1
|
Curt JR, Martín P, Foronda D, Hudry B, Kannan R, Shetty S, Merabet S, Saurin AJ, Graba Y, Sánchez- Herrero E. Ambivalent partnership of the Drosophila posterior class Hox protein Abdominal-B with Extradenticle and Homothorax. PLoS Genet 2025; 21:e1011355. [PMID: 39804927 PMCID: PMC11759358 DOI: 10.1371/journal.pgen.1011355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/24/2025] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Hox proteins, a sub-group of the homeodomain (HD) transcription factor family, provide positional information for axial patterning in development and evolution. Hox protein functional specificity is reached, at least in part, through interactions with Pbc (Extradenticle (Exd) in Drosophila) and Meis/Prep (Homothorax (Hth) in Drosophila) proteins. Most of our current knowledge of Hox protein specificity stems from the study of anterior and central Hox proteins, identifying the molecular and structural bases for Hox/Pbc/Meis-Prep cooperative action. Posterior Hox class proteins, Abdominal-B (Abd-B) in Drosophila and Hox9-13 in vertebrates, have been comparatively less studied. They strongly diverge from anterior and central class Hox proteins, with a low degree of HD sequence conservation and the absence of a core canonical Pbc interaction motif. Here we explore how Abd-B function interface with that of Exd/Hth using several developmental contexts, studying mutual expression control, functional dependency and intrinsic protein requirements. Results identify cross-regulatory interactions setting relative expression and activity levels required for proper development. They also reveal organ-specific requirement and a binary functional interplay with Exd and Hth, either antagonistic, as previously reported, or synergistic. This highlights context specific use of Exd/Hth, and a similar context specific use of Abd-B intrinsic protein requirements.
Collapse
Affiliation(s)
- Jesús R. Curt
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Paloma Martín
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - David Foronda
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- Departamento de Medicina, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, Madrid, Spain
| | - Bruno Hudry
- Aix-Marseille Univ., CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Parc Scientifique de Luminy, Marseille, France
- Institut de Biologie Valrose, Université Nice Sophia Antipolis, Faculté des Sciences Parc Valrose, Nice, France
| | - Ramakrishnan Kannan
- Molecular Genetics lab, Neurobiology Research Center (NRC), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Srividya Shetty
- Molecular Genetics lab, Neurobiology Research Center (NRC), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Samir Merabet
- Aix-Marseille Univ., CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Parc Scientifique de Luminy, Marseille, France
- Institut de Génétique Fonctionnelle, UMR 5242 CNRS/ENS Lyon, Lyon, France
| | - Andrew J. Saurin
- Aix-Marseille Univ., CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Parc Scientifique de Luminy, Marseille, France
| | - Yacine Graba
- Aix-Marseille Univ., CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Parc Scientifique de Luminy, Marseille, France
| | - Ernesto Sánchez- Herrero
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| |
Collapse
|
2
|
Hiraiwa S, Takeshita S, Terano T, Hayashi R, Suzuki K, Tajiri R, Kojima T. Unveiling the cell dynamics during the final shape formation of the tarsus in Drosophila adult leg by live imaging. Dev Genes Evol 2024; 234:117-133. [PMID: 38977431 PMCID: PMC11611951 DOI: 10.1007/s00427-024-00719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Organisms display a remarkable diversity in their shapes. Although substantial progress has been made in unraveling the mechanisms that govern cell fate determination during development, the mechanisms by which fate-determined cells give rise to the final shapes of organisms remain largely unknown. This study describes in detail the process of the final shape formation of the tarsus, which is near the distal tip of the adult leg, during the pupal stage in Drosophila melanogaster. Days-long live imaging revealed unexpectedly complicated cellular dynamics. The epithelial cells transiently form the intriguing structure, which we named the Parthenon-like structure. The basal surface of the epithelial cells and localization of the basement membrane protein initially show a mesh-like structure and rapidly shrink into the membranous structure during the formation and disappearance of the Parthenon-like structure. Furthermore, macrophage-like cells are observed moving around actively in the Parthenon-like structure and engulfing epithelial cells. The findings in this research are expected to significantly contribute to our understanding of the mechanisms involved in shaping the final structure of the adult tarsus.
Collapse
Affiliation(s)
- Shotaro Hiraiwa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Biosciences Building 501, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Shumpei Takeshita
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Biosciences Building 501, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Tensho Terano
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Biosciences Building 501, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Ryuhei Hayashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Biosciences Building 501, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Koyo Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Biosciences Building 501, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Reiko Tajiri
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Biosciences Building 501, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
- Present address: Laboratory for Extracellular Morphogenesis, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| | - Tetsuya Kojima
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Biosciences Building 501, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan.
| |
Collapse
|
3
|
Barthel L, Pettemeridi S, Nebras A, Schnaidt H, Fahland K, Vormwald L, Raabe T. The transcription elongation factors Spt4 and Spt5 control neural progenitor proliferation and are implicated in neuronal remodeling during Drosophila mushroom body development. Front Cell Dev Biol 2024; 12:1434168. [PMID: 39445331 PMCID: PMC11496258 DOI: 10.3389/fcell.2024.1434168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Spt4 and Spt5 form the DRB sensitivity inducing factor (DSIF) complex that regulates transcription elongation at multiple steps including promotor-proximal pausing, processivity and termination. Although this implicated a general role in transcription, several studies pointed to smaller sets of target genes and indicated a more specific requirement in certain cellular contexts. To unravel common or distinct functions of Spt4 and Spt5 in vivo, we generated knock-out alleles for both genes in Drosophila melanogaster. Using the development of the mushroom bodies as a model, we provided evidence for two common functions of Spt4 and Spt5 during mushroom body development, namely control of cell proliferation of neural progenitor cells and remodeling of axonal projections of certain mushroom body neurons. This latter function is not due to a general requirement of Spt4 and Spt5 for axon pathfinding of mushroom body neurons, but due to distinct effects on the expression of genes controlling remodeling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thomas Raabe
- Department Molecular Genetics of the Faculty of Medicine, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Zhang T, Zhou Q, Jusić N, Lu W, Pignoni F, Neal SJ. Mitf, with Yki and STRIPAK-PP2A, is a key determinant of form and fate in the progenitor epithelium of the Drosophila eye. Eur J Cell Biol 2024; 103:151421. [PMID: 38776620 PMCID: PMC11229422 DOI: 10.1016/j.ejcb.2024.151421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
The Microphthalmia-associated Transcription Factor (MITF) governs numerous cellular and developmental processes. In mice, it promotes specification and differentiation of the retinal pigmented epithelium (RPE), and in humans, some mutations in MITF induce congenital eye malformations. Herein, we explore the function and regulation of Mitf in Drosophila eye development and uncover two roles. We find that knockdown of Mitf results in retinal displacement (RDis), a phenotype associated with abnormal eye formation. Mitf functions in the peripodial epithelium (PE), a retinal support tissue akin to the RPE, to suppress RDis, via the Hippo pathway effector Yorkie (Yki). Yki physically interacts with Mitf and can modify its transcriptional activity in vitro. Severe loss of Mitf, instead, results in the de-repression of retinogenesis in the PE, precluding its development. This activity of Mitf requires the protein phosphatase 2 A holoenzyme STRIPAK-PP2A, but not Yki; Mitf transcriptional activity is potentiated by STRIPAK-PP2A in vitro and in vivo. Knockdown of STRIPAK-PP2A results in cytoplasmic retention of Mitf in vivo and in its decreased stability in vitro, highlighting two potential mechanisms for the control of Mitf function by STRIPAK-PP2A. Thus, Mitf functions in a context-dependent manner as a key determinant of form and fate in the Drosophila eye progenitor epithelium.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Neuroscience & Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4601, Syracuse, NY 13210, USA
| | - Qingxiang Zhou
- Department of Neuroscience & Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4601, Syracuse, NY 13210, USA
| | - Nisveta Jusić
- Department of Neuroscience & Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4601, Syracuse, NY 13210, USA
| | - Wenwen Lu
- Department of Neuroscience & Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4601, Syracuse, NY 13210, USA
| | - Francesca Pignoni
- Department of Neuroscience & Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4601, Syracuse, NY 13210, USA; Department of Ophthalmology and Visual Sciences; Department of Biochemistry and Molecular Biology; Department of Cell and Developmental Biology, USA.
| | - Scott J Neal
- Department of Neuroscience & Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4601, Syracuse, NY 13210, USA.
| |
Collapse
|
5
|
Boyan G, Ehrhardt E. From bristle to brain: embryonic development of topographic projections from basiconic sensilla in the antennal nervous system of the locust Schistocerca gregaria. Dev Genes Evol 2024; 234:33-44. [PMID: 38691194 PMCID: PMC11226553 DOI: 10.1007/s00427-024-00716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
The antennal flagellum of the locust S. gregaria is an articulated structure bearing a spectrum of sensilla that responds to sensory stimuli. In this study, we focus on the basiconic-type bristles as a model for sensory system development in the antenna. At the end of embryogenesis, these bristles are found at fixed locations and then on only the most distal six articulations of the antenna. They are innervated by a dendrite from a sensory cell cluster in the underlying epithelium, with each cluster directing fused axons topographically to an antennal tract running to the brain. We employ confocal imaging and immunolabeling to (a) identify mitotically active sense organ precursors for sensory cell clusters in the most distal annuli of the early embryonic antenna; (b) observe the subsequent spatial appearance of their neuronal progeny; and (c) map the spatial and temporal organization of axon projections from such clusters into the antennal tracts. We show that early in embryogenesis, proliferative precursors are localized circumferentially within discrete epithelial domains of the flagellum. Progeny first appear distally at the antennal tip and then sequentially in a proximal direction so that sensory neuron populations are distributed in an age-dependent manner along the antenna. Autotracing reveals that axon fasciculation with a tract is also sequential and reflects the location and age of the cell cluster along the most distal annuli. Cell cluster location and bristle location are therefore represented topographically and temporally within the axon profile of the tract and its projection to the brain.
Collapse
Affiliation(s)
- George Boyan
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, Martinsried, 82152, Planegg, Germany.
| | - Erica Ehrhardt
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, Martinsried, 82152, Planegg, Germany
- Institute of Zoology, AG Ito, Universität Zu Köln, Zülpicher Str. 47B, 50674, Cologne, Germany
| |
Collapse
|
6
|
Waghmare I, Gangwani K, Rai A, Singh A, Kango-Singh M. A Tumor-Specific Molecular Network Promotes Tumor Growth in Drosophila by Enforcing a Jun N-Terminal Kinase-Yorkie Feedforward Loop. Cancers (Basel) 2024; 16:1768. [PMID: 38730720 PMCID: PMC11083887 DOI: 10.3390/cancers16091768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Cancer cells expand rapidly in response to altered intercellular and signaling interactions to achieve the hallmarks of cancer. Impaired cell polarity combined with activated oncogenes is known to promote several hallmarks of cancer, e.g., activating invasion by increased activity of Jun N-terminal kinase (JNK) and sustained proliferative signaling by increased activity of Hippo effector Yorkie (Yki). Thus, JNK, Yki, and their downstream transcription factors have emerged as synergistic drivers of tumor growth through pro-tumor signaling and intercellular interactions like cell competition. However, little is known about the signals that converge onto JNK and Yki in tumor cells and enable tumor cells to achieve the hallmarks of cancer. Here, using mosaic models of cooperative oncogenesis (RasV12,scrib-) in Drosophila, we show that RasV12,scrib- tumor cells grow through the activation of a previously unidentified network comprising Wingless (Wg), Dronc, JNK, and Yki. We show that RasV12,scrib- cells show increased Wg, Dronc, JNK, and Yki signaling, and all these signals are required for the growth of RasV12,scrib- tumors. We report that Wg and Dronc converge onto a JNK-Yki self-reinforcing positive feedback signal-amplification loop that promotes tumor growth. We found that the Wg-Dronc-Yki-JNK molecular network is specifically activated in polarity-impaired tumor cells and not in normal cells, in which apical-basal polarity remains intact. Our findings suggest that the identification of molecular networks may provide significant insights into the key biologically meaningful changes in signaling pathways and paradoxical signals that promote tumorigenesis.
