1
|
Struhl G. Segmental origins of the Drosophila eye-antennal disc: fission not fusion. Genetics 2023; 223:iyac168. [PMID: 36370072 PMCID: PMC9836018 DOI: 10.1093/genetics/iyac168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gary Struhl
- Department of Genetics and Development, Columbia University, New York, NY 10027, USA
| |
Collapse
|
2
|
Fu SJ, Zhang JL, Xu HJ. A genome-wide identification and analysis of the homeobox genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21833. [PMID: 34288091 DOI: 10.1002/arch.21833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
The homeobox family is a large and diverse superclass of genes, many of which act as transcription factors that play important roles in tissue differentiation and embryogenesis in animals. The brown planthopper (BPH), Nilaparvata lugens, is the most destructive pest of rice in Asia, and high fecundity contributes significantly to its ecological success in natural and agricultural habits. Here, we identified 94 homeobox genes in BPH, which could be divided into 75 gene families and 9 classes. This number is comparable to the number of homeobox genes found in the honeybee Apis mellifera, but is slightly less than in Drosophila or the red flour beetle Tribolium castaneum. A spatio-temporal analysis indicated that most BPH homeobox genes were expressed in a development and tissue-specific manner, of which 21 genes were highly expressed in ovaries. RNA interference (RNAi)-mediated functional assay showed that 22 homeobox genes were important for nymph development and the nymph to adult transition, whereas 67 genes were dispensable during this process. Fecundity assay showed that knockdown of 13 ovary-biased genes (zfh1, schlank, abd-A, Lim3_2, Lmxb, Prop, ap_1, Not, lab, Hmx, vis, Pknox, and C15) led to the reproductive defect. This is the first comprehensive investigation into homeobox genes in a hemipteran insect and thus helps us to understand the functional significance of homeobox genes in insect reproduction.
Collapse
Affiliation(s)
- Sheng-Jie Fu
- Department of Agriculture and Biotechnology, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jin-Li Zhang
- Department of Agriculture and Biotechnology, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hai-Jun Xu
- Department of Agriculture and Biotechnology, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Agriculture and Biotechnology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Agriculture and Biotechnology, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Liu Q, Onal P, Datta RR, Rogers JM, Schmidt-Ott U, Bulyk ML, Small S, Thornton JW. Ancient mechanisms for the evolution of the bicoid homeodomain's function in fly development. eLife 2018; 7:e34594. [PMID: 30298815 PMCID: PMC6177261 DOI: 10.7554/elife.34594] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/28/2018] [Indexed: 12/14/2022] Open
Abstract
The ancient mechanisms that caused developmental gene regulatory networks to diversify among distantly related taxa are not well understood. Here we use ancestral protein reconstruction, biochemical experiments, and developmental assays of transgenic animals carrying reconstructed ancestral genes to investigate how the transcription factor Bicoid (Bcd) evolved its central role in anterior-posterior patterning in flies. We show that most of Bcd's derived functions are attributable to evolutionary changes within its homeodomain (HD) during a phylogenetic interval >140 million years ago. A single substitution from this period (Q50K) accounts almost entirely for the evolution of Bcd's derived DNA specificity in vitro. In transgenic embryos expressing the reconstructed ancestral HD, however, Q50K confers activation of only a few of Bcd's transcriptional targets and yields a very partial rescue of anterior development. Adding a second historical substitution (M54R) confers regulation of additional Bcd targets and further rescues anterior development. These results indicate that two epistatically interacting mutations played a major role in the evolution of Bcd's controlling regulatory role in early development. They also show how ancestral sequence reconstruction can be combined with in vivo characterization of transgenic animals to illuminate the historical mechanisms of developmental evolution.
Collapse
Affiliation(s)
- Qinwen Liu
- Department of Ecology and EvolutionUniversity of ChicagoChicagoUnited States
| | - Pinar Onal
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Rhea R Datta
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Julia M Rogers
- Committee on Higher Degrees in BiophysicsHarvard UniversityCambridgeUnited States
- Division of Genetics, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Urs Schmidt-Ott
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoUnited States
| | - Martha L Bulyk
- Committee on Higher Degrees in BiophysicsHarvard UniversityCambridgeUnited States
- Division of Genetics, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
- Department of PathologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Stephen Small
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Joseph W Thornton
- Department of Ecology and EvolutionUniversity of ChicagoChicagoUnited States
- Department of Human GeneticsUniversity of ChicagoChicagoUnited States
| |
Collapse
|
4
|
The Noncell Autonomous Requirement of Proboscipedia for Growth and Differentiation of the Distal Maxillary Palp during Metamorphosis of Drosophila melanogaster. GENETICS RESEARCH INTERNATIONAL 2017; 2017:2624170. [PMID: 28357140 PMCID: PMC5357526 DOI: 10.1155/2017/2624170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
The Drosophila maxillary palpus that develops during metamorphosis is composed of two elements: the proximal maxillary socket and distal maxillary palp. The HOX protein, Proboscipedia (PB), was required for development of the proximal maxillary socket and distal maxillary palp. For growth and differentiation of the distal maxillary palp, PB was required in the cells of, or close to, the maxillary socket, as well as the cells of the distal maxillary palp. Therefore, PB is required in cells outside the distal maxillary palp for the expression, by some mechanism, of a growth factor or factors that promote the growth of the distal maxillary palp. Both wingless (wg) and hedgehog (hh) genes were expressed in cells outside the distal maxillary palp in the lancinia and maxillary socket, respectively. Both wg and hh were required for distal maxillary palp growth, and hh was required noncell autonomously for distal maxillary palp growth. However, expression of wg-GAL4 and hh-GAL4 during maxillary palp differentiation did not require PB, ruling out a direct role for PB in the regulation of transcription of these growth factors.
Collapse
|
5
|
Percival-Smith A. Non-specificity of transcription factor function in Drosophila melanogaster. Dev Genes Evol 2016; 227:25-39. [PMID: 27848019 DOI: 10.1007/s00427-016-0566-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
A major problem in developmental genetics is how HOX transcription factors, like Proboscipedia (PB) and Ultrabithorax (UBX), regulate distinct programs of gene expression to result in a proboscis versus a haltere, respectively, when the DNA-binding homeodomain (HD) of HOX transcription factors recognizes similar DNA-binding sequences. Indeed, the lack of DNA-binding specificity is a problem for all transcription factors (TFs), as the DNA-binding domains generally recognize small targets of five to six bases in length. Although not the initial intent of the study, I found extensive non-specificity of TF function. Multiple TFs including HOX and HD-containing and non-HD-containing TFs induced both wingless and eyeless phenotypes. The TFs Labial (LAB), Deformed (DFD), Fushi tarazu (FTZ), and Squeeze (SQZ) induced ectopic larval thoracic (T) 1 beard formation in T2 and T3. The TF Doublesex male (DSXM) rescued the reduced maxillary palp pb phenotype. These examples of non-specificity of TF function across classes of TFs, combined with previous observations, compromise the implicit, initial assumption often made that an intrinsic mechanism of TF specificity is important for function. Interestingly, the functional complementation of the pb phenotype may suggest a larger role for regulation of expression of TFs in restriction of function as opposed to an intrinsic specificity of TF function. These observations have major ramifications for analysis of functional conservation in evolution and development.
