the phenotype of an organism becomes organized during development based on its genetic makeup. For example, in bilaterian-type animals, HOX genes are organized in gene clusters that encode anatomic segment identity, that is, whether the embryo will form with bilateral symmetry with a head (anterior), tail (posterior), back (dorsal), and belly (ventral). Although HOX genes are known to regulate stem cell (SC) differentiation and HOX genes are dysregulated in cancer, the mechanisms by which dysregulation of HOX genes in SCs causes cancer development is not fully understood. Therefore, the purpose of this manuscript was (i) to review the role of HOX genes in SC differentiation, particularly in embryonic, adult tissue-specific, and induced pluripotent SC, and (ii) to investigate how dysregulated HOX genes in SCs are responsible for the development of colorectal cancer (CRC) and acute myeloid leukemia (AML). We analyzed HOX gene expression in CRC and AML using information from The Cancer Genome Atlas study. Finally, we reviewed the literature on HOX genes and related therapeutics that might help us understand ways to develop SC-specific therapies that target aberrant HOX gene expression that contributes to cancer development.
Collapse
|
27
|
Drinnenberg A, Franke F, Morikawa RK, Jüttner J, Hillier D, Hantz P, Hierlemann A, Azeredo da Silveira R, Roska B. How Diverse Retinal Functions Arise from Feedback at the First Visual Synapse. Neuron 2018; 99:117-134.e11. [PMID: 29937281 PMCID: PMC6101199 DOI: 10.1016/j.neuron.2018.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/20/2018] [Accepted: 06/01/2018] [Indexed: 11/21/2022]
Abstract
Many brain regions contain local interneurons of distinct types. How does an interneuron type contribute to the input-output transformations of a given brain region? We addressed this question in the mouse retina by chemogenetically perturbing horizontal cells, an interneuron type providing feedback at the first visual synapse, while monitoring the light-driven spiking activity in thousands of ganglion cells, the retinal output neurons. We uncovered six reversible perturbation-induced effects in the response dynamics and response range of ganglion cells. The effects were enhancing or suppressive, occurred in different response epochs, and depended on the ganglion cell type. A computational model of the retinal circuitry reproduced all perturbation-induced effects and led us to assign specific functions to horizontal cells with respect to different ganglion cell types. Our combined experimental and theoretical work reveals how a single interneuron type can differentially shape the dynamical properties of distinct output channels of a brain region.
Collapse
Affiliation(s)
- Antonia Drinnenberg
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Faculty of Natural Sciences, University of Basel, 4003 Basel, Switzerland
| | - Felix Franke
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering of ETH Zurich, 4058 Basel, Switzerland
| | - Rei K Morikawa
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Josephine Jüttner
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Daniel Hillier
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Peter Hantz
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Andreas Hierlemann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering of ETH Zurich, 4058 Basel, Switzerland
| | - Rava Azeredo da Silveira
- Department of Physics, Ecole Normale Supérieure, 75005 Paris, France; Laboratoire de Physique Statistique, École Normale Supérieure, PSL Research University; Université Paris Diderot Sorbonne Paris-Cité; Sorbonne Universités UPMC Univ Paris 06; CNRS, 75005 Paris, France; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Botond Roska
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
28
|
Cunningham TJ, Lancman JJ, Berenguer M, Dong PDS, Duester G. Genomic Knockout of Two Presumed Forelimb Tbx5 Enhancers Reveals They Are Nonessential for Limb Development. Cell Rep 2018; 23:3146-3151. [PMID: 29898387 PMCID: PMC6034701 DOI: 10.1016/j.celrep.2018.05.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/02/2018] [Accepted: 05/15/2018] [Indexed: 11/23/2022] Open
Abstract
A standard approach in the identification of transcriptional enhancers is the use of transgenic animals carrying DNA elements joined to reporter genes inserted randomly in the genome. We examined elements near Tbx5, a gene required for forelimb development in humans and other vertebrates. Previous transgenic studies reported a mammalian Tbx5 forelimb enhancer located in intron 2 containing a putative retinoic acid response element and a zebrafish tbx5a forelimb (pectoral fin) enhancer located downstream that is conserved from fish to mammals. We used CRISPR/Cas9 gene editing to knockout the endogenous elements and unexpectedly found that deletion of the intron 2 and downstream elements, either singly or together in double knockouts, resulted in no effect on forelimb development. Our findings show that reporter transgenes may not identify endogenous enhancers and that in vivo genetic loss-of-function studies are required, such as CRISPR/Cas9, which is similar in effort to production of animals carrying reporter transgenes.