Collapse
Affiliation(s)
- Indrayani Waghmare
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (I.W.); (A.R.); (A.S.)
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Karishma Gangwani
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (I.W.); (A.R.); (A.S.)
- Computational Biology Department, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Arushi Rai
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (I.W.); (A.R.); (A.S.)
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (I.W.); (A.R.); (A.S.)
- Premedical Programs, University of Dayton, Dayton, OH 45469, USA
- Integrative Science and Engineering Centre (ISE), University of Dayton, Dayton, OH 45469, USA
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (I.W.); (A.R.); (A.S.)
- Premedical Programs, University of Dayton, Dayton, OH 45469, USA
- Integrative Science and Engineering Centre (ISE), University of Dayton, Dayton, OH 45469, USA
| |
Collapse
|
7
|
Cho B, Shin M, Chang E, Son S, Shin I, Shim J. S-nitrosylation-triggered unfolded protein response maintains hematopoietic progenitors in Drosophila. Dev Cell 2024; 59:1075-1090.e6. [PMID: 38521056 DOI: 10.1016/j.devcel.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/27/2023] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
The Drosophila lymph gland houses blood progenitors that give rise to myeloid-like blood cells. Initially, blood progenitors proliferate, but later, they become quiescent to maintain multipotency before differentiation. Despite the identification of various factors involved in multipotency maintenance, the cellular mechanism controlling blood progenitor quiescence remains elusive. Here, we identify the expression of nitric oxide synthase in blood progenitors, generating nitric oxide for post-translational S-nitrosylation of protein cysteine residues. S-nitrosylation activates the Ire1-Xbp1-mediated unfolded protein response, leading to G2 cell-cycle arrest. Specifically, we identify the epidermal growth factor receptor as a target of S-nitrosylation, resulting in its retention within the endoplasmic reticulum and blockade of its receptor function. Overall, our findings highlight developmentally programmed S-nitrosylation as a critical mechanism that induces protein quality control in blood progenitors, maintaining their undifferentiated state by inhibiting cell-cycle progression and rendering them unresponsive to paracrine factors.
Collapse
Affiliation(s)
- Bumsik Cho
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Mingyu Shin
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunji Chang
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Seogho Son
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Incheol Shin
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Jiwon Shim
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
8
|
Moriya A, Otsuka K, Naoi R, Terahata M, Takeda K, Kondo S, Adachi-Yamada T. Creation of Knock-In Alleles of Insulin Receptor Tagged by Fluorescent Proteins mCherry or EYFP in Fruit Fly Drosophila melanogaster. Zoolog Sci 2024; 41:230-243. [PMID: 38587918 DOI: 10.2108/zs230075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/19/2023] [Indexed: 04/10/2024]
Abstract
The insulin/insulin-like growth factor-like signaling (IIS) pathway is highly conserved across metazoans and regulates numerous physiological functions, including development, metabolism, fecundity, and lifespan. The insulin receptor (InR), a crucial membrane receptor in the IIS pathway, is known to be ubiquitously expressed in various tissues, albeit at generally low levels, and its subcellular localization remains incompletely characterized. In this study, we employed CRISPR-mediated mutagenesis in the fruit fly Drosophila to create knock-in alleles of InR tagged with fluorescent proteins (InR::mCherry or InR::EYFP). By inserting the coding sequence of the fluorescent proteins mCherry or EYFP near the end of the coding sequence of the endogenous InR gene, we could trace the natural InR protein through their fluorescence. As an example, we investigated epithelial cells of the male accessory gland (AG), an internal reproductive organ, and identified two distinct patterns of InR::mCherry localization. In young AG, InR::mCherry accumulated on the basal plasma membrane between cells, whereas in mature AG, it exhibited intracellular localization as multiple puncta, indicating endocytic recycling of InR during cell growth. In the AG senescence accelerated by the mutation of Diuretic hormone 31 (Dh31), the presence of InR::mCherry puncta was more pronounced compared to the wild type. These findings raise expectations for the utility of the newly created InR::mCherry/EYFP alleles for studying the precise expression levels and subcellular localization of InR. Furthermore, this fluorescently tagged allele approach can be extended to investigate other membrane receptors with low abundance, facilitating the direct examination of their true expression and localization.
Collapse
Affiliation(s)
- Ayano Moriya
- Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Kei Otsuka
- Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Riku Naoi
- Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Mayu Terahata
- Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Koji Takeda
- Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan
| | - Takashi Adachi-Yamada
- Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan,
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
9
|
Wang X, Zhai Y, Zheng H. Deciphering the cellular heterogeneity of the insect brain with single-cell RNA sequencing. INSECT SCIENCE 2024; 31:314-327. [PMID: 37702319 DOI: 10.1111/1744-7917.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023]
Abstract
Insects show highly complicated adaptive and sophisticated behaviors, including spatial orientation skills, learning ability, and social interaction. These behaviors are controlled by the insect brain, the central part of the nervous system. The tiny insect brain consists of millions of highly differentiated and interconnected cells forming a complex network. Decades of research has gone into an understanding of which parts of the insect brain possess particular behaviors, but exactly how they modulate these functional consequences needs to be clarified. Detailed description of the brain and behavior is required to decipher the complexity of cell types, as well as their connectivity and function. Single-cell RNA-sequencing (scRNA-seq) has emerged recently as a breakthrough technology to understand the transcriptome at cellular resolution. With scRNA-seq, it is possible to uncover the cellular heterogeneity of brain cells and elucidate their specific functions and state. In this review, we first review the basic structure of insect brains and the links to insect behaviors mainly focusing on learning and memory. Then the scRNA applications on insect brains are introduced by representative studies. Single-cell RNA-seq has allowed researchers to classify cell subpopulations within different insect brain regions, pinpoint single-cell developmental trajectories, and identify gene regulatory networks. These developments empower the advances in neuroscience and shed light on the intricate problems in understanding insect brain functions and behaviors.
Collapse
Affiliation(s)
- Xiaofei Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and In-sect Pests, Jinan, China
| | - Hao Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Link N, Harnish JM, Hull B, Gibson S, Dietze M, Mgbike UE, Medina-Balcazar S, Shah PS, Yamamoto S. A Zika virus protein expression screen in Drosophila to investigate targeted host pathways during development. Dis Model Mech 2024; 17:dmm050297. [PMID: 38214058 PMCID: PMC10924231 DOI: 10.1242/dmm.050297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
In the past decade, Zika virus (ZIKV) emerged as a global public health concern. Although adult infections are typically mild, maternal infection can lead to adverse fetal outcomes. Understanding how ZIKV proteins disrupt development can provide insights into the molecular mechanisms of disease caused by this virus, which includes microcephaly. In this study, we generated a toolkit to ectopically express ZIKV proteins in vivo in Drosophila melanogaster in a tissue-specific manner using the GAL4/UAS system. We used this toolkit to identify phenotypes and potential host pathways targeted by the virus. Our work identified that expression of most ZIKV proteins caused scorable phenotypes, such as overall lethality, gross morphological defects, reduced brain size and neuronal function defects. We further used this system to identify strain-dependent phenotypes that may have contributed to the increased pathogenesis associated with the outbreak of ZIKV in the Americas in 2015. Our work demonstrates the use of Drosophila as an efficient in vivo model to rapidly decipher how pathogens cause disease and lays the groundwork for further molecular study of ZIKV pathogenesis in flies.
Collapse
Affiliation(s)
- Nichole Link
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84112, USA
- Howard Hughes Medical Institute, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - J. Michael Harnish
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Brooke Hull
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Postbaccalaureate Research Education Program (PREP), Houston, TX, 77030, USA
| | - Shelley Gibson
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Miranda Dietze
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Silvia Medina-Balcazar
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Priya S. Shah
- Department of Chemical Engineering, Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, BCM, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Postbaccalaureate Research Education Program (PREP), Houston, TX, 77030, USA
- Department of Neuroscience, BCM, Houston, TX, 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX, 77030, USA
| |
Collapse
|
11
|
Son W, Jeong HS, Nam DE, Lee AJ, Nam SH, Lee JE, Choi BO, Chung KW. Peripheral Neuropathy and Decreased Locomotion of a RAB40B Mutation in Human and Model Animals. Exp Neurobiol 2023; 32:410-422. [PMID: 38196136 PMCID: PMC10789172 DOI: 10.5607/en23027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
Rab40 proteins are an atypical subgroup of Rab GTPases containing a unique suppressor of the cytokine signaling (SOCS) domain that is recruited to assemble the CRL5 E3 ligase complex for proteolytic regulation in various biological processes. A nonsense mutation deleting the C-terminal SOCS box in the RAB40B gene was identified in a family with axonal peripheral neuropathy (Charcot-Marie-Tooth disease type 2), and pathogenicity of the mutation was assessed in model organisms of zebrafish and Drosophila. Compared to control fish, zebrafish larvae transformed by the human mutant hRAB40B-Y83X showed a defective swimming pattern of stalling with restricted localization and slower motility. We were consistently able to observe reduced labeling of synaptic markers along neuromuscular junctions of the transformed larvae. In addition to the neurodevelopmental phenotypes, compared to normal hRAB40B expression, we further examined ectopic expression of hRAB40B-Y83X in Drosophila to show a progressive decline of locomotion ability. Decreased ability of locomotion by ubiquitous expression of the human mutation was reproduced not with GAL4 drivers for neuron-specific expression but only when a pan-glial GAL4 driver was applied. Using the ectopic expression model of Drosophila, we identified a genetic interaction in which Cul5 down regulation exacerbated the defective motor performance, showing a consistent loss of SOCS box of the pathogenic RAB40B. Taken together, we could assess the possible gain-of-function of the human RAB40B mutation by comparing behavioral phenotypes in animal models; our results suggest that the mutant phenotypes may be associated with CRL5-mediated proteolytic regulation.
Collapse
Affiliation(s)
- Wonseok Son
- Department of Biological Sciences and BK21 Team for Field-oriented BioCore Human Resources Development, Kongju National University, Gongju 32588, Korea
| | - Hui Su Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Korea
| | - Da Eun Nam
- Department of Biological Sciences and BK21 Team for Field-oriented BioCore Human Resources Development, Kongju National University, Gongju 32588, Korea
| | - Ah Jin Lee
- Department of Biological Sciences and BK21 Team for Field-oriented BioCore Human Resources Development, Kongju National University, Gongju 32588, Korea
| | - Soo Hyun Nam
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Ki Wha Chung
- Department of Biological Sciences and BK21 Team for Field-oriented BioCore Human Resources Development, Kongju National University, Gongju 32588, Korea
| |
Collapse
|
12
|
Manjón AG, Manzo SG, Prekovic S, Potgeter L, van Schaik T, Liu NQ, Flach K, Peric-Hupkes D, Joosten S, Teunissen H, Friskes A, Ilic M, Hintzen D, Franceschini-Santos VH, Zwart W, de Wit E, van Steensel B, Medema RH. Perturbations in 3D genome organization can promote acquired drug resistance. Cell Rep 2023; 42:113124. [PMID: 37733591 DOI: 10.1016/j.celrep.2023.113124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/05/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
Acquired drug resistance is a major problem in the treatment of cancer. hTERT-immortalized, untransformed RPE-1 cells can acquire resistance to Taxol by derepressing the ABCB1 gene, encoding for the multidrug transporter P-gP. Here, we investigate how the ABCB1 gene is derepressed. ABCB1 activation is associated with reduced H3K9 trimethylation, increased H3K27 acetylation, and ABCB1 displacement from the nuclear lamina. While altering DNA methylation and H3K27 methylation had no major impact on ABCB1 expression, nor did it promote resistance, disrupting the nuclear lamina component Lamin B Receptor did promote the acquisition of a Taxol-resistant phenotype in a subset of cells. CRISPRa-mediated gene activation supported the notion that lamina dissociation influences ABCB1 derepression. We propose a model in which nuclear lamina dissociation of a repressed gene allows for its activation, implying that deregulation of the 3D genome topology could play an important role in tumor evolution and the acquisition of drug resistance.