Collapse
|
6
|
Enriquez J, Venkatasubramanian L, Baek M, Peterson M, Aghayeva U, Mann RS. Specification of individual adult motor neuron morphologies by combinatorial transcription factor codes. Neuron 2015; 86:955-970. [PMID: 25959734 DOI: 10.1016/j.neuron.2015.04.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 03/12/2015] [Accepted: 04/04/2015] [Indexed: 11/27/2022]
Abstract
How the highly stereotyped morphologies of individual neurons are genetically specified is not well understood. We identify six transcription factors (TFs) expressed in a combinatorial manner in seven post-mitotic adult leg motor neurons (MNs) that are derived from a single neuroblast in Drosophila. Unlike TFs expressed in mitotically active neuroblasts, these TFs do not regulate each other's expression. Removing the activity of a single TF resulted in specific morphological defects, including muscle targeting and dendritic arborization, and in a highly specific walking defect in adult flies. In contrast, when the expression of multiple TFs was modified, nearly complete transformations in MN morphologies were generated. These results show that the morphological characteristics of a single neuron are dictated by a combinatorial code of morphology TFs (mTFs). mTFs function at a previously unidentified regulatory tier downstream of factors acting in the NB but independently of factors that act in terminally differentiated neurons.
Collapse
Affiliation(s)
- Jonathan Enriquez
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA.
| | - Lalanti Venkatasubramanian
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA
| | - Myungin Baek
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA
| | - Meredith Peterson
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA
| | - Ulkar Aghayeva
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA.
| |
Collapse
|
7
|
Sivanantharajah L, Percival-Smith A. Differential pleiotropy and HOX functional organization. Dev Biol 2014; 398:1-10. [PMID: 25448696 DOI: 10.1016/j.ydbio.2014.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/31/2014] [Accepted: 11/01/2014] [Indexed: 12/14/2022]
Abstract
Key studies led to the idea that transcription factors are composed of defined modular protein motifs or domains, each with separable, unique function. During evolution, the recombination of these modular domains could give rise to transcription factors with new properties, as has been shown using recombinant molecules. This archetypic, modular view of transcription factor organization is based on the analyses of a few transcription factors such as GAL4, which may represent extreme exemplars rather than an archetype or the norm. Recent work with a set of Homeotic selector (HOX) proteins has revealed differential pleiotropy: the observation that highly-conserved HOX protein motifs and domains make small, additive, tissue specific contributions to HOX activity. Many of these differentially pleiotropic HOX motifs may represent plastic sequence elements called short linear motifs (SLiMs). The coupling of differential pleiotropy with SLiMs, suggests that protein sequence changes in HOX transcription factors may have had a greater impact on morphological diversity during evolution than previously believed. Furthermore, differential pleiotropy may be the genetic consequence of an ensemble nature of HOX transcription factor allostery, where HOX proteins exist as an ensemble of states with the capacity to integrate an extensive array of developmental information. Given a new structural model for HOX functional domain organization, the properties of the archetypic TF may require reassessment.
Collapse
Affiliation(s)
- Lovesha Sivanantharajah
- Department of Biology, The University of Western Ontario, BGS231, London, Ontario, Canada N6A 5B7.
| | - Anthony Percival-Smith
- Department of Biology, The University of Western Ontario, BGS231, London, Ontario, Canada N6A 5B7
| |
Collapse
|
8
|
Kuert PA, Hartenstein V, Bello BC, Lovick JK, Reichert H. Neuroblast lineage identification and lineage-specific Hox gene action during postembryonic development of the subesophageal ganglion in the Drosophila central brain. Dev Biol 2014; 390:102-15. [DOI: 10.1016/j.ydbio.2014.03.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/23/2014] [Accepted: 03/29/2014] [Indexed: 11/16/2022]
|
9
|
Acquisition of a leucine zipper motif as a mechanism of antimorphy for an allele of the Drosophila Hox gene Sex combs reduced. G3-GENES GENOMES GENETICS 2014; 4:829-38. [PMID: 24622333 PMCID: PMC4025482 DOI: 10.1534/g3.114.010769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In 1932, Müller first used the term "antimorphic" to describe mutant alleles that have an effect that is antagonistic to that of the wild-type allele from which they were derived. In a previous characterization of mutant alleles of the Drosophila melanogaster Hox gene, Sex combs reduced (Scr), we identified the missense, antimorphic allele Scr14, which is a Ser10-to-Leu change in the N-terminally located, bilateran-specific octapeptide motif. Here we propose that the cause of Scr14 antimorphy is the acquisition of a leucine zipper oligomerization motif spanning the octapeptide motif and adjacently located protostome-specific LASCY motif. Analysis of the primary and predicted secondary structures of the SCR N-terminus suggests that while the SCR+ encodes a short, α-helical region containing one putative heptad repeat, the same region in SCR14 encodes a longer, α-helical region containing two putative heptad repeats. In addition, in vitro cross-linking assays demonstrated strong oligomerization of SCR14 but not SCR+. For in vivo sex comb formation, we observed reciprocal inhibition of endogenous SCR+ and SCR14 activity by ectopic expression of truncated SCR14 and SCR+ peptides, respectively. The acquisition of an oligomerization domain in SCR14 presents a novel mechanism of antimorphy relative to the dominant negative mechanism, which maintains oligomerization between the wild-type and mutant protein subunits.
Collapse
|
10
|
Percival-Smith A, Sivanantharajah L, Pelling JJH, Teft WA. Developmental competence and the induction of ectopic proboscises in Drosophila melanogaster. Dev Genes Evol 2013; 223:375-387. [DOI: 10.1007/s00427-013-0454-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/02/2013] [Indexed: 10/26/2022]
|
11
|
Durston AJ. Global posterior prevalence is unique to vertebrates: a dance to the music of time? Dev Dyn 2012; 241:1799-807. [PMID: 22930553 DOI: 10.1002/dvdy.23852] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2012] [Indexed: 11/10/2022] Open
Abstract
We reach the conclusion that posterior prevalence, a collinear property considered important for Hox complex function, is so far unique, in a global form, to vertebrates. Why is this? We suspect this is because posterior prevalence is explicitly connected to the vertebrate form of Hox temporal collinearity, which is central to axial patterning.