Collapse
Affiliation(s)
- Thomas J Cunningham
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Joseph J Lancman
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Marie Berenguer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - P Duc Si Dong
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Gregg Duester
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
29
|
Dynamic regulation of Nanog and stem cell-signaling pathways by Hoxa1 during early neuro-ectodermal differentiation of ES cells. Proc Natl Acad Sci U S A 2018; 114:5838-5845. [PMID: 28584089 DOI: 10.1073/pnas.1610612114] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Homeobox a1 (Hoxa1) is one of the most rapidly induced genes in ES cell differentiation and it is the earliest expressed Hox gene in the mouse embryo. In this study, we used genomic approaches to identify Hoxa1-bound regions during early stages of ES cell differentiation into the neuro-ectoderm. Within 2 h of retinoic acid treatment, Hoxa1 is rapidly recruited to target sites that are associated with genes involved in regulation of pluripotency, and these genes display early changes in expression. The pattern of occupancy of Hoxa1 is dynamic and changes over time. At 12 h of differentiation, many sites bound at 2 h are lost and a new cohort of bound regions appears. At both time points the genome-wide mapping reveals that there is significant co-occupancy of Nanog (Nanog homeobox) and Hoxa1 on many common target sites, and these are linked to genes in the pluripotential regulatory network. In addition to shared target genes, Hoxa1 binds to regulatory regions of Nanog, and conversely Nanog binds to a 3' enhancer of Hoxa1 This finding provides evidence for direct cross-regulatory feedback between Hoxa1 and Nanog through a mechanism of mutual repression. Hoxa1 also binds to regulatory regions of Sox2 (sex-determining region Y box 2), Esrrb (estrogen-related receptor beta), and Myc, which underscores its key input into core components of the pluripotential regulatory network. We propose a model whereby direct inputs of Nanog and Hoxa1 on shared targets and mutual repression between Hoxa1 and the core pluripotency network provides a molecular mechanism that modulates the fine balance between the alternate states of pluripotency and differentiation.
Collapse
|
30
|
Mouton-Liger F, Rosazza T, Sepulveda-Diaz J, Ieang A, Hassoun SM, Claire E, Mangone G, Brice A, Michel PP, Corvol JC, Corti O. Parkin deficiency modulates NLRP3 inflammasome activation by attenuating an A20-dependent negative feedback loop. Glia 2018; 66:1736-1751. [PMID: 29665074 PMCID: PMC6190839 DOI: 10.1002/glia.23337] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 12/13/2022]
Abstract
Neuroinflammation and mitochondrial dysfunction, key mechanisms in the
pathogenesis of Parkinson's disease (PD), are usually explored independently.
Loss‐of‐function mutations of PARK2 and PARK6,
encoding the E3 ubiquitin protein ligase Parkin and the mitochondrial
serine/threonine kinase PINK1, account for a large proportion of cases of autosomal
recessive early‐onset PD. PINK1 and Parkin regulate mitochondrial quality control and
have been linked to the modulation of innate immunity pathways. We report here an
exacerbation of NLRP3 inflammasome activation by specific inducers in microglia and
bone marrow‐derived macrophages from Park2−/− and Pink1−/− mice. The caspase 1‐dependent release of IL‐1β and IL‐18 was, therefore,
enhanced in Park2−/− and Pink1−/− cells. This defect was confirmed in blood‐derived macrophages from patients
with PARK2 mutations and was reversed by MCC950, which specifically
inhibits NLRP3 inflammasome complex formation. Enhanced NLRP3 signaling in
Parkin‐deficient cells was accompanied by a lack of induction of A20, a well‐known
negative regulator of the NF‐κB pathway recently shown to attenuate NLRP3
inflammasome activity. We also found an inverse correlation between A20 abundance and
IL‐1β release, in human macrophages challenged with NLRP3 inflammasome inducers.
Overall, our observations suggest that the A20/NLRP3‐inflammasome axis participates
in the pathogenesis of PARK2‐linked PD, paving the way for the
exploration of its potential as a biomarker and treatment target.
Collapse
Affiliation(s)
- François Mouton-Liger
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Thibault Rosazza
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Julia Sepulveda-Diaz
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Amélie Ieang
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Sidi-Mohamed Hassoun
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Emilie Claire
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Graziella Mangone
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France.,AP-HP, Hôpital de la Pitié Salpêtrière, Clinical Investigation Center of Neurology (CIC-1422), Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, F-75013, France
| | - Alexis Brice
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Patrick P Michel
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| | - Jean-Christophe Corvol
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France.,AP-HP, Hôpital de la Pitié Salpêtrière, Clinical Investigation Center of Neurology (CIC-1422), Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, F-75013, France
| | - Olga Corti
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France.,Inserm, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Sorbonne Universités, Paris, F-75013, France
| |
Collapse
|
31
|
Coupling the roles of Hox genes to regulatory networks patterning cranial neural crest. Dev Biol 2018; 444 Suppl 1:S67-S78. [PMID: 29571614 DOI: 10.1016/j.ydbio.2018.03.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/17/2018] [Accepted: 03/17/2018] [Indexed: 11/20/2022]
Abstract
The neural crest is a transient population of cells that forms within the developing central nervous system and migrates away to generate a wide range of derivatives throughout the body during vertebrate embryogenesis. These cells are of evolutionary and clinical interest, constituting a key defining trait in the evolution of vertebrates and alterations in their development are implicated in a high proportion of birth defects and craniofacial abnormalities. In the hindbrain and the adjacent cranial neural crest cells (cNCCs), nested domains of Hox gene expression provide a combinatorial'Hox-code' for specifying regional properties in the developing head. Hox genes have been shown to play important roles at multiple stages in cNCC development, including specification, migration, and differentiation. However, relatively little is known about the underlying gene-regulatory mechanisms involved, both upstream and downstream of Hox genes. Furthermore, it is still an open question as to how the genes of the neural crest GRN are linked to Hox-dependent pathways. In this review, we describe Hox gene expression, function and regulation in cNCCs with a view to integrating these genes within the emerging gene regulatory network for cNCC development. We highlight early roles for Hox1 genes in cNCC specification, proposing that this may be achieved, in part, by regulation of the balance between pluripotency and differentiation in precursor cells within the neuro-epithelium. We then describe what is known about the regulation of Hox gene expression in cNCCs and discuss this from the perspective of early vertebrate evolution.