Collapse
Affiliation(s)
- Anna G Manjón
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Stefano Giustino Manzo
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Stefan Prekovic
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Leon Potgeter
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Tom van Schaik
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Ning Qing Liu
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Department of Hematology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, the Netherlands
| | - Koen Flach
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Daniel Peric-Hupkes
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Stacey Joosten
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Hans Teunissen
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Anoek Friskes
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Mila Ilic
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Dorine Hintzen
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Vinícius H Franceschini-Santos
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Wilbert Zwart
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Bas van Steensel
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands.
| | - René H Medema
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
13
|
Godfrey RK, Alsop E, Bjork RT, Chauhan BS, Ruvalcaba HC, Antone J, Gittings LM, Michael AF, Williams C, Hala'ufia G, Blythe AD, Hall M, Sattler R, Van Keuren-Jensen K, Zarnescu DC. Modelling TDP-43 proteinopathy in Drosophila uncovers shared and neuron-specific targets across ALS and FTD relevant circuits. Acta Neuropathol Commun 2023; 11:168. [PMID: 37864255 PMCID: PMC10588218 DOI: 10.1186/s40478-023-01656-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/19/2023] [Indexed: 10/22/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) comprise a spectrum of neurodegenerative diseases linked to TDP-43 proteinopathy, which at the cellular level, is characterized by loss of nuclear TDP-43 and accumulation of cytoplasmic TDP-43 inclusions that ultimately cause RNA processing defects including dysregulation of splicing, mRNA transport and translation. Complementing our previous work in motor neurons, here we report a novel model of TDP-43 proteinopathy based on overexpression of TDP-43 in a subset of Drosophila Kenyon cells of the mushroom body (MB), a circuit with structural characteristics reminiscent of vertebrate cortical networks. This model recapitulates several aspects of dementia-relevant pathological features including age-dependent neuronal loss, nuclear depletion and cytoplasmic accumulation of TDP-43, and behavioral deficits in working memory and sleep that occur prior to axonal degeneration. RNA immunoprecipitations identify several candidate mRNA targets of TDP-43 in MBs, some of which are unique to the MB circuit and others that are shared with motor neurons. Among the latter is the glypican Dally-like-protein (Dlp), which exhibits significant TDP-43 associated reduction in expression during aging. Using genetic interactions we show that overexpression of Dlp in MBs mitigates TDP-43 dependent working memory deficits, conistent with Dlp acting as a mediator of TDP-43 toxicity. Substantiating our findings in the fly model, we find that the expression of GPC6 mRNA, a human ortholog of dlp, is specifically altered in neurons exhibiting the molecular signature of TDP-43 pathology in FTD patient brains. These findings suggest that circuit-specific Drosophila models provide a platform for uncovering shared or disease-specific molecular mechanisms and vulnerabilities across the spectrum of TDP-43 proteinopathies.
Collapse
Affiliation(s)
- R Keating Godfrey
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA.
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL, 32611, USA.
| | - Eric Alsop
- Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Reed T Bjork
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Brijesh S Chauhan
- Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive Crescent Building C4605, Hershey, PA, 17033, USA
| | - Hillary C Ruvalcaba
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Jerry Antone
- Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Lauren M Gittings
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Allison F Michael
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Christi Williams
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Grace Hala'ufia
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Alexander D Blythe
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Megan Hall
- Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Rita Sattler
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | | | - Daniela C Zarnescu
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA.
- Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive Crescent Building C4605, Hershey, PA, 17033, USA.
| |
Collapse
|
14
|
Tello JA, Jiang L, Zohar Y, Restifo LL. Drosophila CASK regulates brain size and neuronal morphogenesis, providing a genetic model of postnatal microcephaly suitable for drug discovery. Neural Dev 2023; 18:6. [PMID: 37805506 PMCID: PMC10559581 DOI: 10.1186/s13064-023-00174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND CASK-related neurodevelopmental disorders are untreatable. Affected children show variable severity, with microcephaly, intellectual disability (ID), and short stature as common features. X-linked human CASK shows dosage sensitivity with haploinsufficiency in females. CASK protein has multiple domains, binding partners, and proposed functions at synapses and in the nucleus. Human and Drosophila CASK show high amino-acid-sequence similarity in all functional domains. Flies homozygous for a hypomorphic CASK mutation (∆18) have motor and cognitive deficits. A Drosophila genetic model of CASK-related disorders could have great scientific and translational value. METHODS We assessed the effects of CASK loss of function on morphological phenotypes in Drosophila using established genetic, histological, and primary neuronal culture approaches. NeuronMetrics software was used to quantify neurite-arbor morphology. Standard nonparametric statistics methods were supplemented by linear mixed effects modeling in some cases. Microfluidic devices of varied dimensions were fabricated and numerous fluid-flow parameters were used to induce oscillatory stress fields on CNS tissue. Dissociation into viable neurons and neurite outgrowth in vitro were assessed. RESULTS We demonstrated that ∆18 homozygous flies have small brains, small heads, and short bodies. When neurons from developing CASK-mutant CNS were cultured in vitro, they grew small neurite arbors with a distinctive, quantifiable "bushy" morphology that was significantly rescued by transgenic CASK+. As in humans, the bushy phenotype showed dosage-sensitive severity. To overcome the limitations of manual tissue trituration for neuronal culture, we optimized the design and operation of a microfluidic system for standardized, automated dissociation of CNS tissue into individual viable neurons. Neurons from CASK-mutant CNS dissociated in the microfluidic system recapitulate the bushy morphology. Moreover, for any given genotype, device-dissociated neurons grew larger arbors than did manually dissociated neurons. This automated dissociation method is also effective for rodent CNS. CONCLUSIONS These biological and engineering advances set the stage for drug discovery using the Drosophila model of CASK-related disorders. The bushy phenotype provides a cell-based assay for compound screening. Nearly a dozen genes encoding CASK-binding proteins or transcriptional targets also have brain-development mutant phenotypes, including ID. Hence, drugs that improve CASK phenotypes might also benefit children with disorders due to mutant CASK partners.
Collapse
Affiliation(s)
- Judith A Tello
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
- Department of Neurology, University of Arizona Health Sciences, 1501 N. Campbell Ave, Tucson, AZ, 85724-5023, USA
- Present address: Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
- BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Linda L Restifo
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Neurology, University of Arizona Health Sciences, 1501 N. Campbell Ave, Tucson, AZ, 85724-5023, USA.
- BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Cellular & Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ, 85724, USA.
| |
Collapse
|
15
|
Davis RL. Learning and memory using Drosophila melanogaster: a focus on advances made in the fifth decade of research. Genetics 2023; 224:iyad085. [PMID: 37212449 PMCID: PMC10411608 DOI: 10.1093/genetics/iyad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
In the last decade, researchers using Drosophila melanogaster have made extraordinary progress in uncovering the mysteries underlying learning and memory. This progress has been propelled by the amazing toolkit available that affords combined behavioral, molecular, electrophysiological, and systems neuroscience approaches. The arduous reconstruction of electron microscopic images resulted in a first-generation connectome of the adult and larval brain, revealing complex structural interconnections between memory-related neurons. This serves as substrate for future investigations on these connections and for building complete circuits from sensory cue detection to changes in motor behavior. Mushroom body output neurons (MBOn) were discovered, which individually forward information from discrete and non-overlapping compartments of the axons of mushroom body neurons (MBn). These neurons mirror the previously discovered tiling of mushroom body axons by inputs from dopamine neurons and have led to a model that ascribes the valence of the learning event, either appetitive or aversive, to the activity of different populations of dopamine neurons and the balance of MBOn activity in promoting avoidance or approach behavior. Studies of the calyx, which houses the MBn dendrites, have revealed a beautiful microglomeruluar organization and structural changes of synapses that occur with long-term memory (LTM) formation. Larval learning has advanced, positioning it to possibly lead in producing new conceptual insights due to its markedly simpler structure over the adult brain. Advances were made in how cAMP response element-binding protein interacts with protein kinases and other transcription factors to promote the formation of LTM. New insights were made on Orb2, a prion-like protein that forms oligomers to enhance synaptic protein synthesis required for LTM formation. Finally, Drosophila research has pioneered our understanding of the mechanisms that mediate permanent and transient active forgetting, an important function of the brain along with acquisition, consolidation, and retrieval. This was catalyzed partly by the identification of memory suppressor genes-genes whose normal function is to limit memory formation.
Collapse
Affiliation(s)
- Ronald L Davis
- Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
16
|
Avellino A, Peng CH, Lin MD. Cell Cycle Regulation by NF-YC in Drosophila Eye Imaginal Disc: Implications for Synchronization in the Non-Proliferative Region. Int J Mol Sci 2023; 24:12203. [PMID: 37569581 PMCID: PMC10418845 DOI: 10.3390/ijms241512203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Cell cycle progression during development is meticulously coordinated with differentiation. This is particularly evident in the Drosophila 3rd instar eye imaginal disc, where the cell cycle is synchronized and arrests at the G1 phase in the non-proliferative region (NPR), setting the stage for photoreceptor cell differentiation. Here, we identify the transcription factor Nuclear Factor-YC (NF-YC) as a crucial player in this finely tuned progression, elucidating its specific role in the synchronized movement of the morphogenetic furrow. Depletion of NF-YC leads to extended expression of Cyclin A (CycA) and Cyclin B (CycB) from the FMW to the NPR. Notably, NF-YC knockdown resulted in decreased expression of Eyes absent (Eya) but did not affect Decapentaplegic (Dpp) and Hedgehog (Hh). Our findings highlight the role of NF-YC in restricting the expression of CycA and CycB in the NPR, thereby facilitating cell-cycle synchronization. Moreover, we identify the transcriptional cofactor Eya as a downstream target of NF-YC, revealing a new regulatory pathway in Drosophila eye development. This study expands our understanding of NF-YC's role from cell cycle control to encompass developmental processes.
Collapse
Affiliation(s)
- Anthony Avellino
- Department of Molecular Biology and Human Genetics, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan;
| | - Chen-Huan Peng
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 707 Zhongyang Rd., Sec. 3, Hualien 97002, Taiwan;
- School of Medicine, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
| | - Ming-Der Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
| |
Collapse
|
17
|
Ahmed M, Rajagopalan AE, Pan Y, Li Y, Williams DL, Pedersen EA, Thakral M, Previero A, Close KC, Christoforou CP, Cai D, Turner GC, Clowney EJ. Input density tunes Kenyon cell sensory responses in the Drosophila mushroom body. Curr Biol 2023; 33:2742-2760.e12. [PMID: 37348501 PMCID: PMC10529417 DOI: 10.1016/j.cub.2023.05.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/02/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
The ability to discriminate sensory stimuli with overlapping features is thought to arise in brain structures called expansion layers, where neurons carrying information about sensory features make combinatorial connections onto a much larger set of cells. For 50 years, expansion coding has been a prime topic of theoretical neuroscience, which seeks to explain how quantitative parameters of the expansion circuit influence sensory sensitivity, discrimination, and generalization. Here, we investigate the developmental events that produce the quantitative parameters of the arthropod expansion layer, called the mushroom body. Using Drosophila melanogaster as a model, we employ genetic and chemical tools to engineer changes to circuit development. These allow us to produce living animals with hypothesis-driven variations on natural expansion layer wiring parameters. We then test the functional and behavioral consequences. By altering the number of expansion layer neurons (Kenyon cells) and their dendritic complexity, we find that input density, but not cell number, tunes neuronal odor selectivity. Simple odor discrimination behavior is maintained when the Kenyon cell number is reduced and augmented by Kenyon cell number expansion. Animals with increased input density to each Kenyon cell show increased overlap in Kenyon cell odor responses and become worse at odor discrimination tasks.