Collapse
Affiliation(s)
- A J Durston
- Institute of Biology, University of Leiden, Sylvius Laboratory, Leiden, The Netherlands.
| |
Collapse
|
12
|
Ahn Y, Zou J, Mitchell PJ. Segment-specific regulation of the Drosophila AP-2 gene during leg and antennal development. Dev Biol 2011; 355:336-48. [PMID: 21575621 DOI: 10.1016/j.ydbio.2011.04.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 04/02/2011] [Accepted: 04/28/2011] [Indexed: 11/18/2022]
Abstract
Segmentation involves subdivision of a developing body part into multiple repetitive units during embryogenesis. In Drosophila and other insects, embryonic segmentation is regulated by genes expressed in the same domain of every segment. Less is known about the molecular basis for segmentation of individual body parts occurring at later developmental stages. The Drosophila transcription factor AP-2 gene, dAP-2, is required for outgrowth of leg and antennal segments and is expressed in every segment boundary within the larval imaginal discs. To investigate the molecular mechanisms generating the segmentally repetitive pattern of dAP-2 expression, we performed transgenic reporter analyses and isolated multiple cis-regulatory elements that can individually or cooperatively recapitulate endogenous dAP-2 expression in different segments of the appendages. We further analyzed an enhancer specific for the proximal femur region which corresponds to the distal-most expression domain of homothorax (hth) in the leg imaginal discs. Hth is known to be responsible for the nuclear localization and, hence, function of the Hox cofactor, Extradenticle (Exd). We show that both Hth and Exd are required for dAP-2 expression in the femur and that a conserved Exd/Hox binding site is essential for enhancer activity. Our loss- and gain-of-function studies further support direct regulation of dAP-2 by Hox proteins and suggest that Hox proteins function redundantly in dAP-2 regulation. Our study reveals that discrete segment-specific enhancers underlie the seemingly simple repetitive expression of dAP-2 and provides evidence for direct regulation of leg segmentation by regional combinations of the proximodistal patterning genes.
Collapse
Affiliation(s)
- Youngwook Ahn
- Department of Biochemistry and Molecular Biology, Eberly College of Science, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
13
|
Hrycaj S, Chesebro J, Popadić A. Functional analysis of Scr during embryonic and post-embryonic development in the cockroach, Periplaneta americana. Dev Biol 2010; 341:324-34. [PMID: 20171962 DOI: 10.1016/j.ydbio.2010.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 10/19/2022]
Abstract
The cockroach, Periplaneta americana represents a basal insect lineage that undergoes the ancestral hemimetabolous mode of development. Here, we examine the embryonic and post-embryonic functions of the hox gene Scr in Periplaneta as a way of better understanding the roles of this gene in the evolution of insect body plans. During embryogenesis, Scr function is strictly limited to the head with no role in the prothorax. This indicates that the ancestral embryonic function of Scr was likely restricted to the head, and that the posterior expansion of expression in the T1 legs may have preceded any apparent gain of function during evolution. In addition, Scr plays a pivotal role in the formation of the dorsal ridge, a structure that separates the head and thorax in all insects. This is evidenced by the presence of a supernumerary segment that occurs between the labial and T1 segments of RNAiScr first nymphs and is attributed to an alteration in engrailed (en) expression. The fact that similar Scr phenotypes are observed in Tribolium but not in Drosophila or Oncopeltus reveals the presence of lineage-specific variation in the genetic architecture that controls the formation of the dorsal ridge. In direct contrast to the embryonic roles, Scr has no function in the head region during post-embryogenesis in Periplaneta, and instead, strictly acts to provide identity to the T1 segment. Furthermore, the strongest Periplaneta RNAiScr phenotypes develop ectopic wing-like tissue that originates from the posterior region of the prothoracic segment. This finding provides a novel insight into the current debate on the morphological origin of insect wings.
Collapse
Affiliation(s)
- Steven Hrycaj
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
14
|
Function and specificity of synthetic Hox transcription factors in vivo. Proc Natl Acad Sci U S A 2010; 107:4087-92. [PMID: 20147626 DOI: 10.1073/pnas.0914595107] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homeotic (Hox) genes encode transcription factors that confer segmental identity along the anteroposterior axis of the embryo. However the molecular mechanisms underlying Hox-mediated transcription and the differential requirements for specificity in the regulation of the vast number of Hox-target genes remain ill-defined. Here we show that synthetic Sex combs reduced (Scr) genes that encode the Scr C terminus containing the homedomain (HD) and YPWM motif (Scr-HD) are functional in vivo. Synthetic Scr-HD peptides can induce ectopic salivary glands in the embryo and homeotic transformations in the adult fly, act as transcriptional activators and repressors during development, and participate in protein-protein interactions. Their transformation capacity was found to be enhanced over their full-length counterpart and mutations known to transform the full-length protein into constitutively active or inactive variants behaved accordingly in the synthetic peptides. Our results show that synthetic Scr-HD genes are sufficient for homeotic function in Drosophila and suggest that the N terminus of Scr has a role in transcriptional potency, rather than specificity. We also demonstrate that synthetic peptides behave largely in a predictable way, by exhibiting Scr-specific phenotypes throughout development, which makes them an important tool for synthetic biology.
Collapse
|
15
|
Analysis of the sequence and phenotype of Drosophila Sex combs reduced alleles reveals potential functions of conserved protein motifs of the Sex combs reduced protein. Genetics 2009; 182:191-203. [PMID: 19293143 DOI: 10.1534/genetics.109.100438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Drosophila Hox gene, Sex combs reduced (Scr), is required for patterning the larval and adult, labial and prothoracic segments. Fifteen Scr alleles were sequenced and the phenotypes analyzed in detail. Six null alleles were nonsense mutations (Scr(2), Scr(4), Scr(11), Scr(13), Scr(13A), and Scr(16)) and one was an intragenic deletion (Scr(17)). Five hypomorphic alleles were missense mutations (Scr(1), Scr(3), Scr(5), Scr(6), and Scr(8)) and one was a small protein deletion (Scr(15)). Protein sequence changes were found in four of the five highly conserved domains of SCR: the DYTQL motif (Scr(15)), YPWM motif (Scr(3)), Homeodomain (Scr(1)), and C-terminal domain (CTD) (Scr(6)), indicating importance for SCR function. Analysis of the pleiotropy of viable Scr alleles for the formation of pseudotracheae suggests that the DYTQL motif and the CTD mediate a genetic interaction with proboscipedia. One allele Scr(14), a missense allele in the conserved octapeptide, was an antimorphic allele that exhibited three interesting genetic properties. First, Scr(14)/Df had the same phenotype as Scr(+)/Df. Second, the ability of the Scr(14) allele to interact intragenetically with Scr alleles mapped to the first 82 amino acids of SCR, which contains the octapeptide motif. Third, Scr(6), which has two missense changes in the CTD, did not interact genetically with Scr(14).
Collapse
|
16
|
Yasunaga K, Saigo K, Kojima T. Fate map of the distal portion of Drosophila proboscis as inferred from the expression and mutations of basic patterning genes. Mech Dev 2006; 123:893-906. [PMID: 17027238 DOI: 10.1016/j.mod.2006.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 08/21/2006] [Accepted: 08/24/2006] [Indexed: 11/18/2022]
Abstract
The late-third-instar labial disc is comprised of two disc-proper cell layers, one representing mainly the ventral half of the anterior compartment (L-layer) and the other, the dorsal half of the anterior compartment and most, if not all, of the posterior compartment (M-layer). In the L-layer, Distal-less represses homothorax whereas no Distal-less-dependent homothorax repression occurs in the M-layer where Distal-less is coexpressed with homothorax. In wild-type labial discs, clawless, one of the two homeobox genes expressed in distal cells receiving maximum (Decapentaplegic+Wingless) signaling activity in leg and antennal discs, is specifically repressed by proboscipedia. A fate map, inferred from data on basic patterning gene expression in larval and pupal stages and mutant phenotypes, indicates the inner surface of the labial palpus, which includes the pseudotracheal region, to be a derivative of the distal portion of the M-layer expressing wingless, patched, Distal-less and homothorax. The outer surface of the labial palpus with more than 30 taste bristles derives from an L-layer area consisting of dorsal portions of the anterior and posterior compartments, each expressing Distal-less. Our analysis also indicates that, in adults and pupae, the anterior-posterior boundary, dividing roughly equally the outer surface of the distiproboscis, runs along the outer circumference of the inner surface of distiproboscis.