Collapse
|
32
|
Mgbemena VE, Signer RAJ, Wijayatunge R, Laxson T, Morrison SJ, Ross TS. Distinct Brca1 Mutations Differentially Reduce Hematopoietic Stem Cell Function. Cell Rep 2017; 18:947-960. [PMID: 28122244 DOI: 10.1016/j.celrep.2016.12.075] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/23/2016] [Accepted: 12/22/2016] [Indexed: 12/19/2022] Open
Abstract
BRCA1 is a well-known DNA repair pathway component and a tissue-specific tumor suppressor. However, its role in hematopoiesis is uncertain. Here, we report that a cohort of patients heterozygous for BRCA1 mutations experienced more hematopoietic toxicity from chemotherapy than those with BRCA2 mutations. To test whether this reflects a requirement for BRCA1 in hematopoiesis, we generated mice with Brca1 mutations in hematopoietic cells. Mice homozygous for a null Brca1 mutation in the embryonic hematopoietic system (Vav1-iCre;Brca1F22-24/F22-24) developed hematopoietic defects in early adulthood that included reduced hematopoietic stem cells (HSCs). Although mice homozygous for a huBRCA1 knockin allele (Brca1BRCA1/BRCA1) were normal, mice with a mutant huBRCA1/5382insC allele and a null allele (Mx1-Cre;Brca1F22-24/5382insC) had severe hematopoietic defects marked by a complete loss of hematopoietic stem and progenitor cells. Our data show that Brca1 is necessary for HSC maintenance and normal hematopoiesis and that distinct mutations lead to different degrees of hematopoietic dysfunction.
Collapse
Affiliation(s)
- Victoria E Mgbemena
- Department of Internal Medicine, Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert A J Signer
- Department of Pediatrics and Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ranjula Wijayatunge
- Department of Internal Medicine, Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Travis Laxson
- Department of Internal Medicine, Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean J Morrison
- Department of Pediatrics and Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Theodora S Ross
- Department of Internal Medicine, Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
33
|
Hoxa1 targets signaling pathways during neural differentiation of ES cells and mouse embryogenesis. Dev Biol 2017; 432:151-164. [DOI: 10.1016/j.ydbio.2017.09.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 11/20/2022]
|
34
|
Atp6ap2 ablation in adult mice impairs viability through multiple organ deficiencies. Sci Rep 2017; 7:9618. [PMID: 28851918 PMCID: PMC5575319 DOI: 10.1038/s41598-017-08845-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/19/2017] [Indexed: 11/16/2022] Open
Abstract
ATP6AP2 codes for the (pro)renin receptor and is an essential component of vacuolar H+ ATPase. Activating (pro)renin for conversion of Angiotensinogen to Angiotensin makes ATP6AP2 attractive for drug intervention. Tissue-specific ATP6AP2 inactivation in mouse suggested a strong impact on various organs. Consistent with this, we found that embryonic ablation of Atp6ap2 resulted in both male hemizygous lethality and female haploinsufficiency. Next, we examined the phenotype of an induced inactivation in the adult animal, most akin to detect potential effect of functional interference of ATP6AP2 through drug therapy. Induced ablation of Atp6ap2, even without equal efficiency in all tissues (aorta, brain and kidney), resulted in rapid lethality marked by weight loss, changes in nutritional as well as blood parameters, leukocyte depletion, and bone marrow hypoplasia. Upon Atp6ap2 ablation, the colon demonstrated a rapid disruption of crypt morphology, aberrant proliferation, cell-death activation, as well as generation of microadenomas. Consequently, disruption of ATP6AP2 is extremely poorly tolerated in the adult, and severely affects various organ systems demonstrating that ATP6AP2 is an essential gene implicated in basic cellular mechanisms and necessary for multiple organ function. Accordingly, any potential drug targeting of this gene product must be strictly assessed for safety.