Collapse
Affiliation(s)
- Maria Ahmed
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adithya E Rajagopalan
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yijie Pan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ye Li
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Donnell L Williams
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erik A Pedersen
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Manav Thakral
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Angelica Previero
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kari C Close
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | | | - Dawen Cai
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48104, USA; Biophysics LS&A, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, MI 48109, USA
| | - Glenn C Turner
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
18
|
Xing Y, Larson K, Li J, Li WX. Canonical and non-canonical functions of STAT in germline stem cell maintenance. Dev Dyn 2023; 252:728-741. [PMID: 36866634 PMCID: PMC10238624 DOI: 10.1002/dvdy.576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Maintenance of the Drosophila male germline stem cells (GSCs) requires activation of the Janus kinase/signal transducer and activators of transcription (JAK/STAT) pathway by niche signals. The precise role of JAK/STAT signaling in GSC maintenance, however, remains incompletely understood. RESULTS Here, we show that, GSC maintenance requires both canonical and non-canonical JAK/STAT signaling, in which unphosphorylated STAT (uSTAT) maintains heterochromatin stability by binding to heterochromatin protein 1 (HP1). We found that GSC-specific overexpressing STAT, or even the transcriptionally inactive mutant STAT, increases GSC number and partially rescues the GSC-loss mutant phenotype due to reduced JAK activity. Furthermore, we found that both HP1 and STAT are transcriptional targets of the canonical JAK/STAT pathway in GSCs, and that GSCs exhibit higher heterochromatin content. CONCLUSIONS These results suggest that persistent JAK/STAT activation by niche signals leads to the accumulation of HP1 and uSTAT in GSCs, which promote heterochromatin formation important for maintaining GSC identity. Thus, the maintenance of Drosophila GSCs requires both canonical and non-canonical STAT functions within GSCs for heterochromatin regulation.
Collapse
Affiliation(s)
- Yalan Xing
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642
| | - Kimberly Larson
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642
| | - Jinghong Li
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093
| | - Willis X. Li
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
19
|
Mangione F, Titlow J, Maclachlan C, Gho M, Davis I, Collinson L, Tapon N. Co-option of epidermal cells enables touch sensing. Nat Cell Biol 2023; 25:540-549. [PMID: 36959505 PMCID: PMC10104782 DOI: 10.1038/s41556-023-01110-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 02/20/2023] [Indexed: 03/25/2023]
Abstract
The epidermis is equipped with specialized mechanosensory organs that enable the detection of tactile stimuli. Here, by examining the differentiation of the tactile bristles, mechanosensory organs decorating the Drosophila adult epidermis, we show that neighbouring epidermal cells are essential for touch perception. Each mechanosensory bristle signals to the surrounding epidermis to co-opt a single epidermal cell, which we named the F-Cell. Once specified, the F-Cell adopts a specialized morphology to ensheath each bristle. Functional assays reveal that adult mechanosensory bristles require association with the epidermal F-Cell for touch sensing. Our findings underscore the importance of resident epidermal cells in the assembly of functional touch-sensitive organs.
Collapse
Affiliation(s)
- Federica Mangione
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, London, UK.
| | - Joshua Titlow
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Catherine Maclachlan
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Michel Gho
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement, Institut de Biologie Paris Seine (LBD-IBPS), Paris, France
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
20
|
Lei Y, Huang Y, Yang K, Cao X, Song Y, Martín-Blanco E, Pastor-Pareja JC. FGF signaling promotes spreading of fat body precursors necessary for adult adipogenesis in Drosophila. PLoS Biol 2023; 21:e3002050. [PMID: 36947563 PMCID: PMC10069774 DOI: 10.1371/journal.pbio.3002050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 04/03/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023] Open
Abstract
Knowledge of adipogenetic mechanisms is essential to understand and treat conditions affecting organismal metabolism and adipose tissue health. In Drosophila, mature adipose tissue (fat body) exists in larvae and adults. In contrast to the well-known development of the larval fat body from the embryonic mesoderm, adult adipogenesis has remained mysterious. Furthermore, conclusive proof of its physiological significance is lacking. Here, we show that the adult fat body originates from a pool of undifferentiated mesodermal precursors that migrate from the thorax into the abdomen during metamorphosis. Through in vivo imaging, we found that these precursors spread from the ventral midline and cover the inner surface of the abdomen in a process strikingly reminiscent of embryonic mesoderm migration, requiring fibroblast growth factor (FGF) signaling as well. FGF signaling guides migration dorsally and regulates adhesion to the substrate. After spreading is complete, precursor differentiation involves fat accumulation and cell fusion that produces mature binucleate and tetranucleate adipocytes. Finally, we show that flies where adult adipogenesis is impaired by knock down of FGF receptor Heartless or transcription factor Serpent display ectopic fat accumulation in oenocytes and decreased resistance to starvation. Our results reveal that adult adipogenesis occurs de novo during metamorphosis and demonstrate its crucial physiological role.
Collapse
Affiliation(s)
- Yuting Lei
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuwei Huang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ke Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xueya Cao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuzhao Song
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Enrique Martín-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, Barcelona, Spain
| | - José Carlos Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Institute of Neurosciences, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, San Juan de Alicante, Spain
| |
Collapse
|
21
|
Ikawa K, Ishihara S, Tamori Y, Sugimura K. Attachment and detachment of cortical myosin regulates cell junction exchange during cell rearrangement in the Drosophila wing epithelium. Curr Biol 2023; 33:263-275.e4. [PMID: 36543168 DOI: 10.1016/j.cub.2022.11.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/12/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Epithelial cells remodel cell adhesion and change their neighbors to shape a tissue. This cellular rearrangement proceeds in three steps: the shrinkage of a junction, exchange of junctions, and elongation of the newly generated junction. Herein, by combining live imaging and physical modeling, we showed that the formation of myosin-II (myo-II) cables around the cell vertices underlies the exchange of junctions in the Drosophila wing epithelium. The local and transient detachment of myo-II from the cell cortex is regulated by the LIM domain-containing protein Jub and the tricellular septate junction protein M6. Moreover, we found that M6 shifts to the adherens junction plane on jub RNAi and that Jub is persistently retained at reconnecting junctions in m6 RNAi cells. This interplay between Jub and M6 can depend on the junction length and thereby couples the detachment of cortical myo-II cables and the shrinkage/elongation of the junction during cell rearrangement. Furthermore, we developed a mechanical model based on the wetting theory and clarified how the physical properties of myo-II cables are integrated with the junction geometry to induce the transition between the attached and detached states and support the unidirectionality of cell rearrangement. Collectively, this study elucidates the orchestration of geometry, mechanics, and signaling for exchanging junctions.
Collapse
Affiliation(s)
- Keisuke Ikawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan.
| | - Shuji Ishihara
- Department of Integrated Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan; Universal Biology Institute, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoichiro Tamori
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Kaoru Sugimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Universal Biology Institute, The University of Tokyo, Tokyo 113-0033, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan.
| |
Collapse
|
22
|
Xiong XP, Liang W, Liu W, Xu S, Li JL, Tito A, Situ J, Martinez D, Wu C, Perera RJ, Zhang S, Zhou R. The circular RNA Edis regulates neurodevelopment and innate immunity. PLoS Genet 2022; 18:e1010429. [PMID: 36301822 PMCID: PMC9612488 DOI: 10.1371/journal.pgen.1010429] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/13/2022] [Indexed: 11/07/2022] Open
Abstract
Circular RNAs (circRNAs) are widely expressed in eukaryotes. However, only a subset has been functionally characterized. We identify and validate a collection of circRNAs in Drosophila, and show that depletion of the brain-enriched circRNA Edis (circ_Ect4) causes hyperactivation of antibacterial innate immunity both in cultured cells and in vivo. Notably, Edis depleted flies display heightened resistance to bacterial infection and enhanced pathogen clearance. Conversely, ectopic Edis expression blocks innate immunity signaling. In addition, inactivation of Edis in vivo leads to impaired locomotor activity and shortened lifespan. Remarkably, these phenotypes can be recapitulated with neuron-specific depletion of Edis, accompanied by defective neurodevelopment. Furthermore, inactivation of Relish suppresses the innate immunity hyperactivation phenotype in the fly brain. Moreover, we provide evidence that Edis encodes a functional protein that associates with and compromises the processing and activation of the immune transcription factor Relish. Importantly, restoring Edis expression or ectopic expression of Edis-encoded protein suppresses both innate immunity and neurodevelopment phenotypes elicited by Edis depletion. Thus, our study establishes Edis as a key regulator of neurodevelopment and innate immunity.
Collapse
Affiliation(s)
- Xiao-Peng Xiong
- Tumor Initiation and Maintenance Program; NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Weihong Liang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Cancer and Blood Disorders Institute. Johns Hopkins All Children’s Hospital, Saint Petersburg, Florida, United States of America
- Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, Saint Petersburg, Florida, United States of America
| | - Wei Liu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Cancer and Blood Disorders Institute. Johns Hopkins All Children’s Hospital, Saint Petersburg, Florida, United States of America
- Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, Saint Petersburg, Florida, United States of America
| | - Shiyu Xu
- The Brown Foundation Institute of Molecular Medicine, Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Jian-Liang Li
- Tumor Initiation and Maintenance Program; NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- National Institute of Environmental Health Sciences, Durham, North Carolina, United States of America
| | - Antonio Tito
- The Brown Foundation Institute of Molecular Medicine, Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Julia Situ
- Tumor Initiation and Maintenance Program; NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Daniel Martinez
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Chunlai Wu
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Ranjan J. Perera
- Tumor Initiation and Maintenance Program; NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Cancer and Blood Disorders Institute. Johns Hopkins All Children’s Hospital, Saint Petersburg, Florida, United States of America
- Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, Saint Petersburg, Florida, United States of America
| | - Sheng Zhang
- The Brown Foundation Institute of Molecular Medicine, Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Programs in Genetics & Epigenetics and Neuroscience, the University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Rui Zhou
- Tumor Initiation and Maintenance Program; NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Cancer and Blood Disorders Institute. Johns Hopkins All Children’s Hospital, Saint Petersburg, Florida, United States of America
- Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, Saint Petersburg, Florida, United States of America
| |
Collapse
|
23
|
Trivedi S, Bhattacharya M, Starz-Gaiano M. Mind bomb 2 promotes cell migration and epithelial structure by regulating adhesion complexes and the actin cytoskeleton. Dev Biol 2022; 491:94-104. [PMID: 36067835 DOI: 10.1016/j.ydbio.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 07/29/2022] [Accepted: 08/27/2022] [Indexed: 11/03/2022]
Abstract
Cell migration is essential in animal development and co-opted during metastasis and inflammatory diseases. Some cells migrate collectively, which requires them to balance epithelial characteristics such as stable cell-cell adhesions with features of motility like rapid turnover of adhesions and dynamic cytoskeletal structures. How this is regulated is not entirely clear but important to understand. While investigating Drosophila oogenesis, we found that the putative E3 ubiquitin ligase, Mind bomb 2 (Mib2), is required to promote epithelial stability and the collective cell migration of border cells. Through biochemical analysis, we identified components of Mib2 complexes, which include E-cadherin and α- and β-catenins, as well as actin regulators. We also found that three Mib2 interacting proteins, RhoGAP19D, Supervillin, and Myosin heavy chain-like, affect border cell migration. mib2 mutant main body follicle cells have drastically reduced E-cadherin-based adhesion complexes and diminished actin filaments. We conclude that Mib2 acts to stabilize E-cadherin-based adhesion complexes and promote a robust actin cytoskeletal network, which is important for maintenance of epithelial integrity. The interaction with cadherin adhesion complexes and other cytoskeletal regulators contribute to its role in collective cell migration. Since Mib2 is well conserved, it may have similar functional significance in other organisms.
Collapse
Affiliation(s)
- Sunny Trivedi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Mallika Bhattacharya
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA.
| |
Collapse
|
24
|
Ray A, Li X. A Notch-dependent transcriptional mechanism controls expression of temporal patterning factors in Drosophila medulla. eLife 2022; 11:e75879. [PMID: 36040415 PMCID: PMC9427115 DOI: 10.7554/elife.75879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Temporal patterning is an important mechanism for generating a great diversity of neuron subtypes from a seemingly homogenous progenitor pool in both vertebrates and invertebrates. Drosophila neuroblasts are temporally patterned by sequentially expressed Temporal Transcription Factors (TTFs). These TTFs are proposed to form a transcriptional cascade based on mutant phenotypes, although direct transcriptional regulation between TTFs has not been verified in most cases. Furthermore, it is not known how the temporal transitions are coupled with the generation of the appropriate number of neurons at each stage. We use neuroblasts of the Drosophila optic lobe medulla to address these questions and show that the expression of TTFs Sloppy-paired 1/2 (Slp1/2) is directly regulated at the transcriptional level by two other TTFs and the cell-cycle dependent Notch signaling through two cis-regulatory elements. We also show that supplying constitutively active Notch can rescue the delayed transition into the Slp stage in cell cycle arrested neuroblasts. Our findings reveal a novel Notch-pathway dependent mechanism through which the cell cycle progression regulates the timing of a temporal transition within a TTF transcriptional cascade.