Collapse
Affiliation(s)
- Keiichiro Yasunaga
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
17
|
Joulia L, Deutsch J, Bourbon HM, Cribbs DL. The specification of a highly derived arthropod appendage, the Drosophila labial palps, requires the joint action of selectors and signaling pathways. Dev Genes Evol 2006; 216:431-42. [PMID: 16773339 DOI: 10.1007/s00427-006-0086-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 05/01/2006] [Indexed: 11/25/2022]
Abstract
The remarkable diversity of form in arthropods reflects flexible genetic programs deploying many conserved genes. In the insect model Drosophila melanogaster, diversity of form can be observed between serially homologous appendages or when a single appendage is transformed by homeotic mutations, such as the adult labial mouthparts that can present alternative antennal, prothoracic, or maxillary identities. We have examined the roles of the Hox selector genes proboscipedia (pb) and Sex combs reduced (Scr), and the antennal selectors homothorax (hth) and spineless (ss) in labial specification, by tissue-directed mitotic recombination. Whereas loss of pb function transforms labium to prothoracic leg, loss of Scr, hth, or ss functions results in little or no change in labial specification. Results of analysis of single and multiple mutant combinations support a genetic hierarchy in which the homeotic pb gene possesses a primary role. It is surprising to note that while loss of ss activity alone had no detected effect, all mutant combinations lacking both pb and ss yielded the most severe phenotype observed: stunted, apparently tripartite legs that may correspond to a default state. The roles of the four selector genes are functionally linked to a cell nonautonomous mechanism involving the coupled activities of the decapentaplegic (dpp)/TGF-beta and wingless (wg)/Wnt signaling pathways. Accordingly, several mutant combinations impaired in dpp signaling were seen to reorient labial-to-leg transformations toward antennal aristae. A crucial aspect of selector function in development and evolution may be in regulating diffusible signals, including those emitted by dpp and wg.
Collapse
Affiliation(s)
- Laurent Joulia
- Centre de Biologie du Développement, CNRS, 118 route de Narbonne, 31062 Toulouse Cedex 04, France.
| | | | | | | |
Collapse
|
18
|
Pernice M, Deutsch JS, Andouche A, Boucher-Rodoni R, Bonnaud L. Unexpected variation of Hox genes' homeodomains in cephalopods. Mol Phylogenet Evol 2006; 40:872-9. [PMID: 16759883 DOI: 10.1016/j.ympev.2006.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 02/24/2006] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Affiliation(s)
- Mathieu Pernice
- Développement et Evolution, UMR 7622, CNRS et Université P et M Curie, Paris 6, Case 24, 9 quai St Bernard, 75252 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
19
|
Zhang H, Shinmyo Y, Mito T, Miyawaki K, Sarashina I, Ohuchi H, Noji S. Expression patterns of the homeotic genes Scr, Antp, Ubx, and abd-A during embryogenesis of the cricket Gryllus bimaculatus. Gene Expr Patterns 2005; 5:491-502. [PMID: 15749077 DOI: 10.1016/j.modgep.2004.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 11/25/2004] [Accepted: 12/14/2004] [Indexed: 11/23/2022]
Abstract
We have studied embryogenesis of the two-spotted cricket Gryllus bimaculatus as an example of a hemimetabolous, intermediate germ insect, which is a phylogenetically basal insect and may retain primitive features. We observed expression patterns of the orthologs of the Drosophila homeotic genes, Sex combs reduced (Scr), Antennapedia (Antp), Ultrabithorax (Ubx) and abdominal-A (abd-A) during embryogenesis and compared the expression patterns of these genes with the more basal thysanuran insect, Thermobia domestica (the firebrat), and the derived higher dipteran insect, Drosophila melanogaster. Although Scr is expressed commonly in the presumptive posterior maxillary and labial segment in all three insects, the thoracic expression domains vary. Antp is expressed similarly in the three thoracic segments, the limbs, and the anterior abdominal region among these three insects. The early Antp expression in the firebrat and cricket obeys a segmental register in all three thoracic segments, while in Drosophila its initial expression appears in parasegments 4 and 6. Ubx is expressed in the metathoracic (T3) and abdominal segments similarly in the three insects, whereas the expression pattern in the T3 leg differs among them. abd-A is expressed in the posterior compartment of the first abdominal segment and the remaining abdominal segments in all three insects, although its posterior border varies among them.
Collapse
Affiliation(s)
- Hongjie Zhang
- Department of Biological Science and Technology, Faculty of Engineering, University of Tokushima, 2-1 Minami-Jyosanjima-cho, Tokushima City 770-8506, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Barmina O, Gonzalo M, McIntyre LM, Kopp A. Sex- and segment-specific modulation of gene expression profiles in Drosophila. Dev Biol 2005; 288:528-44. [PMID: 16269142 DOI: 10.1016/j.ydbio.2005.09.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 09/28/2005] [Accepted: 09/30/2005] [Indexed: 10/25/2022]
Abstract
Homeotic and sex-determining genes control a wide range of morphological traits by regulating the expression of different target genes in different tissues. The identity of most of these target genes remains unknown, and it is not even clear what fraction of the genome is regulated in a segment- and sex-specific manner. In this report, we examine segment- and sex-specific gene expression in Drosophila pupal legs. The first and second legs in Drosophila have clearly distinguishable bristle patterns. Bristle pattern in the first leg also differs between males and females, whereas the second leg has no overt sexual dimorphism. To identify the genes responsible for these differences, we compared transcriptional profiles between male and female first and second legs during early pupal development. The extent of sexually dimorphic gene expression parallels morphological differences: over 100 genes are expressed sex specifically in the first leg, whereas no sexual differences are seen in the second leg. Segmental differences are less extensive than sexual dimorphism and involve fewer than 14 genes. We have identified a novel gene, CG13857, that is expressed exclusively in the first leg in a pattern that suggests this gene may play an important role in specifying segment- and sex-specific bristle patterns.