Collapse
|
35
|
Parker HJ, Krumlauf R. Segmental arithmetic: summing up the Hox gene regulatory network for hindbrain development in chordates. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28771970 DOI: 10.1002/wdev.286] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 11/10/2022]
Abstract
Organization and development of the early vertebrate hindbrain are controlled by a cascade of regulatory interactions that govern the process of segmentation and patterning along the anterior-posterior axis via Hox genes. These interactions can be assembled into a gene regulatory network that provides a framework to interpret experimental data, generate hypotheses, and identify gaps in our understanding of the progressive process of hindbrain segmentation. The network can be broadly separated into a series of interconnected programs that govern early signaling, segmental subdivision, secondary signaling, segmentation, and ultimately specification of segmental identity. Hox genes play crucial roles in multiple programs within this network. Furthermore, the network reveals properties and principles that are likely to be general to other complex developmental systems. Data from vertebrate and invertebrate chordate models are shedding light on the origin and diversification of the network. Comprehensive cis-regulatory analyses of vertebrate Hox gene regulation have enabled powerful cross-species gene regulatory comparisons. Such an approach in the sea lamprey has revealed that the network mediating segmental Hox expression was present in ancestral vertebrates and has been maintained across diverse vertebrate lineages. Invertebrate chordates lack hindbrain segmentation but exhibit conservation of some aspects of the network, such as a role for retinoic acid in establishing nested Hox expression domains. These comparisons lead to a model in which early vertebrates underwent an elaboration of the network between anterior-posterior patterning and Hox gene expression, leading to the gene-regulatory programs for segmental subdivision and rhombomeric segmentation. WIREs Dev Biol 2017, 6:e286. doi: 10.1002/wdev.286 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
36
|
Neijts R, Deschamps J. At the base of colinear Hox gene expression: cis -features and trans -factors orchestrating the initial phase of Hox cluster activation. Dev Biol 2017; 428:293-299. [DOI: 10.1016/j.ydbio.2017.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/16/2017] [Indexed: 10/19/2022]
|
37
|
Cao K, Collings CK, Marshall SA, Morgan MA, Rendleman EJ, Wang L, Sze CC, Sun T, Bartom ET, Shilatifard A. SET1A/COMPASS and shadow enhancers in the regulation of homeotic gene expression. Genes Dev 2017; 31:787-801. [PMID: 28487406 PMCID: PMC5435891 DOI: 10.1101/gad.294744.116] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/12/2017] [Indexed: 01/16/2023]
Abstract
In this study, Cao et al. identify two cis-regulatory elements (E1 and E2) functioning as shadow enhancers to regulate the early expression of the HoxA genes. Their results reveal multiple regulatory layers for Hox genes to fine-tune transcriptional programs essential for development. The homeotic (Hox) genes are highly conserved in metazoans, where they are required for various processes in development, and misregulation of their expression is associated with human cancer. In the developing embryo, Hox genes are activated sequentially in time and space according to their genomic position within Hox gene clusters. Accumulating evidence implicates both enhancer elements and noncoding RNAs in controlling this spatiotemporal expression of Hox genes, but disentangling their relative contributions is challenging. Here, we identify two cis-regulatory elements (E1 and E2) functioning as shadow enhancers to regulate the early expression of the HoxA genes. Simultaneous deletion of these shadow enhancers in embryonic stem cells leads to impaired activation of HoxA genes upon differentiation, while knockdown of a long noncoding RNA overlapping E1 has no detectable effect on their expression. Although MLL/COMPASS (complex of proteins associated with Set1) family of histone methyltransferases is known to activate transcription of Hox genes in other contexts, we found that individual inactivation of the MLL1-4/COMPASS family members has little effect on early Hox gene activation. Instead, we demonstrate that SET1A/COMPASS is required for full transcriptional activation of multiple Hox genes but functions independently of the E1 and E2 cis-regulatory elements. Our results reveal multiple regulatory layers for Hox genes to fine-tune transcriptional programs essential for development.
Collapse
Affiliation(s)
- Kaixiang Cao
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Clayton K Collings
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Stacy A Marshall
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Marc A Morgan
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Emily J Rendleman
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Christie C Sze
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Tianjiao Sun
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
38
|
Dixon K, Chen J, Li Q. Gene expression profiling discerns molecular pathways elicited by ligand signaling to enhance the specification of embryonic stem cells into skeletal muscle lineage. Cell Biosci 2017; 7:23. [PMID: 28469839 PMCID: PMC5414197 DOI: 10.1186/s13578-017-0150-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/26/2017] [Indexed: 01/07/2023] Open
Abstract
Regulation of lineage specification and differentiation in embryonic stem (ES) cells can be achieved through the activation of endogenous signaling, an avenue for potential application in regenerative medicine. During vertebrate development, retinoic acid (RA) plays an important role in body axis elongation and mesoderm segmentation in that graded exposure to RA provides cells with positional identity and directs commitment to specific tissue lineages. Nevertheless, bexarotene, a clinically approved rexinoid, enhances the specification and differentiation of ES cells into skeletal myocytes more effectively than RA. Thus profiling the transcriptomes of ES cells differentiated with bexarotene or RA permits the identification of different genetic targets and signaling pathways that may contribute to the difference of bexarotene and RA in efficiency of myogenesis. Interestingly, bexarotene induces the early expression of a myogenic progenitor marker, Meox1, while the expression of many RA targets is also enhanced by bexarotene. Several signaling molecules involved in the progression of myogenic specification and commitment are differentially regulated by bexarotene and RA, suggesting that early targets of rexinoid allow the coordinated regulation of molecular events which leads to efficient myogenic differentiation in ES cells.
Collapse
Affiliation(s)
- Katherine Dixon
- 0000 0001 2182 2255grid.28046.38Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Room 2537, Ottawa, ON K1H 8M5 Canada
| | - Jihong Chen
- 0000 0001 2182 2255grid.28046.38Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Qiao Li
- 0000 0001 2182 2255grid.28046.38Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Room 2537, Ottawa, ON K1H 8M5 Canada ,0000 0001 2182 2255grid.28046.38Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
39
|
Di Bonito M, Studer M. Cellular and Molecular Underpinnings of Neuronal Assembly in the Central Auditory System during Mouse Development. Front Neural Circuits 2017; 11:18. [PMID: 28469562 PMCID: PMC5395578 DOI: 10.3389/fncir.2017.00018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 11/13/2022] Open
Abstract
During development, the organization of the auditory system into distinct functional subcircuits depends on the spatially and temporally ordered sequence of neuronal specification, differentiation, migration and connectivity. Regional patterning along the antero-posterior axis and neuronal subtype specification along the dorso-ventral axis intersect to determine proper neuronal fate and assembly of rhombomere-specific auditory subcircuits. By taking advantage of the increasing number of transgenic mouse lines, recent studies have expanded the knowledge of developmental mechanisms involved in the formation and refinement of the auditory system. Here, we summarize several findings dealing with the molecular and cellular mechanisms that underlie the assembly of central auditory subcircuits during mouse development, focusing primarily on the rhombomeric and dorso-ventral origin of auditory nuclei and their associated molecular genetic pathways.