Collapse
Affiliation(s)
- Alokananda Ray
- Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Xin Li
- Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| |
Collapse
|
25
|
Zheng Z, Li F, Fisher C, Ali IJ, Sharifi N, Calle-Schuler S, Hsu J, Masoodpanah N, Kmecova L, Kazimiers T, Perlman E, Nichols M, Li PH, Jain V, Bock DD. Structured sampling of olfactory input by the fly mushroom body. Curr Biol 2022; 32:3334-3349.e6. [PMID: 35797998 PMCID: PMC9413950 DOI: 10.1016/j.cub.2022.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/07/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Associative memory formation and recall in the fruit fly Drosophila melanogaster is subserved by the mushroom body (MB). Upon arrival in the MB, sensory information undergoes a profound transformation from broadly tuned and stereotyped odorant responses in the olfactory projection neuron (PN) layer to narrowly tuned and nonstereotyped responses in the Kenyon cells (KCs). Theory and experiment suggest that this transformation is implemented by random connectivity between KCs and PNs. However, this hypothesis has been challenging to test, given the difficulty of mapping synaptic connections between large numbers of brain-spanning neurons. Here, we used a recent whole-brain electron microscopy volume of the adult fruit fly to map PN-to-KC connectivity at synaptic resolution. The PN-KC connectome revealed unexpected structure, with preponderantly food-responsive PN types converging at above-chance levels on downstream KCs. Axons of the overconvergent PN types tended to arborize near one another in the MB main calyx, making local KC dendrites more likely to receive input from those types. Overconvergent PN types preferentially co-arborize and connect with dendrites of αβ and α'β' KC subtypes. Computational simulation of the observed network showed degraded discrimination performance compared with a random network, except when all signal flowed through the overconvergent, primarily food-responsive PN types. Additional theory and experiment will be needed to fully characterize the impact of the observed non-random network structure on associative memory formation and recall.
Collapse
Affiliation(s)
- Zhihao Zheng
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Corey Fisher
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Iqbal J Ali
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Nadiya Sharifi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Steven Calle-Schuler
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Joseph Hsu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Najla Masoodpanah
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Lucia Kmecova
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Tom Kazimiers
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Kazmos GmbH, Dresden, Germany
| | - Eric Perlman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Yikes LLC, Baltimore, MD, USA
| | - Matthew Nichols
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | | | | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
26
|
Pfeifer K, Wolfstetter G, Anthonydhason V, Masudi T, Arefin B, Bemark M, Mendoza-Garcia P, Palmer RH. Patient-associated mutations in Drosophila Alk perturb neuronal differentiation and promote survival. Dis Model Mech 2022; 15:dmm049591. [PMID: 35972154 PMCID: PMC9403751 DOI: 10.1242/dmm.049591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
Activating anaplastic lymphoma kinase (ALK) receptor tyrosine kinase (RTK) mutations occur in pediatric neuroblastoma and are associated with poor prognosis. To study ALK-activating mutations in a genetically controllable system, we employed CRIPSR/Cas9, incorporating orthologs of the human oncogenic mutations ALKF1174L and ALKY1278S in the Drosophila Alk locus. AlkF1251L and AlkY1355S mutant Drosophila exhibited enhanced Alk signaling phenotypes, but unexpectedly depended on the Jelly belly (Jeb) ligand for activation. Both AlkF1251L and AlkY1355S mutant larval brains displayed hyperplasia, represented by increased numbers of Alk-positive neurons. Despite this hyperplasic phenotype, no brain tumors were observed in mutant animals. We showed that hyperplasia in Alk mutants was not caused by significantly increased rates of proliferation, but rather by decreased levels of apoptosis in the larval brain. Using single-cell RNA sequencing, we identified perturbations during temporal fate specification in AlkY1355S mutant mushroom body lineages. These findings shed light on the role of Alk in neurodevelopmental processes and highlight the potential of Alk-activating mutations to perturb specification and promote survival in neuronal lineages. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kathrin Pfeifer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Georg Wolfstetter
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Vimala Anthonydhason
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Tafheem Masudi
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Badrul Arefin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Mats Bemark
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Patricia Mendoza-Garcia
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
27
|
Wu JW, Wang CW, Chen RY, Hung LY, Tsai YC, Chan YT, Chang YC, Jang ACC. Spatiotemporal gating of Stat nuclear influx by Drosophila Npas4 in collective cell migration. SCIENCE ADVANCES 2022; 8:eabm2411. [PMID: 35867785 PMCID: PMC9307255 DOI: 10.1126/sciadv.abm2411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Collective migration is important to embryonic development and cancer metastasis, but migratory and nonmigratory cell fate discrimination by differential activity of signal pathways remains elusive. In Drosophila oogenesis, Jak/Stat signaling patterns the epithelial cell fates in early egg chambers but later renders motility to clustered border cells. How Jak/Stat signal spatiotemporally switches static epithelia to motile cells is largely unknown. We report that a nuclear protein, Dysfusion, resides on the inner nuclear membrane and interacts with importin α/β and Nup153 to modulate Jak/Stat signal by attenuating Stat nuclear import. Dysfusion is ubiquitously expressed in oogenesis but specifically down-regulated in border cells when migrating. Increase of nuclear Stat by Dysfusion down-regulation triggers invasive cell behavior and maintains persistent motility. Mammalian homolog of Dysfusion (NPAS4) also negatively regulates the nuclear accumulation of STAT3 and cancer cell migration. Thus, our finding demonstrates that Dysfusion-dependent gating mechanism is conserved and may serve as a therapeutic target for Stat-mediated cancer metastasis.
Collapse
Affiliation(s)
- Jhen-Wei Wu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, 1 University Rd, Tainan City 70101, Taiwan
| | - Chueh-Wen Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, 1 University Rd, Tainan City 70101, Taiwan
| | - Ruo-Yu Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, 1 University Rd, Tainan City 70101, Taiwan
| | - Liang-Yi Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, 1 University Rd, Tainan City 70101, Taiwan
| | - Yu-Chen Tsai
- Department of Life Science and Life Science Center, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Taichung City 407224, Taiwan
| | - Yu-Ting Chan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, 1 University Rd, Tainan City 70101, Taiwan
| | - Yu-Chiuan Chang
- Institute of Biomedical Sciences, National Sun Yat-sen University, 70 Lien-Hai Rd, Kaohsiung 80424, Taiwan
| | - Anna C.-C. Jang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, 1 University Rd, Tainan City 70101, Taiwan
| |
Collapse
|
28
|
Leboulle G, Gehne N, Froese A, Menzel R. In-vivo egfp expression in the honeybee Apis mellifera induced by electroporation and viral expression vector. PLoS One 2022; 17:e0263908. [PMID: 35653376 PMCID: PMC9162312 DOI: 10.1371/journal.pone.0263908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/02/2022] [Indexed: 11/18/2022] Open
Abstract
In this study we describe egfp expression induced by two techniques: in vivo electroporation and viral transduction in several cell types of the adult honeybee brain. Non-neuronal and neuronal cell types were identified and the expression persisted at least during three days. Kenyon cells, optic lobe neurons and protocerebral lobe neurons were electroporated. Astrocyte-like glia cells, fibrous lamellar glia cells and cortex glia cells were identified. Viral transduction targeted one specific type of glia cells that could not be identified. EGFP positive cells types were rather variable after electroporation, and viral transduction resulted in more homogenous groups of positive cells. We propose that these techniques remain a good alternative to transgenic animals because they potentially target only somatic cells.
Collapse
Affiliation(s)
- Gérard Leboulle
- Neurobiologie, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| | - Nora Gehne
- Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Anja Froese
- Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Randolf Menzel
- Neurobiologie, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
29
|
Duhart JC, Mosca TJ. Genetic regulation of central synapse formation and organization in Drosophila melanogaster. Genetics 2022; 221:6597078. [PMID: 35652253 DOI: 10.1093/genetics/iyac078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/29/2022] [Indexed: 01/04/2023] Open
Abstract
A goal of modern neuroscience involves understanding how connections in the brain form and function. Such a knowledge is essential to inform how defects in the exquisite complexity of nervous system growth influence neurological disease. Studies of the nervous system in the fruit fly Drosophila melanogaster enabled the discovery of a wealth of molecular and genetic mechanisms underlying development of synapses-the specialized cell-to-cell connections that comprise the essential substrate for information flow and processing in the nervous system. For years, the major driver of knowledge was the neuromuscular junction due to its ease of examination. Analogous studies in the central nervous system lagged due to a lack of genetic accessibility of specific neuron classes, synaptic labels compatible with cell-type-specific access, and high resolution, quantitative imaging strategies. However, understanding how central synapses form remains a prerequisite to understanding brain development. In the last decade, a host of new tools and techniques extended genetic studies of synapse organization into central circuits to enhance our understanding of synapse formation, organization, and maturation. In this review, we consider the current state-of-the-field. We first discuss the tools, technologies, and strategies developed to visualize and quantify synapses in vivo in genetically identifiable neurons of the Drosophila central nervous system. Second, we explore how these tools enabled a clearer understanding of synaptic development and organization in the fly brain and the underlying molecular mechanisms of synapse formation. These studies establish the fly as a powerful in vivo genetic model that offers novel insights into neural development.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
30
|
He T, Fan Y, Wang Y, Liu M, Zhu AJ. Dissection of the microRNA Network Regulating Hedgehog Signaling in Drosophila. Front Cell Dev Biol 2022; 10:866491. [PMID: 35573695 PMCID: PMC9096565 DOI: 10.3389/fcell.2022.866491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
The evolutionarily conserved Hedgehog (Hh) signaling plays a critical role in embryogenesis and adult tissue homeostasis. Aberrant Hh signaling often leads to various forms of developmental anomalies and cancer. Since altered microRNA (miRNA) expression is associated with developmental defects and tumorigenesis, it is not surprising that several miRNAs have been found to regulate Hh signaling. However, these miRNAs are mainly identified through small-scale in vivo screening or in vitro assays. As miRNAs preferentially reduce target gene expression via the 3' untranslated region, we analyzed the effect of reduced expression of core components of the Hh signaling cascade on downstream signaling activity, and generated a transgenic Drosophila toolbox of in vivo miRNA sensors for core components of Hh signaling, including hh, patched (ptc), smoothened (smo), costal 2 (cos2), fused (fu), Suppressor of fused (Su(fu)), and cubitus interruptus (ci). With these tools in hand, we performed a genome-wide in vivo miRNA overexpression screen in the developing Drosophila wing imaginal disc. Of the twelve miRNAs identified, seven were not previously reported in the in vivo Hh regulatory network. Moreover, these miRNAs may act as general regulators of Hh signaling, as their overexpression disrupts Hh signaling-mediated cyst stem cell maintenance during spermatogenesis. To identify direct targets of these newly discovered miRNAs, we used the miRNA sensor toolbox to show that miR-10 and miR-958 directly target fu and smo, respectively, while the other five miRNAs act through yet-to-be-identified targets other than the seven core components of Hh signaling described above. Importantly, through loss-of-function analysis, we found that endogenous miR-10 and miR-958 target fu and smo, respectively, whereas deletion of the other five miRNAs leads to altered expression of Hh signaling components, suggesting that these seven newly discovered miRNAs regulate Hh signaling in vivo. Given the powerful effects of these miRNAs on Hh signaling, we believe that identifying their bona fide targets of the other five miRNAs will help reveal important new players in the Hh regulatory network.