Collapse
Affiliation(s)
- Olga Barmina
- Section of Evolution and Ecology, Center for Genetics and Development, University of California-Davis, One Shields Ave., Davis, CA 95616, USA
| | | | | | | |
Collapse
|
21
|
Angelini DR, Kaufman TC. Insect appendages and comparative ontogenetics. Dev Biol 2005; 286:57-77. [PMID: 16112665 DOI: 10.1016/j.ydbio.2005.07.006] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 06/23/2005] [Accepted: 07/12/2005] [Indexed: 11/30/2022]
Abstract
It is arguable that the evolutionary and ecological success of insects is due in large part to the versatility of their articulated appendages. Recent advances in our understanding of appendage development in Drosophila melanogaster, as well as functional and expression studies in other insect species have begun to frame the general themes of appendage development in the insects. Here, we review current studies that provide for a comparison of limb developmental mechanisms acting at five levels: (1) the specification of ventral appendage primordia; (2) specification of the limb axes; (3) regulation and interactions of genes expressed in specific domains of the proximal-distal axis, such as Distal-less; (4) the specification of appendage identity; and (5) genetic regulation of appendage allometry.
Collapse
Affiliation(s)
- David R Angelini
- Department of Biology, Indiana University, 1001 E. Third St., Bloomington, IN 47405-7005, USA
| | | |
Collapse
|
22
|
Bolinger RA, Boekhoff-Falk G. Distal-less functions in subdividing the Drosophila thoracic limb primordium. Dev Dyn 2005; 232:801-16. [PMID: 15712199 DOI: 10.1002/dvdy.20329] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The thoracic limb primordium of Drosophila melanogaster is a useful experimental model in which to study how unique tissue types are specified from multipotent founder cell populations. The second thoracic segment limb primordium gives rise to three structures: the wing imaginal disc, the leg imaginal disc, and a larval mechanosensory structure called Keilin's organ. We report that most of the limb primordium arises within neurogenic ectoderm and demonstrate that the neural and imaginal components of the primordium have distinct developmental potentials. We also provide the first analysis of the genetic pathways that subdivide the progenitor cell population into uniquely imaginal and neural identities. In particular, we demonstrate that the imaginal gene escargot represses Keilin's organ fate and that Keilin's organ is specified by Distal-less in conjunction with the downstream achaete-scute complex. This specification involves both the activation of the neural genes cut and couch potato and the repression of escargot. In the absence of achaete-scute complex function, cells adopt mixed identities and subsequently die. We propose that central cells of the primordium previously thought to contribute to the distal leg are Keilin's organ precursors, while both proximal and distal leg precursors are located more peripherally and within the escargot domain.
Collapse
Affiliation(s)
- Reese A Bolinger
- Department of Anatomy, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
23
|
Abstract
Arista versus tarsus determination is well investigated in Drosophila, yet it remains unresolved whether Antennapedia (ANTP) cell autonomously or noncell autonomously determines tarsus identity and whether Sex combs reduced (SCR) is the HOX protein required for normal tarsus determination. Three observations rule out a cell autonomous role for ANTP in tarsus determination. (i) Clonal ectopic overexpression of ANTP did not repress the expression of the arista determining protein Homothorax (HTH) in early 3rd stadium antennal imaginal discs. (ii) Clonal ectopic expression of ANTP did not transform the arista to a tarsus. (iii) Ectopic overexpression of ANTP, Labial (LAB), Deformed (DFD), SCR, Ultrabithorax (UBX), Abdominal-A (ABD-A), or Abdominal-B (ABD-B), using the dppGAL4 driver, resulted in arista-to-tarsus transformations, and repressed HTH/Extradenticle (EXD) activity noncell autonomously in early 3rd stadium antennal imaginal discs. SCR may not be the HOX protein required for normal tarsus determination, because co-ectopic expression of Proboscipedia (PB) inhibited the arista-to-tarsus transformations induced by ectopic expression of DFD, SCR, ANTP, UBX, ABD-A, and ABD-B. The proposal that SCR is the HOX protein required for normal tarsus determination is dependent on SCR being the sole target of PB suppression, which is not the case. Therefore, the possibility exists that normal tarsus determination is HOX independent.Key words: appendage development, Antennapedia, proboscipedia, sex combs reduced, homothorax.
Collapse
|
24
|
Pérez-Parallé ML, Carpintero P, Pazos AJ, Abad M, Sánchez JL. The HOX Gene Cluster in the Bivalve Mollusc Mytilus galloprovincialis. Biochem Genet 2005; 43:417-24. [PMID: 16187165 DOI: 10.1007/s10528-005-6780-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 10/15/2004] [Indexed: 10/25/2022]
Abstract
The clustered Hox genes play a central role in the regulation of development in bilaterian animals. In this study, we analyzed the homeobox-containing genes in a bivalve mollusc, the mussel Mytilus galloprovincialis, an unsegmented spiralian lophotrochozoan. We isolated and characterized four Hox cluster genes using the polymerase chain reaction with specific primers. Molecular alignments and phylogenetic analysis indicate that these mussel genes are homologs of the anterior group (pb ortholog), paralog group 3, and central group (PG4/Dfd and PG5/Scr) genes. The putative homeodomain sequences were designated Mgox1, Mgox2, Mgox3, and Mgox4.
Collapse
Affiliation(s)
- M Luz Pérez-Parallé
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidad de Santiago de Compostela, Spain,
| | | | | | | | | |
Collapse
|
25
|
Anderson J, Bhandari R, Kumar JP. A genetic screen identifies putative targets and binding partners of CREB-binding protein in the developing Drosophila eye. Genetics 2005; 171:1655-72. [PMID: 15998717 PMCID: PMC1456093 DOI: 10.1534/genetics.105.045450] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drosophila CREB-binding protein (dCBP) is a very large multidomain protein, which belongs to the CBP/p300 family of proteins that were first identified by their ability to bind the CREB transcription factor and the adenoviral protein E1. Since then CBP has been shown to bind to >100 additional proteins and functions in a multitude of different developmental contexts. Among other activities, CBP is known to influence development by remodeling chromatin, by serving as a transcriptional coactivator, and by interacting with terminal members of several signaling transduction cascades. Reductions in CBP activity are the underlying cause of Rubinstein-Taybi syndrome, which is, in part, characterized by several eye defects, including strabismus, cataracts, juvenile glaucoma, and coloboma of the eyelid, iris, and lens. Development of the Drosophila melanogaster compound eye is also inhibited in flies that are mutant for CBP. However, the vast array of putative protein interactions and the wide-ranging roles played by CBP within a single tissue such as the retina can often complicate the analysis of CBP loss-of-function mutants. Through a series of genetic screens we have identified several genes that could either serve as downstream transcriptional targets or encode for potential CBP-binding partners and whose association with eye development has hitherto been unknown. The identification of these new components may provide new insight into the roles that CBP plays in retinal development. Of particular interest is the identification that the CREB transcription factor appears to function with CBP at multiple stages of retinal development.
Collapse
Affiliation(s)
- Jason Anderson
- Department of Biology, Indiana University, 1001 E. 3rd Street, Jordan Hall A318, Bloomington, IN 47401, USA
| | | | | |
Collapse
|
26
|
Abstract
Proboscipedia (PB) is a HOX protein required for adult maxillary palp and proboscis formation. To identify domains of PB important for function, 21 pb point mutant alleles were sequenced. Twelve pb alleles had DNA sequence changes that encode an altered PB protein product. The DNA sequence changes of these 12 alleles fell into 2 categories: missense alleles that effect the PB homeodomain (HD), and nonsense or frameshift alleles that result in C-terminal truncations of the PB protein. The phenotypic analysis of the pb homeobox missense alleles suggests that the PB HD is required for maxillary palp and proboscis development and pb - Sex combs reduced (Scr) genetic interaction. The phenotypic analysis of the pb nonsense or frameshift alleles suggests that the C-terminus is an important region required for maxillary palp and proboscis development and pb-Scr genetic interaction. PB and SCR do not interact directly with one another in a co-immunoprecipitation assay and in a yeast two-hybrid analysis, which suggests the pb-Scr genetic interaction is not mediated by a direct interaction between PB and SCR.