Collapse
|
40
|
Tarabay Y, Achour M, Teletin M, Ye T, Teissandier A, Mark M, Bourc'his D, Viville S. Tex19 paralogs are new members of the piRNA pathway controlling retrotransposon suppression. J Cell Sci 2017; 130:1463-1474. [PMID: 28254886 DOI: 10.1242/jcs.188763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 02/27/2017] [Indexed: 01/29/2023] Open
Abstract
Tex19 genes are mammalian specific and duplicated to give Tex19.1 and Tex19.2 in some species, such as the mouse and rat. It has been demonstrated that mutant Tex19.1 males display a variable degree of infertility whereas they all upregulate MMERVK10C transposons in their germ line. In order to study the function of both paralogs in the mouse, we generated and studied Tex19 double knockout (Tex19DKO) mutant mice. Adult Tex19DKO males exhibited a fully penetrant phenotype, similar to the most severe phenotype observed in the single Tex19.1KO mice, with small testes and impaired spermatogenesis, defects in meiotic chromosome synapsis, persistence of DNA double-strand breaks during meiosis, lack of post-meiotic germ cells and upregulation of MMERVK10C expression. The phenotypic similarities to mice with knockouts in the Piwi family genes prompted us to check and then demonstrate, by immunoprecipitation and GST pulldown followed by mass spectrometry analyses, that TEX19 paralogs interact with PIWI proteins and the TEX19 VPTEL domain directly binds Piwi-interacting RNAs (piRNAs) in adult testes. We therefore identified two new members of the postnatal piRNA pathway.
Collapse
Affiliation(s)
- Yara Tarabay
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 1704/Université de Strasbourg, Illkirch 67404, France
| | - Mayada Achour
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 1704/Université de Strasbourg, Illkirch 67404, France
| | - Marius Teletin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 1704/Université de Strasbourg, Illkirch 67404, France.,Service de Biologie de la Reproduction, Centre Hospitalier Universitaire, Strasbourg 67000, France
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 1704/Université de Strasbourg, Illkirch 67404, France
| | - Aurélie Teissandier
- Institut Curie, department of Genetics and Developmental Biology, CNRS UMR3215, INSERM U934, 75005 Paris, France
| | - Manuel Mark
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 1704/Université de Strasbourg, Illkirch 67404, France.,Service de Biologie de la Reproduction, Centre Hospitalier Universitaire, Strasbourg 67000, France
| | - Déborah Bourc'his
- Institut Curie, department of Genetics and Developmental Biology, CNRS UMR3215, INSERM U934, 75005 Paris, France
| | - Stéphane Viville
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 1704/Université de Strasbourg, Illkirch 67404, France .,Centre Hospitalier Universitaire, Strasbourg 67000, France
| |
Collapse
|
41
|
Stefanovic S, Zaffran S. Mechanisms of retinoic acid signaling during cardiogenesis. Mech Dev 2016; 143:9-19. [PMID: 28007475 DOI: 10.1016/j.mod.2016.12.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
Abstract
Substantial experimental and epidemiological data have highlighted the interplay between nutritional and genetic factors in the development of congenital heart defects. Retinoic acid (RA), a derivative of vitamin A, plays a key role during vertebrate development including the formation of the heart. Retinoids bind to RA and retinoid X receptors (RARs and RXRs) which then regulate tissue-specific genes. Here, we will focus on the roles of RA signaling and receptors in gene regulation during cardiogenesis, and the consequence of deregulated retinoid signaling on heart formation and congenital heart defects.
Collapse
|
42
|
Metzler MA, Sandell LL. Enzymatic Metabolism of Vitamin A in Developing Vertebrate Embryos. Nutrients 2016; 8:E812. [PMID: 27983671 PMCID: PMC5188467 DOI: 10.3390/nu8120812] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 12/16/2022] Open
Abstract
Embryonic development is orchestrated by a small number of signaling pathways, one of which is the retinoic acid (RA) signaling pathway. Vitamin A is essential for vertebrate embryonic development because it is the molecular precursor of the essential signaling molecule RA. The level and distribution of RA signaling within a developing embryo must be tightly regulated; too much, or too little, or abnormal distribution, all disrupt embryonic development. Precise regulation of RA signaling during embryogenesis is achieved by proteins involved in vitamin A metabolism, retinoid transport, nuclear signaling, and RA catabolism. The reversible first step in conversion of the precursor vitamin A to the active retinoid RA is mediated by retinol dehydrogenase 10 (RDH10) and dehydrogenase/reductase (SDR family) member 3 (DHRS3), two related membrane-bound proteins that functionally activate each other to mediate the interconversion of retinol and retinal. Alcohol dehydrogenase (ADH) enzymes do not contribute to RA production under normal conditions during embryogenesis. Genes involved in vitamin A metabolism and RA catabolism are expressed in tissue-specific patterns and are subject to feedback regulation. Mutations in genes encoding these proteins disrupt morphogenesis of many systems in a developing embryo. Together these observations demonstrate the importance of vitamin A metabolism in regulating RA signaling during embryonic development in vertebrates.