Collapse
Affiliation(s)
- Tao He
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yu Fan
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yao Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Min Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Alan Jian Zhu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
31
|
Phillips LA, Atienza ML, Ryu JR, Svendsen PC, Kelemen LK, Brook WJ. midline represses Dpp signaling and target gene expression in Drosophila ventral leg development. Biol Open 2022; 11:275500. [PMID: 35608103 PMCID: PMC9167623 DOI: 10.1242/bio.059206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Ventral leg patterning in Drosophila is controlled by the expression of the redundant T-box Transcription factors midline (mid) and H15. Here, we show that mid represses the Dpp-activated gene Daughters against decapentaplegic (Dad) through a consensus T-box binding element (TBE) site in the minimal enhancer, Dad13. Mutating the Dad13 DNA sequence results in an increased and broadening of Dad expression. We also demonstrate that the engrailed-homology-1 domain of Mid is critical for regulating the levels of phospho-Mad, a transducer of Dpp-signaling. However, we find that mid does not affect all Dpp-target genes as we demonstrate that brinker (brk) expression is unresponsive to mid. This study further illuminates the interplay between mechanisms involved in determination of cellular fate and the varied roles of mid. Summary: Ventral patterning is controlled in part by the T-box Transcription factor midline blocking Dpp signaling and Dpp-activated genes, though midline does not affect the Dpp-repressed gene brk.
Collapse
Affiliation(s)
- Lindsay A Phillips
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Markle L Atienza
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Jae-Ryeon Ryu
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Pia C Svendsen
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Lynn K Kelemen
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - William J Brook
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
32
|
Nguyen PK, Cheng LY. Non-autonomous regulation of neurogenesis by extrinsic cues: a Drosophila perspective. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac004. [PMID: 38596708 PMCID: PMC10913833 DOI: 10.1093/oons/kvac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 04/11/2024]
Abstract
The formation of a functional circuitry in the central nervous system (CNS) requires the correct number and subtypes of neural cells. In the developing brain, neural stem cells (NSCs) self-renew while giving rise to progenitors that in turn generate differentiated progeny. As such, the size and the diversity of cells that make up the functional CNS depend on the proliferative properties of NSCs. In the fruit fly Drosophila, where the process of neurogenesis has been extensively investigated, extrinsic factors such as the microenvironment of NSCs, nutrients, oxygen levels and systemic signals have been identified as regulators of NSC proliferation. Here, we review decades of work that explores how extrinsic signals non-autonomously regulate key NSC characteristics such as quiescence, proliferation and termination in the fly.
Collapse
Affiliation(s)
- Phuong-Khanh Nguyen
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Louise Y Cheng
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
33
|
Akiyama T, Seidel CW, Gibson MC. The feedback regulator nord controls Dpp/BMP signaling via extracellular interaction with dally in the Drosophila wing. Dev Biol 2022; 488:91-103. [DOI: 10.1016/j.ydbio.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/27/2022]
|
34
|
Semaphorin 1a-mediated dendritic wiring of the Drosophila mushroom body extrinsic neurons. Proc Natl Acad Sci U S A 2022; 119:e2111283119. [PMID: 35286204 PMCID: PMC8944846 DOI: 10.1073/pnas.2111283119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The adult Drosophila mushroom body (MB) is one of the most extensively studied neural circuits. However, how its circuit organization is established during development is unclear. In this study, we provide an initial characterization of the assembly process of the extrinsic neurons (dopaminergic neurons and MB output neurons) that target the vertical MB lobes. We probe the cellular mechanisms guiding the neurite targeting of these extrinsic neurons and demonstrate that Semaphorin 1a is required in several MB output neurons for their dendritic innervations to three specific MB lobe zones. Our study reveals several intriguing molecular and cellular principles governing assembly of the MB circuit. The Drosophila mushroom body (MB) is composed of parallel axonal fibers from intrinsic Kenyon cells (KCs). The parallel fibers are bundled into five MB lobes innervated by extrinsic neurons, including dopaminergic neurons (DANs) and MB output neurons (MBONs) that project axons or dendrites to the MB lobes, respectively. Each DAN and MBON innervates specific regions in the lobes and collectively subdivides them into 15 zones. How such modular circuit architecture is established remains unknown. Here, we followed the development of the DANs and MBONs targeting the vertical lobes of the adult MB. We found that these extrinsic neurons innervate the lobes sequentially and their neurite arborizations in the MB lobe zones are independent of each other. Ablation of DAN axons or MBON dendrites in a zone had a minimal effect on other extrinsic neurites in the same or neighboring zones, suggesting that these neurons do not use tiling mechanisms to establish zonal borders. In contrast, KC axons are necessary for the development of extrinsic neurites. Dendrites of some vertical lobe-innervating MBONs were redirected to specific zones in the horizontal lobes when their normal target lobes were missing, indicating a hierarchical organization of guidance signals for the MBON dendrites. We show that Semaphorin 1a is required in MBONs to innervate three specific MB zones, and overexpression of semaphorin 1a is sufficient to redirect DAN dendrites to these zones. Our study provides an initial characterization of the cellular and molecular mechanisms underlying the assembly process of MB extrinsic neurons.
Collapse
|
35
|
Zhu H, Zhao SD, Ray A, Zhang Y, Li X. A comprehensive temporal patterning gene network in Drosophila medulla neuroblasts revealed by single-cell RNA sequencing. Nat Commun 2022; 13:1247. [PMID: 35273186 PMCID: PMC8913700 DOI: 10.1038/s41467-022-28915-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/12/2022] [Indexed: 12/24/2022] Open
Abstract
During development, neural progenitors are temporally patterned to sequentially generate a variety of neural types. In Drosophila neural progenitors called neuroblasts, temporal patterning is regulated by cascades of Temporal Transcription Factors (TTFs). However, known TTFs were mostly identified through candidate approaches and may not be complete. In addition, many fundamental questions remain concerning the TTF cascade initiation, progression, and termination. In this work, we use single-cell RNA sequencing of Drosophila medulla neuroblasts of all ages to identify a list of previously unknown TTFs, and experimentally characterize their roles in temporal patterning and neuronal specification. Our study reveals a comprehensive temporal gene network that patterns medulla neuroblasts from start to end. Furthermore, the speed of the cascade progression is regulated by Lola transcription factors expressed in all medulla neuroblasts. Our comprehensive study of the medulla neuroblast temporal cascade illustrates mechanisms that may be conserved in the temporal patterning of neural progenitors. During development, neural progenitors generate a variety of neural types sequentially. Here the authors examine gene expression patterns in Drosophila neural progenitors at single-cell level, and identify a gene regulatory network controlling the sequential generation of different neural types.
Collapse
Affiliation(s)
- Hailun Zhu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sihai Dave Zhao
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Alokananda Ray
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yu Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xin Li
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
36
|
Dong H, Xu B, Guo P, Zhang J, Yang X, Li L, Fu Y, Shi J, Zhang S, Zhu Y, Shi Y, Zhou F, Bian L, You W, Shi F, Yang X, Huang J, He H, Jin Y. Hidden RNA pairings counteract the "first-come, first-served" splicing principle to drive stochastic choice in Dscam1 splice variants. SCIENCE ADVANCES 2022; 8:eabm1763. [PMID: 35080968 PMCID: PMC8791459 DOI: 10.1126/sciadv.abm1763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Drosophila melanogaster Dscam1 encodes 38,016 isoforms via mutually exclusive splicing; however, the regulatory mechanism behind this is not fully understood. Here, we found a set of hidden RNA secondary structures that balance the stochastic choice of Dscam1 splice variants (designated balancer RNA secondary structures). In vivo mutational analyses revealed the dual function of these balancer interactions in driving the stochastic choice of splice variants, through enhancement of the inclusion of distal exon 6s by cooperating with docking site–selector pairing to form a stronger multidomain pre-mRNA structure and through simultaneous repression of the inclusion of proximal exon 6s by antagonizing their docking site–selector pairings. Thus, we provide an elegant molecular model based on competition and cooperation between two sets of docking site–selector and balancer pairings, which counteracts the “first-come, first-served” principle. Our findings provide conceptual and mechanistic insight into the dynamics and functions of long-range RNA secondary structures.
Collapse
Affiliation(s)
- Haiyang Dong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Pengjuan Guo
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xi Yang
- Department of Neurosurgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu China
| | - Lei Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ying Fu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jilong Shi
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shixin Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yanda Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yang Shi
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fengyan Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lina Bian
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wendong You
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Shi
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaofeng Yang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianhua Huang
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Haihuai He
- Department of Neurosurgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu China
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Yang S, Wu X, Daoutidou EI, Zhang Y, Shimell M, Chuang KH, Peterson AJ, O'Connor MB, Zheng X. The NDNF-like factor Nord is a Hedgehog-induced extracellular BMP modulator that regulates Drosophila wing patterning and growth. eLife 2022; 11:e73357. [PMID: 35037619 PMCID: PMC8856659 DOI: 10.7554/elife.73357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/15/2022] [Indexed: 11/23/2022] Open
Abstract
Hedgehog (Hh) and Bone Morphogenetic Proteins (BMPs) pattern the developing Drosophila wing by functioning as short- and long-range morphogens, respectively. Here, we show that a previously unknown Hh-dependent mechanism fine-tunes the activity of BMPs. Through genome-wide expression profiling of the Drosophila wing imaginal discs, we identify nord as a novel target gene of the Hh signaling pathway. Nord is related to the vertebrate Neuron-Derived Neurotrophic Factor (NDNF) involved in congenital hypogonadotropic hypogonadism and several types of cancer. Loss- and gain-of-function analyses implicate Nord in the regulation of wing growth and proper crossvein patterning. At the molecular level, we present biochemical evidence that Nord is a secreted BMP-binding protein and localizes to the extracellular matrix. Nord binds to Decapentaplegic (Dpp) or the heterodimer Dpp-Glass-bottom boat (Gbb) to modulate their release and activity. Furthermore, we demonstrate that Nord is a dosage-dependent BMP modulator, where low levels of Nord promote and high levels inhibit BMP signaling. Taken together, we propose that Hh-induced Nord expression fine-tunes both the range and strength of BMP signaling in the developing Drosophila wing.