Collapse
Affiliation(s)
- I Tayyab
- Department of Biology, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
27
|
Joulia L, Bourbon HM, Cribbs DL. Homeotic proboscipedia function modulates hedgehog-mediated organizer activity to pattern adult Drosophila mouthparts. Dev Biol 2005; 278:496-510. [PMID: 15680366 DOI: 10.1016/j.ydbio.2004.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 10/25/2004] [Accepted: 11/03/2004] [Indexed: 11/24/2022]
Abstract
Drosophila proboscipedia (pb; HoxA2/B2 homolog) mutants develop distal legs in place of their adult labial mouthparts. Here we examine how pb homeotic function distinguishes the developmental programs of labium and leg. We find that the labial-to-leg transformation in pb mutants occurs progressively over a 2-day period in mid-development, as viewed with identity markers such as dachshund (dac). This transformation requires hedgehog activity, and involves a morphogenetic reorganization of the labial imaginal disc. Our results implicate pb function in modulating global axial organization. Pb protein acts in at least two ways. First, Pb cell autonomously regulates the expression of target genes such as dac. Second, Pb acts in opposition to the organizing action of hedgehog. This latter action is cell-autonomous, but has a nonautonomous effect on labial structure, via the negative regulation of wingless/dWnt and decapentaplegic/TGF-beta. This opposition of Pb to hedgehog target expression appears to occur at the level of the conserved transcription factor cubitus interruptus/Gli that mediates hedgehog signaling activity. These results extend selector function to primary steps of tissue patterning, and lead us to suggest the notion of a homeotic organizer.
Collapse
Affiliation(s)
- Laurent Joulia
- Centre de Biologie du Développement-CNRS, 118 route de Narbonne, 31062 Toulouse Cedex 04, France.
| | | | | |
Collapse
|
28
|
Argiropoulos B, Ho J, Blachuta BJ, Tayyab I, Percival-Smith A. Low-level ectopic expression of Fushi tarazu in Drosophila melanogaster results in ftzUal/Rpl-like phenotypes and rescues ftz phenotypes. Mech Dev 2003; 120:1443-53. [PMID: 14654217 DOI: 10.1016/j.mod.2003.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The protein encoded by the Drosophila pair-rule gene fushi tarazu (ftz) is required for the formation of the even-numbered parasegments. Here we analyze the phenotypes of ectopic expression of FTZ and FTZ protein deletions from the Tubulin alpha1 (Tubalpha1) promoter. Fusion of ftz to the Tubalpha1 promoter resulted in low-level ectopic expression of FTZ relative to FTZ expressed from the endogenous ftz gene. The effects of ectopic expression of four FTZ proteins, FTZ(1-413) (full length wild-type FTZ), FTZ(delta257-316) (a complete deletion of the HD), FTZ(delta101-150) (a deletion that includes the major FTZ-F1 binding site) and FTZ(delta151-209) were determined. Ectopic expression of FTZ(1-413), FTZ(delta257-316) and FTZ(delta101-151) did not result in an anti-ftz phenotype; however, ectopic expression of FTZ(1-413), and FTZ(delta257-316) did result in a ftz(Ual/Rpl)-like phenotype. In addition, low-level ectopic expression of FTZ(1-413) and FTZ(delta257-316) rescued ftz phenotypes. This was an important observation because the even-numbered parasegment pattern of FTZ expression is considered important for normal segmentation. Therefore, the rescue of ftz phenotypes by low-level FTZ expression in all cells of the embryo suggests that the even-numbered parasegment expression pattern of FTZ is not the sole factor restricting FTZ action. Low-level ectopic expression of FTZ(delta151-209) resulted in the anti-ftz phenotype and rescued hypomorphic ftz-f1 phenotypes indicating that FTZ(delta151-209) is a hyperactive FTZ molecule. Therefore, the region encompassing amino acids 151-209 of FTZ is required in some manner for repression of FTZ activity. These results are discussed in relation to the current understanding of the mechanism of FTZ action.
Collapse
Affiliation(s)
- Bob Argiropoulos
- Department of Biology, University of Western Ontario, London, Ont, Canada N6A 5B7
| | | | | | | | | |
Collapse
|
29
|
Brown SJ, Shippy TD, Beeman RW, Denell RE. Tribolium Hox genes repress antennal development in the gnathos and trunk. Mol Phylogenet Evol 2002; 24:384-7. [PMID: 12220981 DOI: 10.1016/s1055-7903(02)00205-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Evidence from Drosophila suggests that Hox genes not only specify regional identity, but have the additional function of repressing antennal development within their normal domains. This is dramatically demonstrated by a series of Hox mutants in the red flour beetle, Tribolium castaneum, and is likely an ancient function of Hox genes in insects.
Collapse
Affiliation(s)
- Susan J Brown
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506, USA.
| | | | | | | |
Collapse
|
30
|
DeCamillis MA, Lewis DL, Brown SJ, Beeman RW, Denell RE. Interactions of the Tribolium Sex combs reduced and proboscipedia orthologs in embryonic labial development. Genetics 2001; 159:1643-8. [PMID: 11779803 PMCID: PMC1461894 DOI: 10.1093/genetics/159.4.1643] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The role of Hox genes in the development of insect gnathal appendages has been examined in three insects: the fruitfly, Drosophila melanogaster; the milkweed bug, Oncopeltus fasciatus; and the red flour beetle, Tribolium castaneum. In each of these organisms, the identity of the labium depends on the homeotic genes Sex combs reduced (Scr) and proboscipedia (pb). Loss of pb function in each of the three insects results in homeotic transformation of the labial appendages to legs. In contrast, loss of Scr function yields a different transformation in each species. Interestingly, mutations in Cephalothorax (Cx), the Tribolium ortholog of Scr, transform the labial appendages to antennae, a result seen in the other insects only when both pb and Scr are removed. We show here that the Tribolium labial appendages also develop as antennae in double mutants. Further, we demonstrate that expression of the Tribolium proboscipedia ortholog maxillopedia (mxp) is greatly reduced or absent in the labium of Cx mutant larvae. Thus, in the wild-type labial segment, Cx function is required (directly or indirectly) for mxp transcription. A similar interaction between Scr and pb during Drosophila embryogenesis has been described recently. Thus, this regulatory paradigm appears to be conserved at least within the Holometabola.