Collapse
Affiliation(s)
- Melissa A Metzler
- Department of Molecular, Cellular and Craniofacial Biology, University of Louisville, Louisville, KY 40201, USA.
| | - Lisa L Sandell
- Department of Molecular, Cellular and Craniofacial Biology, University of Louisville, Louisville, KY 40201, USA.
| |
Collapse
|
43
|
Cunningham TJ, Colas A, Duester G. Early molecular events during retinoic acid induced differentiation of neuromesodermal progenitors. Biol Open 2016; 5:1821-1833. [PMID: 27793834 PMCID: PMC5200905 DOI: 10.1242/bio.020891] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bipotent neuromesodermal progenitors (NMPs) residing in the caudal epiblast drive coordinated body axis extension by generating both posterior neuroectoderm and presomitic mesoderm. Retinoic acid (RA) is required for body axis extension, however the early molecular response to RA signaling is poorly defined, as is its relationship to NMP biology. As endogenous RA is first seen near the time when NMPs appear, we used WNT/FGF agonists to differentiate embryonic stem cells to NMPs which were then treated with a short 2-h pulse of 25 nM RA or 1 µM RA followed by RNA-seq transcriptome analysis. Differential expression analysis of this dataset indicated that treatment with 25 nM RA, but not 1 µM RA, provided physiologically relevant findings. The 25 nM RA dataset yielded a cohort of previously known caudal RA target genes including Fgf8 (repressed) and Sox2 (activated), plus novel early RA signaling targets with nearby conserved RA response elements. Importantly, validation of top-ranked genes in vivo using RA-deficient Raldh2-/- embryos identified novel examples of RA activation (Nkx1-2, Zfp503, Zfp703, Gbx2, Fgf15, Nt5e) or RA repression (Id1) of genes expressed in the NMP niche or progeny. These findings provide evidence for early instructive and permissive roles of RA in controlling differentiation of NMPs to neural and mesodermal lineages.
Collapse
Affiliation(s)
- Thomas J Cunningham
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Alexandre Colas
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Gregg Duester
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
44
|
Assens A, Dal Col JA, Njoku A, Dietschi Q, Kan C, Feinstein P, Carleton A, Rodriguez I. Alteration of Nrp1 signaling at different stages of olfactory neuron maturation promotes glomerular shifts along distinct axes in the olfactory bulb. Development 2016; 143:3817-3825. [PMID: 27578798 DOI: 10.1242/dev.138941] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/23/2016] [Indexed: 12/25/2022]
Abstract
Building the topographic map in the mammalian olfactory bulb is explained by a model based on two axes along which sensory neurons are guided: one dorsoventral and one anteroposterior. This latter axis relies on specific expression levels of Nrp1. To evaluate the role of this receptor in this process, we used an in vivo genetic approach to decrease or suppress Nrp1 in specific neuronal populations and at different time points during axonal targeting. We observed, in neurons that express the M71 or M72 odorant receptors, that Nrp1 inactivation leads to two distinct wiring alterations, depending on the time at which Nrp1 expression is altered: first, a surprising dorsal shift of the M71 and M72 glomeruli, which often fuse with their contralateral counterparts, and second the formation of anteriorized glomeruli. The two phenotypes are partly recapitulated in mice lacking the Nrp1 ligand Sema3A and in mice whose sensory neurons express an Nrp1 mutant unable to bind Sema3A. Using a mosaic conditional approach, we show that M71 axonal fibers can bypass the Nrp1 signals that define their target area, since they are hijacked and coalesce with Nrp1-deficient M71-expressing axons that target elsewhere. Together, these findings show drastically different axonal targeting outcomes dependent on the timing at which Nrp1/Sema3A signaling is altered.
Collapse
Affiliation(s)
- Alexis Assens
- Department of Genetics and Evolution, University of Geneva, Geneva 1205, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva 1205, Switzerland
| | - Julien A Dal Col
- Department of Genetics and Evolution, University of Geneva, Geneva 1205, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva 1205, Switzerland
| | - Anthony Njoku
- Department of Genetics and Evolution, University of Geneva, Geneva 1205, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva 1205, Switzerland
| | - Quentin Dietschi
- Department of Genetics and Evolution, University of Geneva, Geneva 1205, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva 1205, Switzerland
| | - Chenda Kan
- Department of Genetics and Evolution, University of Geneva, Geneva 1205, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva 1205, Switzerland
| | - Paul Feinstein
- Department of Biological Sciences, Hunter College and The Graduate Center Biochemistry, Biology and Biopsychology and Behavioral Neuroscience Programs, CUNY, New York, NY10065, USA
| | - Alan Carleton
- Geneva Neuroscience Center, University of Geneva, Geneva 1205, Switzerland .,Department of Basic Neurosciences, School of Medicine, University of Geneva, Geneva 1205, Switzerland
| | - Ivan Rodriguez
- Department of Genetics and Evolution, University of Geneva, Geneva 1205, Switzerland .,Geneva Neuroscience Center, University of Geneva, Geneva 1205, Switzerland
| |
Collapse
|
45
|
Simandi Z, Horvath A, Wright LC, Cuaranta-Monroy I, De Luca I, Karolyi K, Sauer S, Deleuze JF, Gudas LJ, Cowley SM, Nagy L. OCT4 Acts as an Integrator of Pluripotency and Signal-Induced Differentiation. Mol Cell 2016; 63:647-661. [PMID: 27499297 DOI: 10.1016/j.molcel.2016.06.039] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/07/2016] [Accepted: 06/30/2016] [Indexed: 01/30/2023]
Abstract
Cell type specification relies on the capacity of undifferentiated cells to properly respond to specific differentiation-inducing signals. Using genomic approaches along with loss- and gain-of-function genetic models, we identified OCT4-dependent mechanisms that provide embryonic stem cells with the means to customize their response to external cues. OCT4 binds a large set of low-accessible genomic regions. At these sites, OCT4 is required for proper enhancer and gene activation by recruiting co-regulators and RAR:RXR or β-catenin, suggesting an unexpected collaboration between the lineage-determining transcription factor and these differentiation-initiating, signal-dependent transcription factors. As a proof of concept, we demonstrate that overexpression of OCT4 in a kidney cell line is sufficient for signal-dependent activation of otherwise unresponsive genes in these cells. Our results uncover OCT4 as an integral and necessary component of signal-regulated transcriptional processes required for tissue-specific responses.