Collapse
Affiliation(s)
- Shu Yang
- Department of Anatomy and Cell Biology and the GW Cancer Center, George Washington University School of Medicine and Health SciencesWashingtonUnited States
| | - Xuefeng Wu
- Department of Anatomy and Cell Biology and the GW Cancer Center, George Washington University School of Medicine and Health SciencesWashingtonUnited States
| | - Euphrosyne I Daoutidou
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of MinnesotaMinneapolisUnited States
| | - Ya Zhang
- Department of Anatomy and Cell Biology and the GW Cancer Center, George Washington University School of Medicine and Health SciencesWashingtonUnited States
| | - MaryJane Shimell
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of MinnesotaMinneapolisUnited States
| | - Kun-Han Chuang
- Department of Anatomy and Cell Biology and the GW Cancer Center, George Washington University School of Medicine and Health SciencesWashingtonUnited States
| | - Aidan J Peterson
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of MinnesotaMinneapolisUnited States
| | - Michael B O'Connor
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of MinnesotaMinneapolisUnited States
| | - Xiaoyan Zheng
- Department of Anatomy and Cell Biology and the GW Cancer Center, George Washington University School of Medicine and Health SciencesWashingtonUnited States
| |
Collapse
|
38
|
Li Q, Jang H, Lim KY, Lessing A, Stavropoulos N. insomniac links the development and function of a sleep-regulatory circuit. eLife 2021; 10:65437. [PMID: 34908527 PMCID: PMC8758140 DOI: 10.7554/elife.65437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Although many genes are known to influence sleep, when and how they impact sleep-regulatory circuits remain ill-defined. Here, we show that insomniac (inc), a conserved adaptor for the autism-associated Cul3 ubiquitin ligase, acts in a restricted period of neuronal development to impact sleep in adult Drosophila. The loss of inc causes structural and functional alterations within the mushroom body (MB), a center for sensory integration, associative learning, and sleep regulation. In inc mutants, MB neurons are produced in excess, develop anatomical defects that impede circuit assembly, and are unable to promote sleep when activated in adulthood. Our findings link neurogenesis and postmitotic development of sleep-regulatory neurons to their adult function and suggest that developmental perturbations of circuits that couple sensory inputs and sleep may underlie sleep dysfunction in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Qiuling Li
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of MedicineNew YorkUnited States
| | - Hyunsoo Jang
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of MedicineNew YorkUnited States
| | - Kayla Y Lim
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of MedicineNew YorkUnited States
| | - Alexie Lessing
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of MedicineNew YorkUnited States
| | - Nicholas Stavropoulos
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of MedicineNew YorkUnited States
- Waksman Institute, Rutgers UniversityPiscatawayUnited States
| |
Collapse
|
39
|
Vrontou E, Groschner LN, Szydlowski S, Brain R, Krebbers A, Miesenböck G. Response competition between neurons and antineurons in the mushroom body. Curr Biol 2021; 31:4911-4922.e4. [PMID: 34610272 PMCID: PMC8612741 DOI: 10.1016/j.cub.2021.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/03/2021] [Accepted: 09/03/2021] [Indexed: 11/04/2022]
Abstract
The mushroom bodies of Drosophila contain circuitry compatible with race models of perceptual choice. When flies discriminate odor intensity differences, opponent pools of αβ core Kenyon cells (on and off αβc KCs) accumulate evidence for increases or decreases in odor concentration. These sensory neurons and “antineurons” connect to a layer of mushroom body output neurons (MBONs) which bias behavioral intent in opposite ways. All-to-all connectivity between the competing integrators and their MBON partners allows for correct and erroneous decisions; dopaminergic reinforcement sets choice probabilities via reciprocal changes to the efficacies of on and off KC synapses; and pooled inhibition between αβc KCs can establish equivalence with the drift-diffusion formalism known to describe behavioral performance. The response competition network gives tangible form to many features envisioned in theoretical models of mammalian decision making, but it differs from these models in one respect: the principal variables—the fill levels of the integrators and the strength of inhibition between them—are represented by graded potentials rather than spikes. In pursuit of similar computational goals, a small brain may thus prioritize the large information capacity of analog signals over the robustness and temporal processing span of pulsatile codes. Mushroom body output neurons respond with excitation to odor on- and offset On and off responses reflect the convergence of oppositely tuned Kenyon cells (KCs) Opponent KCs compete by eliciting inhibitory feedback from a common interneuron pool KCs and interneurons communicate through graded potentials rather than spikes
Collapse
Affiliation(s)
- Eleftheria Vrontou
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Lukas N Groschner
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Susanne Szydlowski
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Ruth Brain
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Alina Krebbers
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Gero Miesenböck
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK.
| |
Collapse
|
40
|
Uçkun E, Wolfstetter G, Anthonydhason V, Sukumar SK, Umapathy G, Molander L, Fuchs J, Palmer RH. In vivo Profiling of the Alk Proximitome in the Developing Drosophila Brain. J Mol Biol 2021; 433:167282. [PMID: 34624297 DOI: 10.1016/j.jmb.2021.167282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
Anaplastic lymphoma kinase (Alk) is an evolutionary conserved receptor tyrosine kinase belonging to the insulin receptor superfamily. In addition to its well-studied role in cancer, numerous studies have revealed that Alk signaling is associated with a variety of complex traits such as: regulation of growth and metabolism, hibernation, regulation of neurotransmitters, synaptic coupling, axon targeting, decision making, memory formation and learning, alcohol use disorder, as well as steroid hormone metabolism. In this study, we used BioID-based in vivo proximity labeling to identify molecules that interact with Alk in the Drosophila central nervous system (CNS). To do this, we used CRISPR/Cas9 induced homology-directed repair (HDR) to modify the endogenous Alk locus to produce first and next generation Alk::BioID chimeras. This approach allowed identification of Alk proximitomes under physiological conditions and without overexpression. Our results show that the next generation of BioID proteins (TurboID and miniTurbo) outperform the first generation BirA* fusion in terms of labeling speed and efficiency. LC-MS3-based BioID screening of AlkTurboID and AlkminiTurbo larval brains revealed an extensive neuronal Alk proximitome identifying numerous potential components of Alk signaling complexes. Validation of Alk proximitome candidates further revealed co-expression of Stardust (Sdt), Discs large 1 (Dlg1), Syntaxin (Syx) and Rugose (Rg) with Alk in the CNS and identified the protein-tyrosine-phosphatase Corkscrew (Csw) as a modulator of Alk signaling.
Collapse
Affiliation(s)
- Ezgi Uçkun
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden. https://twitter.com/@uckunezgii
| | - Georg Wolfstetter
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Vimala Anthonydhason
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Sanjay Kumar Sukumar
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden. https://twitter.com/@sanjayssukumar
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Linnea Molander
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Johannes Fuchs
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden.
| |
Collapse
|
41
|
Molecular Genetic Techniques for the Proteoglycan Functions in Drosophila. Methods Mol Biol 2021. [PMID: 34626396 DOI: 10.1007/978-1-0716-1398-6_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Several classes of heparan sulfate proteoglycan (HSPG) core proteins and all HS biosynthetic/modifying enzymes are evolutionarily conserved from human to Drosophila melanogaster. This genetically tractable model offers highly sophisticated techniques to manipulate gene function in a spatially and temporally controlled manner. Thus, Drosophila genetics has been a powerful system to explore functions of HSPGs in vivo. In this chapter, we will introduce three genetic techniques available in Drosophila: TARGET (temporal and regional gene expression targeting), MARCM (mosaic analysis with a repressible cell marker), and FLP-Out.
Collapse
|
42
|
Bonfini A, Dobson AJ, Duneau D, Revah J, Liu X, Houtz P, Buchon N. Multiscale analysis reveals that diet-dependent midgut plasticity emerges from alterations in both stem cell niche coupling and enterocyte size. eLife 2021; 10:64125. [PMID: 34553686 PMCID: PMC8528489 DOI: 10.7554/elife.64125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 09/22/2021] [Indexed: 12/27/2022] Open
Abstract
The gut is the primary interface between an animal and food, but how it adapts to qualitative dietary variation is poorly defined. We find that the Drosophila midgut plastically resizes following changes in dietary composition. A panel of nutrients collectively promote gut growth, which sugar opposes. Diet influences absolute and relative levels of enterocyte loss and stem cell proliferation, which together determine cell numbers. Diet also influences enterocyte size. A high sugar diet inhibits translation and uncouples intestinal stem cell proliferation from expression of niche-derived signals, but, surprisingly, rescuing these effects genetically was not sufficient to modify diet’s impact on midgut size. However, when stem cell proliferation was deficient, diet’s impact on enterocyte size was enhanced, and reducing enterocyte-autonomous TOR signaling was sufficient to attenuate diet-dependent midgut resizing. These data clarify the complex relationships between nutrition, epithelial dynamics, and cell size, and reveal a new mode of plastic, diet-dependent organ resizing.
Collapse
Affiliation(s)
- Alessandro Bonfini
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Adam J Dobson
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - David Duneau
- Université Toulouse 3 Paul Sabatier, CNRS, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Jonathan Revah
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Xi Liu
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Philip Houtz
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Nicolas Buchon
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| |
Collapse
|
43
|
Hong W, Zhang J, Dong H, Shi Y, Ma H, Zhou F, Xu B, Fu Y, Zhang S, Hou S, Li G, Wu Y, Chen S, Zhu X, You W, Shi F, Yang X, Gong Z, Huang J, Jin Y. Intron-targeted mutagenesis reveals roles for Dscam1 RNA pairing architecture-driven splicing bias in neuronal wiring. Cell Rep 2021; 36:109373. [PMID: 34260933 DOI: 10.1016/j.celrep.2021.109373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/05/2021] [Accepted: 06/18/2021] [Indexed: 12/28/2022] Open
Abstract
Drosophila melanogaster Down syndrome cell adhesion molecule (Dscam1) can generate 38,016 different isoforms through largely stochastic, yet highly biased, alternative splicing. These isoforms are required for nervous functions. However, the functional significance of splicing bias remains unknown. Here, we provide evidence that Dscam1 splicing bias is required for mushroom body (MB) axonal wiring. We generate mutant flies with normal overall protein levels and an identical number but global changes in exon 4 and 9 isoform bias (DscamΔ4D-/- and DscamΔ9D-/-), respectively. In contrast to DscamΔ4D-/-, DscamΔ9D-/- exhibits remarkable MB defects, suggesting a variable domain-specific requirement for isoform bias. Importantly, changes in isoform bias cause axonal defects but do not influence the self-avoidance of axonal branches. We conclude that, in contrast to the isoform number that provides the molecular basis for neurite self-avoidance, isoform bias may play a role in MB axonal wiring by influencing non-repulsive signaling.
Collapse
Affiliation(s)
- Weiling Hong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Jian Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Haiyang Dong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Yang Shi
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Hongru Ma
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Fengyan Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Ying Fu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Shixin Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Shouqing Hou
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Guo Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Yandan Wu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Shuo Chen
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Xiaohua Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Wendong You
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Feng Shi
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Xiaofeng Yang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Zhefeng Gong
- Department of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Jianhua Huang
- Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China; Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China.
| |
Collapse
|
44
|
Crocker KL, Marischuk K, Rimkus SA, Zhou H, Yin JCP, Boekhoff-Falk G. Neurogenesis in the adult Drosophila brain. Genetics 2021; 219:6297258. [PMID: 34117750 PMCID: PMC8860384 DOI: 10.1093/genetics/iyab092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/08/2021] [Indexed: 11/14/2022] Open
Abstract
Neurodegenerative diseases such as Alzheimer's and Parkinson's currently affect ∼25 million people worldwide (Erkkinen et al. 2018). The global incidence of traumatic brain injury (TBI) is estimated at ∼70 million/year (Dewan et al. 2018). Both neurodegenerative diseases and TBI remain without effective treatments. We are utilizing adult Drosophila melanogaster to investigate the mechanisms of brain regeneration with the long term goal of identifying targets for neural regenerative therapies. We specifically focused on neurogenesis, i.e. the generation of new cells, as opposed to the regrowth of specific subcellular structures such as axons. Like mammals, Drosophila have few proliferating cells in the adult brain. Nonetheless, within 24 hours of a Penetrating Traumatic Brain Injury (PTBI) to the central brain, there is a significant increase in the number of proliferating cells. We subsequently detect both new glia and new neurons and the formation of new axon tracts that target appropriate brain regions. Glial cells divide rapidly upon injury to give rise to new glial cells. Other cells near the injury site upregulate neural progenitor genes including asense and deadpan and later give rise to the new neurons. Locomotor abnormalities observed after PTBI are reversed within two weeks of injury, supporting the idea that there is functional recovery. Together, these data indicate that adult Drosophila brains are capable of neuronal repair. We anticipate that this paradigm will facilitate the dissection of the mechanisms of neural regeneration and that these processes will be relevant to human brain repair.
Collapse
Affiliation(s)
- Kassi L Crocker
- Genetics Graduate Training Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA.,Science and Medicine Graduate Research Scholars Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Khailee Marischuk
- Genetics Graduate Training Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Stacey A Rimkus
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Hong Zhou
- Department of Genetics, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Jerry C P Yin
- Department of Genetics, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Grace Boekhoff-Falk
- Genetics Graduate Training Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
45
|
Snigdha K, Singh A, Kango-Singh M. Yorkie-Cactus (IκBα)-JNK axis promotes tumor growth and progression in Drosophila. Oncogene 2021; 40:4124-4136. [PMID: 34017079 DOI: 10.1038/s41388-021-01831-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Presence of inflammatory factors in the tumor microenvironment is well-documented yet their specific role in tumorigenesis is elusive. The core inflammatory pathways like the Toll-Like Receptor (TLR) and the Tumor Necrosis Factor (TNF) pathway are conserved in Drosophila. We induced GFP-marked epithelial tumors by expressing activated oncogenic forms of RasV12 or Yorkie (Yki3SA, mammalian YAP) in scribble deficient cells (scribRNAi, mammalian SCRIB) to study the role of inflammatory factors in tumorigenesis. Similar to RasV12scribRNAi, we found that Yki3SAscribRNAi form invasive neoplastic lethal tumors that induce a systemic inflammatory response. We identified Cactus (Cact, mammalian IκBα), the negative regulator of TLR, as a key player in tumor growth. Cact accumulates in the cytoplasm in Drosophila tumor models, similar to squamous cell carcinoma in mice models and human patients where cytoplasmic IκBα favors oncogenic transformation. Further, cact is transcriptionally upregulated in tumors, and downregulation of Cact affects tumor growth. We investigated if TLR or TNF pathway affect tumor growth through activation of Jun N-terminal Kinase (JNK) pathway and its target Matrix Metalloprotease1 (MMP1). Genetically manipulating levels of TLR components or TNF receptors showed that Cact acts upstream of JNK signaling and regulates JNK via a non-canonical mechanism during tumorigenesis. Further, Hippo coactivator Yki transcriptionally regulates cact expression, and downregulation of Yki or Cact is sufficient to cause downregulation of JNK-mediated signaling that promotes tumorigenesis. Here, we report a link between Hippo, IκBα and JNK signaling that may induce inflammation and innate immune response in tumorigenesis.