Collapse
Affiliation(s)
- M A DeCamillis
- Division of Biology, Kansas State University, Manhattan, Kansas 66506-4901, USA
| | | | | | | | | |
Collapse
|
31
|
Curtis CD, Brisson JA, DeCamillis MA, Shippy TD, Brown SJ, Denell RE. Molecular characterization ofCephalothorax, theTribolium ortholog ofSex combs reduced. Genesis 2001; 30:12-20. [PMID: 11353513 DOI: 10.1002/gene.1027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sex combs reduced (Scr), a Hox gene located in the Antennapedia complex of Drosophila melanogaster, is required for the proper development of the labial and first thoracic segments. The Tribolium castaneum genetically defined locus Cephalothorax (Cx) is a candidate Scr ortholog based on the location of Cx in the beetle Homeotic complex and mutant effects on the labial and first thoracic segments. To address this hypothesis, we have cloned and characterized the Tribolium ortholog of Scr (TcScr). The transcription unit is less complex and encodes a smaller protein than Scr. The predicted amino acid sequence of the Tribolium protein shares motifs with orthologous proteins from multiple species. In addition, we have analyzed the TcScr expression pattern during embryonic development. TcScr is expressed in parts of the maxillary, labial, and first thoracic segments in a pattern similar to but not identical to Scr. Furthermore, TcScr RNA interference results in a phenocopy of the Cephalothorax (Cx) mutant phenotype in which the labial palps are transformed into antennae and the head and first thoracic segment are fused. All of the available results indicate that Cx is the Tribolium ortholog of Scr.
Collapse
Affiliation(s)
- C D Curtis
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | | | | | | | | | | |
Collapse
|
32
|
Boube M, Faucher C, Joulia L, Cribbs DL, Bourbon HM. Drosophila homologs of transcriptional mediator complex subunits are required for adult cell and segment identity specification. Genes Dev 2000; 14:2906-17. [PMID: 11090137 PMCID: PMC317059 DOI: 10.1101/gad.17900] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The origins of specificity in gene expression are a central concern in understanding developmental control. Mediator protein complexes regulate transcriptional initiation, acting as modular adaptors linking specific transcription factors to core RNA polymerase II. Here, we identified the Drosophila homologs of 23 human mediator genes and mutations of two, dTRAP240 and of dTRAP80 (the putative fly homolog of yeast SRB4). Clonal analysis indicates a general role for dTRAP80 necessary for cell viability. The dTRAP240 gene is also essential, but cells lacking its function are viable and proliferate normally. Clones reveal localized developmental activities including a sex comb cell identity function. This contrasts with the ubiquitous nuclear accumulation of dTRAP240 protein in imaginal discs. Synergistic genetic interactions support shared developmental cell and segment identity functions of dTRAP240 and dTRAP80, potentially within a common complex. Further, they identify the homeotic Sex combs reduced product, required for the same cell/tissue identities, as a functional partner of these mediator proteins.
Collapse
Affiliation(s)
- M Boube
- Centre de Biologie du Développement-CNRS, 31062 Toulouse CEDEX 04, France
| | | | | | | | | |
Collapse
|
33
|
Saleh M, Rambaldi I, Yang XJ, Featherstone MS. Cell signaling switches HOX-PBX complexes from repressors to activators of transcription mediated by histone deacetylases and histone acetyltransferases. Mol Cell Biol 2000; 20:8623-33. [PMID: 11046157 PMCID: PMC102167 DOI: 10.1128/mcb.20.22.8623-8633.2000] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2000] [Accepted: 08/18/2000] [Indexed: 11/20/2022] Open
Abstract
The Hoxb1 autoregulatory element comprises three HOX-PBX binding sites. Despite the presence of HOXB1 and PBX1, this enhancer fails to activate reporter gene expression in retinoic acid-treated P19 cell monolayers. Activation requires cell aggregation in addition to RA. This suggests that HOX-PBX complexes may repress transcription under some conditions. Consistent with this, multimerized HOX-PBX binding sites repress reporter gene expression in HEK293 cells. We provide a mechanistic basis for repressor function by demonstrating that a corepressor complex, including histone deacetylases (HDACs) 1 and 3, mSIN3B, and N-CoR/SMRT, interacts with PBX1A. We map a site of interaction with HDAC1 to the PBX1 N terminus and show that the PBX partner is required for repression by the HOX-PBX complex. Treatment with the deacetylase inhibitor trichostatin A not only relieves repression but also converts the HOX-PBX complex to a net activator of transcription. We show that this activation function is mediated by the recruitment of the coactivator CREB-binding protein by the HOX partner. Interestingly, HOX-PBX complexes are switched from transcriptional repressors to activators in response to protein kinase A signaling or cell aggregation. Together, our results suggest a model whereby the HOX-PBX complex can act as a repressor or activator of transcription via association with corepressors and coactivators. The model implies that cell signaling is a direct determinant of HOX-PBX function in the patterning of the animal embryo.
Collapse
Affiliation(s)
- M Saleh
- McGill Cancer Centre, McGill University, Montréal, Québec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
34
|
Hughes CL, Kaufman TC. RNAi analysis of Deformed, proboscipedia and Sex combs reduced in the milkweed bug Oncopeltus fasciatus: novel roles for Hox genes in the hemipteran head. Development 2000; 127:3683-94. [PMID: 10934013 DOI: 10.1242/dev.127.17.3683] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Insects have evolved a large variety of specialized feeding strategies, with a corresponding variability in mouthpart morphology. We have, however, little understanding of the developmental mechanisms that underlie this diversity. Until recently it was difficult to perform any analysis of gene function outside of the genetic model insects Drosophila melanogaster and Tribolium castaneum. In this paper, we report the use of dsRNA-mediated interference (RNAi) to dissect gene function in the development of the milkweed bug Oncopeltus fasciatus, which has specialized suctorial mouthparts. The Hox genes Deformed (Dfd), proboscipedia (pb) and Sex combs reduced (Scr) have previously been shown to be expressed in the gnathal appendages of this species. Strikingly, the milkweed bug was found to have an unusual expression pattern of pb. Here, by analyzing single and combination RNAi depletions, we find that Dfd, pb and Scr are used in the milkweed bug to specify the identity of the mouthparts. The exact roles of the genes, however, are different from what is known in the two genetic model insects. The maxillary appendages in the bug are determined by the activities of the genes Dfd and Scr, rather than Dfd and pb as in the fly and beetle. The mandibular appendages are specified by Dfd, but their unique morphology in Oncopeltus suggests that Dfd's target genes are different. As in flies and beetles, the labium is specified by the combined activities of pb and Scr, but again, the function of pb appears to be different. Additionally, the regulatory control of pb by the other two genes seems to be different in the bug than in either of the other species. These novelties in Hox function, expression pattern and regulatory relationships may have been important for the evolution of the unique Hemipteran head.