Collapse
Affiliation(s)
- Zoltan Simandi
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Attila Horvath
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Lyndsey C Wright
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Ixchelt Cuaranta-Monroy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Isabella De Luca
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Katalin Karolyi
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Sascha Sauer
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; CU Systems Medicine, University of Würzburg, 97070 Würzburg, Germany; Max Delbrück Center for Molecular Medicine (BISMB and BIH), 13125 Berlin, Germany
| | | | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Shaun M Cowley
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Laszlo Nagy
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; MTA-DE "Lendulet" Immunogenomics Research Group, University of Debrecen, 4032 Debrecen, Hungary.
| |
Collapse
|
46
|
Parker HJ, Bronner ME, Krumlauf R. The vertebrate Hox gene regulatory network for hindbrain segmentation: Evolution and diversification: Coupling of a Hox gene regulatory network to hindbrain segmentation is an ancient trait originating at the base of vertebrates. Bioessays 2016; 38:526-38. [PMID: 27027928 DOI: 10.1002/bies.201600010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hindbrain development is orchestrated by a vertebrate gene regulatory network that generates segmental patterning along the anterior-posterior axis via Hox genes. Here, we review analyses of vertebrate and invertebrate chordate models that inform upon the evolutionary origin and diversification of this network. Evidence from the sea lamprey reveals that the hindbrain regulatory network generates rhombomeric compartments with segmental Hox expression and an underlying Hox code. We infer that this basal feature was present in ancestral vertebrates and, as an evolutionarily constrained developmental state, is fundamentally important for patterning of the vertebrate hindbrain across diverse lineages. Despite the common ground plan, vertebrates exhibit neuroanatomical diversity in lineage-specific patterns, with different vertebrates revealing variations of Hox expression in the hindbrain that could underlie this diversification. Invertebrate chordates lack hindbrain segmentation but exhibit some conserved aspects of this network, with retinoic acid signaling playing a role in establishing nested domains of Hox expression.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, USA
| |
Collapse
|
47
|
Jeannotte L, Gotti F, Landry-Truchon K. Hoxa5: A Key Player in Development and Disease. J Dev Biol 2016; 4:E13. [PMID: 29615582 PMCID: PMC5831783 DOI: 10.3390/jdb4020013] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/08/2016] [Accepted: 03/16/2016] [Indexed: 12/28/2022] Open
Abstract
A critical position in the developmental hierarchy is occupied by the Hox genes, which encode transcription factors. Hox genes are crucial in specifying regional identity along the embryonic axes and in regulating morphogenesis. In mouse, targeted mutations of Hox genes cause skeletal transformations and organ defects that can impair viability. Here, we present the current knowledge about the Hoxa5 gene, a paradigm for the function and the regulation of Hox genes. The phenotypic survey of Hoxa5-/- mice has unveiled its critical role in the regional specification of the skeleton and in organogenesis. Most Hoxa5-/- mice die at birth from respiratory distress due to tracheal and lung dysmorphogenesis and impaired diaphragm innervation. The severity of the phenotype establishes that Hoxa5 plays a predominant role in lung organogenesis versus other Hox genes. Hoxa5 also governs digestive tract morphogenesis, thyroid and mammary glands development, and ovary homeostasis. Deregulated Hoxa5 expression is reported in cancers, indicating Hoxa5 involvement in tumor predisposition and progression. The dynamic Hoxa5 expression profile is under the transcriptional control of multiple cis-acting sequences and trans-acting regulators. It is also modulated by epigenetic mechanisms, implicating chromatin modifications and microRNAs. Finally, lncRNAs originating from alternative splicing and distal promoters encompass the Hoxa5 locus.