Collapse
Affiliation(s)
- Kirti Snigdha
- Department of Biology, University of Dayton, Dayton, OH, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, USA
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
- Premedical Programs, University of Dayton, Dayton, OH, USA
- Integrative Science and Engineering Center (ISE), University of Dayton, Dayton, OH, USA
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH, USA.
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA.
- Premedical Programs, University of Dayton, Dayton, OH, USA.
- Integrative Science and Engineering Center (ISE), University of Dayton, Dayton, OH, USA.
| |
Collapse
|
46
|
Yang S, Zhang Y, Yang C, Wu X, El Oud SM, Chen R, Cai X, Wu XS, Lan G, Zheng X. Competitive coordination of the dual roles of the Hedgehog co-receptor in homophilic adhesion and signal reception. eLife 2021; 10:65770. [PMID: 34003115 PMCID: PMC8131103 DOI: 10.7554/elife.65770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
Hedgehog (Hh) signaling patterns embryonic tissues and contributes to homeostasis in adults. In Drosophila, Hh transport and signaling are thought to occur along a specialized class of actin-rich filopodia, termed cytonemes. Here, we report that Interference hedgehog (Ihog) not only forms a Hh receptor complex with Patched to mediate intracellular signaling, but Ihog also engages in trans-homophilic binding leading to cytoneme stabilization in a manner independent of its role as the Hh receptor. Both functions of Ihog (trans-homophilic binding for cytoneme stabilization and Hh binding for ligand sensing) involve a heparin-binding site on the first fibronectin repeat of the extracellular domain. Thus, the Ihog-Ihog interaction and the Hh-Ihog interaction cannot occur simultaneously for a single Ihog molecule. By combining experimental data and mathematical modeling, we determined that Hh-Ihog heterophilic interaction dominates and Hh can disrupt and displace Ihog molecules involved in trans-homophilic binding. Consequently, we proposed that the weaker Ihog-Ihog trans interaction promotes and stabilizes direct membrane contacts along cytonemes and that, as the cytoneme encounters secreted Hh ligands, the ligands trigger release of Ihog from trans Ihog-Ihog complex enabling transport or internalization of the Hh ligand-Ihog-Patched -receptor complex. Thus, the seemingly incompatible functions of Ihog in homophilic adhesion and ligand binding cooperate to assist Hh transport and reception along the cytonemes.
Collapse
Affiliation(s)
- Shu Yang
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Ya Zhang
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Chuxuan Yang
- Department of Physics, George Washington University, Washington, United States
| | - Xuefeng Wu
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Sarah Maria El Oud
- Department of Physics, George Washington University, Washington, United States
| | - Rongfang Chen
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Xudong Cai
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Xufeng S Wu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Ganhui Lan
- Department of Physics, George Washington University, Washington, United States
| | - Xiaoyan Zheng
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| |
Collapse
|
47
|
Li D, Wang Q, Gong NN, Kurolap A, Feldman HB, Boy N, Brugger M, Grand K, McWalter K, Guillen Sacoto MJ, Wakeling E, Hurst J, March ME, Bhoj EJ, Nowaczyk MJM, Gonzaga-Jauregui C, Mathew M, Dava-Wala A, Siemon A, Bartholomew D, Huang Y, Lee H, Martinez-Agosto JA, Schwaibold EMC, Brunet T, Choukair D, Pais LS, White SM, Christodoulou J, Brown D, Lindstrom K, Grebe T, Tiosano D, Kayser MS, Tan TY, Deardorff MA, Song Y, Hakonarson H. Pathogenic variants in SMARCA5, a chromatin remodeler, cause a range of syndromic neurodevelopmental features. SCIENCE ADVANCES 2021; 7:eabf2066. [PMID: 33980485 PMCID: PMC8115915 DOI: 10.1126/sciadv.abf2066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/23/2021] [Indexed: 05/17/2023]
Abstract
Intellectual disability encompasses a wide spectrum of neurodevelopmental disorders, with many linked genetic loci. However, the underlying molecular mechanism for more than 50% of the patients remains elusive. We describe pathogenic variants in SMARCA5, encoding the ATPase motor of the ISWI chromatin remodeler, as a cause of a previously unidentified neurodevelopmental disorder, identifying 12 individuals with de novo or dominantly segregating rare heterozygous variants. Accompanying phenotypes include mild developmental delay, frequent postnatal short stature and microcephaly, and recurrent dysmorphic features. Loss of function of the SMARCA5 Drosophila ortholog Iswi led to smaller body size, reduced sensory dendrite complexity, and tiling defects in larvae. In adult flies, Iswi neural knockdown caused decreased brain size, aberrant mushroom body morphology, and abnormal locomotor function. Iswi loss of function was rescued by wild-type but not mutant SMARCA5. Our results demonstrate that SMARCA5 pathogenic variants cause a neurodevelopmental syndrome with mild facial dysmorphia.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Qin Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Naihua N Gong
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alina Kurolap
- The Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hagit Baris Feldman
- The Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nikolas Boy
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Melanie Brugger
- Institute of Human Genetics, Technical University Munich, Munich, Germany
- Institute of Human Genetics, University Hospital LMU Munich, Goethestr. 29, Munich, Germany
| | - Katheryn Grand
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Emma Wakeling
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jane Hurst
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Michael E March
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth J Bhoj
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Małgorzata J M Nowaczyk
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Mariam Mathew
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Ashita Dava-Wala
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Amy Siemon
- Department of Pediatrics and Clinical Genetics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Dennis Bartholomew
- Department of Pediatrics and Clinical Genetics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Yue Huang
- Department of Human Genetics; Division of Medical Genetics, Department of Pediatrics; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hane Lee
- Department of Pathology and Laboratory Medicine; Department of Human Genetics; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julian A Martinez-Agosto
- Department of Human Genetics; Division of Medical Genetics, Department of Pediatrics; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eva M C Schwaibold
- Department of Pathology and Laboratory Medicine; Department of Human Genetics; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Theresa Brunet
- Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Daniela Choukair
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Lynn S Pais
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - John Christodoulou
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Dana Brown
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Kristin Lindstrom
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Theresa Grebe
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, AZ, USA
- College of Medicine, University of Arizona, Phoenix, 475 N. 5th Street, Phoenix, AZ, USA
| | - Dov Tiosano
- Pediatric Endocrinology Unit, Ruth Rappaport Children's Hospital, Rambam Healthcare Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Matthew A Deardorff
- Departments of Pathology and Pediatrics, Children's Hospital Los Angeles, and University of Southern California, Los Angeles, CA, USA
| | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
48
|
Chow KHK, Budde MW, Granados AA, Cabrera M, Yoon S, Cho S, Huang TH, Koulena N, Frieda KL, Cai L, Lois C, Elowitz MB. Imaging cell lineage with a synthetic digital recording system. Science 2021; 372:eabb3099. [PMID: 33833095 DOI: 10.1126/science.abb3099] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
During multicellular development, spatial position and lineage history play powerful roles in controlling cell fate decisions. Using a serine integrase-based recording system, we engineered cells to record lineage information in a format that can be read out in situ. The system, termed integrase-editable memory by engineered mutagenesis with optical in situ readout (intMEMOIR), allowed in situ reconstruction of lineage relationships in cultured mouse cells and flies. intMEMOIR uses an array of independent three-state genetic memory elements that can recombine stochastically and irreversibly, allowing up to 59,049 distinct digital states. It reconstructed lineage trees in stem cells and enabled simultaneous analysis of single-cell clonal history, spatial position, and gene expression in Drosophila brain sections. These results establish a foundation for microscopy-readable lineage recording and analysis in diverse systems.
Collapse
Affiliation(s)
- Ke-Huan K Chow
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mark W Budde
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alejandro A Granados
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Maria Cabrera
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shinae Yoon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Soomin Cho
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ting-Hao Huang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Noushin Koulena
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Long Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
49
|
Intracellular trafficking of Notch orchestrates temporal dynamics of Notch activity in the fly brain. Nat Commun 2021; 12:2083. [PMID: 33828096 PMCID: PMC8027629 DOI: 10.1038/s41467-021-22442-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/16/2021] [Indexed: 12/03/2022] Open
Abstract
While Delta non-autonomously activates Notch in neighboring cells, it autonomously inactivates Notch through cis-inhibition, the molecular mechanism and biological roles of which remain elusive. The wave of differentiation in the Drosophila brain, the ‘proneural wave’, is an excellent model for studying Notch signaling in vivo. Here, we show that strong nonlinearity in cis-inhibition reproduces the second peak of Notch activity behind the proneural wave in silico. Based on this, we demonstrate that Delta expression induces a quick degradation of Notch in late endosomes and the formation of the twin peaks of Notch activity in vivo. Indeed, the amount of Notch is upregulated and the twin peaks are fused forming a single peak when the function of Delta or late endosomes is compromised. Additionally, we show that the second Notch peak behind the wavefront controls neurogenesis. Thus, intracellular trafficking of Notch orchestrates the temporal dynamics of Notch activity and the temporal patterning of neurogenesis. During Drosophila development, two peaks of Notch activity propagate across the neuroepithelium to generate neuroblasts. Here, the authors show Notch cis-inhibition under the control of intracellular Notch trafficking establishes these two peaks, which temporally control neurogenesis in the brain.
Collapse
|
50
|
Yang M, Guo Y, Wang S, Chen C, Chang YH, Ho MSC. The F-Box Protein CG5003 Regulates Axon Pruning and the Integrity of the Drosophila Mushroom Body. Front Mol Neurosci 2021; 14:634784. [PMID: 33716667 PMCID: PMC7947810 DOI: 10.3389/fnmol.2021.634784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/27/2021] [Indexed: 11/25/2022] Open
Abstract
Protein homeostasis serves as an important step in regulating diverse cellular processes underlying the function and development of the nervous system. In particular, the ubiquitination proteasome system (UPS), a universal pathway mediating protein degradation, contributes to the development of numerous synaptic structures, including the Drosophila olfactory-associative learning center mushroom body (MB), thereby affecting associated function. Here, we describe the function of a newly characterized Drosophila F-box protein CG5003, an adaptor for the RING-domain type E3 ligase (SCF complex), in MB development. Lacking CG5003 ubiquitously causes MB γ axon pruning defects and selective CG5003 expression in pan-neurons leads to both γ axon and α/β lobe abnormalities. Interestingly, change in CG5003 expression in MB neurons does not cause any abnormalities in axons, suggesting that CG5003 functions in cells extrinsic to MB to regulate its development. Mass spectrum analysis indicates that silencing CG5003 expression in all neurons affects expression levels of proteins in the cell and structural morphogenesis, transcription regulator activity, and catalytic activity. Our findings reinforce the importance of UPS and identify a new factor in regulating neuronal development as exemplified by the synaptic structure MB.
Collapse
Affiliation(s)
- Mengying Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yige Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuran Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Changyan Chen
- Institute of Intervention Vessel, Shanghai Tenth People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yung-Heng Chang
- Department of Anesthesiology, Stony Brook School of Medicine, New York, NY, United States
| | - Margaret Su-Chun Ho
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|