Collapse
Affiliation(s)
- C L Hughes
- Howard Hughes Medical Institute, Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
35
|
Abstract
The gene proboscipedia (pb) is a member of the Antennapedia complex in Drosophila and is required for the proper specification of the adult mouthparts. In the embryo, pb expression serves no known function despite having an accumulation pattern in the mouthpart anlagen that is conserved across several insect orders. We have identified several of the genes necessary to generate this embryonic pattern of expression. These genes can be roughly split into three categories based on their time of action during development. First, prior to the expression of pb, the gap genes are required to specify the domains where pb may be expressed. Second, the initial expression pattern of pb is controlled by the combined action of the genes Deformed (Dfd), Sex combs reduced (Scr), cap'n'collar (cnc), and teashirt (tsh). Lastly, maintenance of this expression pattern later in development is dependent on the action of a subset of the Polycomb group genes. These interactions are mediated in part through a 500-bp regulatory element in the second intron of pb. We further show that Dfd protein binds in vitro to sequences found in this fragment. This is the first clear demonstration of autonomous positive cross-regulation of one Hox gene by another in Drosophila melanogaster and the binding of Dfd to a cis-acting regulatory element indicates that this control might be direct.
Collapse
Affiliation(s)
- D B Rusch
- Howard Hughes Medical Institute, Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
36
|
Abstract
The murine HOXA-2 protein shares amino acid sequence similarity with Drosophila Proboscipedia (PB). In this paper, we test whether HOXA-2 and PB are functionally equivalent in Drosophila. In Drosophila, PB inhibits SCR activity required for larval T1 beard formation and adult tarsus formation and is required for maxillary palp and proboscis formation. HOXA-2 expressed from a heat-shock promoter weakly suppressed SCR activity required for T1 beard formation. But interestingly neither PB nor HOXA-2 expressed from a heat-shock promoter suppressed murine HOXA-5 activity, the murine SCR homologue, from inducing ectopic T1 beards in T2 and T3, indicating that HOXA-5 does not interact with PB. HOXA-2 activity expressed from the Tubulin alpha 1 promoter modified the pb null phenotype resulting in a proboscis-to-arista transformation, indicating that HOXA-2 was able to suppress SCR activity required for tarsus formation. However, HOXA-2 expressed from a Tubulin alpha 1 promoter was unable to direct maxillary palp determination when either ectopically expressed in the antenna or in the maxillary palp primordia of a pb null mutant. HOXA-2 was also unable to rescue pseudotrachea formation in a pb null mutant. These results indicate that the only activity that PB and HOXA-2 weakly share is the inhibition of SCR activity, and that murine HOXA-5 and Drosophila SCR do not share inhibition by PB activity.
Collapse
Affiliation(s)
- A Percival-Smith
- Department of Zoology, University of Western Ontario, London, Canada.
| | | |
Collapse
|
37
|
Shippy TD, Guo J, Brown SJ, Beeman RW, Denell RE. Analysis of maxillopedia expression pattern and larval cuticular phenotype in wild-type and mutant tribolium. Genetics 2000; 155:721-31. [PMID: 10835394 PMCID: PMC1461110 DOI: 10.1093/genetics/155.2.721] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Tribolium castaneum homeotic gene maxillopedia (mxp) is the ortholog of Drosophila proboscipedia (pb). Here we describe and classify available mxp alleles. Larvae lacking all mxp function die soon after hatching, exhibiting strong transformations of maxillary and labial palps to legs. Hypomorphic mxp alleles produce less severe transformations to leg. RNA interference with maxillopedia double-stranded RNA results in phenocopies of mxp mutant phenotypes ranging from partial to complete transformations. A number of gain-of-function (GOF) mxp alleles have been isolated based on transformations of adult antennae and/or legs toward palps. Finally, we have characterized the mxp expression pattern in wild-type and mutant embryos. In normal embryos, mxp is expressed in the maxillary and labial segments, whereas ectopic expression is observed in some GOF variants. Although mxp and Pb display very similar expression patterns, pb null embryos develop normally. The mxp mutant larval phenotype in Tribolium is consistent with the hypothesis that an ancestral pb-like gene had an embryonic function that was lost in the lineage leading to Drosophila.
Collapse
Affiliation(s)
- T D Shippy
- Division of Biology, Kansas State University, Manhattan 66506, USA
| | | | | | | | | |
Collapse
|
38
|
Breen TR. Mutant alleles of the Drosophila trithorax gene produce common and unusual homeotic and other developmental phenotypes. Genetics 1999; 152:319-44. [PMID: 10224264 PMCID: PMC1460610 DOI: 10.1093/genetics/152.1.319] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
trithorax (trx) encodes chromosome-binding proteins required throughout embryogenesis and imaginal development for tissue- and cell-specific levels of transcription of many genes including homeotic genes of the ANT-C and BX-C. trx encodes two protein isoforms that contain conserved motifs including a C-terminal SET domain, central PHD fingers, an N-terminal DNA-binding homology, and two short motifs also found in the TRX human homologue, ALL1. As a first step to characterizing specific developmental functions of TRX, I examined phenotypes of 420 combinations of 21 trx alleles. Among these are 8 hypomorphic alleles that are sufficient for embryogenesis but provide different levels of trx function at homeotic genes in imaginal cells. One allele alters the N terminus of TRX, which severely impairs larval and imaginal growth. Hypomorphic alleles that alter different regions of TRX equivalently reduce function at affected genes, suggesting TRX interacts with common factors at different target genes. All hypomorphic alleles examined complement one another, suggesting cooperative TRX function at target genes. Comparative effects of hypomorphic genotypes support previous findings that TRX has tissue-specific interactions with other factors at each target gene. Some hypomorphic genotypes also produce phenotypes that suggest TRX may be a component of signal transduction pathways that provide tissue- and cell-specific levels of target gene transcription.
Collapse
Affiliation(s)
- T R Breen
- Department of Zoology, Southern Illinois University, Carbondale, Illinois 62901-6501, USA.
| |
Collapse
|
39
|
Percival-Smith A, Hayden DJ. Analysis in Drosophila melanogaster of the interaction between sex combs reduced and extradenticle activity in the determination of tarsus and arista identity. Genetics 1998; 150:189-98. [PMID: 9725838 PMCID: PMC1460306 DOI: 10.1093/genetics/150.1.189] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sex Combs Reduced (SCR) activity is proposed to be required cell nonautonomously for determination of tarsus identity, and Extradenticle (EXD) activity is required cell autonomously for determination of arista identity. Using the ability of Proboscipedia to inhibit the SCR activity required for determination of tarsus identity, we found that loss-of-EXD activity is epistatic to loss-of-SCR activity in tarsus vs. arista determination. This suggests that in the sequence leading to arista determination SCR activity is OFF while EXD activity is ON, and in the sequence leading to tarsus determination SCR activity is ON, which turns EXD activity OFF. Immunolocalization of EXD in early third-instar larval imaginal discs reveals that EXD is localized in the nuclei of antennal imaginal disc cells and localized in the cytoplasm of distal imaginal leg disc cells. We propose that EXD localized to the nucleus suppresses tarsus determination and activates arista determination. We further propose that in the mesodermal adepithelial cells of the leg imaginal discs, SCR is required for the synthesis of a tarsus-inducer that when secreted acts on the ectoderm cells inhibiting nuclear accumulation of EXD, such that tarsus determination is no longer suppressed and arista determination is no longer activated.
Collapse
Affiliation(s)
- A Percival-Smith
- Department of Zoology, University of Western Ontario, London, Ontario N6A 5B7, Canada.
| | | |
Collapse
|