Collapse
Affiliation(s)
- Lucie Jeannotte
- Centre de recherche sur le cancer de l'Université Laval; CRCHU de Québec, L'Hôtel-Dieu de Québec, QC G1R 3S3, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, QC G1V 0A6, Canada.
| | - Florian Gotti
- Centre de recherche sur le cancer de l'Université Laval; CRCHU de Québec, L'Hôtel-Dieu de Québec, QC G1R 3S3, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, QC G1V 0A6, Canada.
| | - Kim Landry-Truchon
- Centre de recherche sur le cancer de l'Université Laval; CRCHU de Québec, L'Hôtel-Dieu de Québec, QC G1R 3S3, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, QC G1V 0A6, Canada.
| |
Collapse
|
48
|
|
49
|
De Kumar B, Parrish ME, Slaughter BD, Unruh JR, Gogol M, Seidel C, Paulson A, Li H, Gaudenz K, Peak A, McDowell W, Fleharty B, Ahn Y, Lin C, Smith E, Shilatifard A, Krumlauf R. Analysis of dynamic changes in retinoid-induced transcription and epigenetic profiles of murine Hox clusters in ES cells. Genome Res 2015; 25:1229-43. [PMID: 26025802 PMCID: PMC4510006 DOI: 10.1101/gr.184978.114] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 05/28/2015] [Indexed: 11/24/2022]
Abstract
The clustered Hox genes, which are highly conserved across metazoans, encode homeodomain-containing transcription factors that provide a blueprint for segmental identity along the body axis. Recent studies have underscored that in addition to encoding Hox genes, the homeotic clusters contain key noncoding RNA genes that play a central role in development. In this study, we have taken advantage of genome-wide approaches to provide a detailed analysis of retinoic acid (RA)-induced transcriptional and epigenetic changes within the homeotic clusters of mouse embryonic stem cells. Although there is a general colinear response, our analyses suggest a lack of strict colinearity for several genes in the HoxA and HoxB clusters. We have identified transcribed novel noncoding RNAs (ncRNAs) and their cis-regulatory elements that function in response to RA and demonstrated that the expression of these ncRNAs from both strands represent some of the most rapidly induced transcripts in ES cells. Finally, we have provided dynamic analyses of chromatin modifications for the coding and noncoding genes expressed upon activation and suggest that active transcription can occur in the presence of chromatin modifications and machineries associated with repressed transcription state over the clusters. Overall, our data provide a resource for a better understanding of the dynamic nature of the coding and noncoding transcripts and their associated chromatin marks in the regulation of homeotic gene transcription during development.
Collapse
Affiliation(s)
- Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Mark E Parrish
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Brian D Slaughter
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Christopher Seidel
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Ariel Paulson
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Karin Gaudenz
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Allison Peak
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - William McDowell
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Brian Fleharty
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Youngwook Ahn
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Chengqi Lin
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Edwin Smith
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Ali Shilatifard
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
50
|
Simandi Z, Czipa E, Horvath A, Koszeghy A, Bordas C, Póliska S, Juhász I, Imre L, Szabó G, Dezso B, Barta E, Sauer S, Karolyi K, Kovacs I, Hutóczki G, Bognár L, Klekner Á, Szucs P, Bálint BL, Nagy L. PRMT1 and PRMT8 Regulate Retinoic Acid-Dependent Neuronal Differentiation with Implications to Neuropathology. Stem Cells 2015; 33:726-41. [DOI: 10.1002/stem.1894] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/16/2014] [Accepted: 10/22/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Zoltan Simandi
- Department of Biochemistry and Molecular Biology; University of Debrecen; Debrecen Hungary
| | - Erik Czipa
- Department of Biochemistry and Molecular Biology; University of Debrecen; Debrecen Hungary
| | - Attila Horvath
- Department of Biochemistry and Molecular Biology; University of Debrecen; Debrecen Hungary
| | - Aron Koszeghy
- Department of Physiology; University of Debrecen; Debrecen Hungary
| | - Csilla Bordas
- Department of Physiology; University of Debrecen; Debrecen Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology; University of Debrecen; Debrecen Hungary
| | - István Juhász
- Department of Dermatology; University of Debrecen; Debrecen Hungary
- Department of Surgery and Operative Techniques; Faculty of Dentistry University of Debrecen; Debrecen Hungary
| | - László Imre
- Department of Biophysics and Cell biology; University of Debrecen; Debrecen Hungary
| | - Gábor Szabó
- Department of Biophysics and Cell biology; University of Debrecen; Debrecen Hungary
| | - Balazs Dezso
- Department of Pathology; University of Debrecen; Debrecen Hungary
| | - Endre Barta
- Department of Biochemistry and Molecular Biology; University of Debrecen; Debrecen Hungary
| | - Sascha Sauer
- Otto Warburg Laboratory; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Katalin Karolyi
- Department of Pathology; Kenézy Hospital and Outpatient Clinic; Debrecen Hungary
| | - Ilona Kovacs
- Department of Pathology; Kenézy Hospital and Outpatient Clinic; Debrecen Hungary
| | - Gábor Hutóczki
- Department of Neurosurgery; University of Debrecen; Debrecen Hungary
| | - László Bognár
- Department of Neurosurgery; University of Debrecen; Debrecen Hungary
| | - Álmos Klekner
- Department of Neurosurgery; University of Debrecen; Debrecen Hungary
| | - Peter Szucs
- Department of Physiology; University of Debrecen; Debrecen Hungary
- MTA-DE-NAP B-Pain Control Group; University of Debrecen; Debrecen Hungary
| | - Bálint L. Bálint
- Department of Biochemistry and Molecular Biology; University of Debrecen; Debrecen Hungary
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology; University of Debrecen; Debrecen Hungary
- MTA-DE “Lendulet” Immunogenomics Research Group; University of Debrecen; Debrecen Hungary
- Sanford-Burnham Medical Research Institute at Lake Nona; Orlando Florida USA
| |
Collapse
|