1
|
Lemonnier T, Dupré A, Jessus C. The G2-to-M transition from a phosphatase perspective: a new vision of the meiotic division. Cell Div 2020; 15:9. [PMID: 32508972 PMCID: PMC7249327 DOI: 10.1186/s13008-020-00065-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Cell division is orchestrated by the phosphorylation and dephosphorylation of thousands of proteins. These post-translational modifications underlie the molecular cascades converging to the activation of the universal mitotic kinase, Cdk1, and entry into cell division. They also govern the structural events that sustain the mechanics of cell division. While the role of protein kinases in mitosis has been well documented by decades of investigations, little was known regarding the control of protein phosphatases until the recent years. However, the regulation of phosphatase activities is as essential as kinases in controlling the activation of Cdk1 to enter M-phase. The regulation and the function of phosphatases result from post-translational modifications but also from the combinatorial association between conserved catalytic subunits and regulatory subunits that drive their substrate specificity, their cellular localization and their activity. It now appears that sequential dephosphorylations orchestrated by a network of phosphatase activities trigger Cdk1 activation and then order the structural events necessary for the timely execution of cell division. This review discusses a series of recent works describing the important roles played by protein phosphatases for the proper regulation of meiotic division. Many breakthroughs in the field of cell cycle research came from studies on oocyte meiotic divisions. Indeed, the meiotic division shares most of the molecular regulators with mitosis. The natural arrests of oocytes in G2 and in M-phase, the giant size of these cells, the variety of model species allowing either biochemical or imaging as well as genetics approaches explain why the process of meiosis has served as an historical model to decipher signalling pathways involved in the G2-to-M transition. The review especially highlights how the phosphatase PP2A-B55δ critically orchestrates the timing of meiosis resumption in amphibian oocytes. By opposing the kinase PKA, PP2A-B55δ controls the release of the G2 arrest through the dephosphorylation of their substrate, Arpp19. Few hours later, the inhibition of PP2A-B55δ by Arpp19 releases its opposing kinase, Cdk1, and triggers M-phase. In coordination with a variety of phosphatases and kinases, the PP2A-B55δ/Arpp19 duo therefore emerges as the key effector of the G2-to-M transition.
Collapse
Affiliation(s)
- Tom Lemonnier
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| | - Aude Dupré
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| | - Catherine Jessus
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
2
|
Regulation of Translationally Repressed mRNAs in Zebrafish and Mouse Oocytes. Results Probl Cell Differ 2019; 63:297-324. [PMID: 28779323 DOI: 10.1007/978-3-319-60855-6_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
From the beginning of oogenesis, oocytes accumulate tens of thousands of mRNAs for promoting oocyte growth and development. A large number of these mRNAs are translationally repressed and localized within the oocyte cytoplasm. Translational activation of these dormant mRNAs at specific sites and timings plays central roles in driving progression of the meiotic cell cycle, axis formation, mitotic cleavages, transcriptional initiation, and morphogenesis. Regulation of the localization and temporal translation of these mRNAs has been shown to rely on cis-acting elements in the mRNAs and trans-acting factors recognizing and binding to the elements. Recently, using model vertebrate zebrafish, localization itself and formation of physiological structures such as RNA granules have been shown to coordinate the accurate timings of translational activation of dormant mRNAs. This subcellular regulation of mRNAs is also utilized in other animals including mouse. In this chapter, we review fundamental roles of temporal regulation of mRNA translation in oogenesis and early development and then focus on the mechanisms of mRNA regulation in the oocyte cytoplasm by which the activation of dormant mRNAs at specific timings is achieved.
Collapse
|
3
|
Yoshitome S, Aiba Y, Yuge M, Furuno N, Watanabe M, Nakajo N. Involvement of Myt1 kinase in the G2 phase of the first cell cycle in Xenopus laevis. Biochem Biophys Res Commun 2019; 515:139-144. [PMID: 31128913 DOI: 10.1016/j.bbrc.2019.05.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
Abstract
During cleavage of Xenopus laevis, the first mitotic cell cycle immediately following fertilization is approximately 90 min and consists of S, G2, and M phases. In contrast, the subsequent eleven cell cycles are approximately 30 min and consist mostly of S and M phases. The balance between Cdc25 and Wee1A/Myt1 is thought to be crucial for Xenopus first cell cycle progression; however, the role of Myt1 in this period has not been fully investigated. In this study, we examined the roles of Myt1, Wee1A, and Cdc25A in the first cell cycle of Xenopus laevis. Inhibition of Cdc25A with antisense morpholino oligonucleotides lengthened the duration of the first cell cycle to some extent, whereas it was slightly shortened by ectopic Cdc25A expression, suggesting that the low concentration of Cdc25A during the first cell cycle does not fully account for the long duration of this cycle. Using the Wee1A antisense morpholino oligonucleotide and neutralizing antibody against Myt1, we found that Myt1 phosphorylates and inhibits Cdk1 much more effectively than Wee1A during the first cell cycle in Xenopus. Taken together, these results suggest that the activity of Myt1 is predominantly responsible for the duration of the long G2 phase in the first mitotic cell cycle in Xenopus.
Collapse
Affiliation(s)
- Satoshi Yoshitome
- Department of Biology, Graduate School of Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan; Department of Enviromental Science, International College of Arts and Sciences, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-Ku, Fukuoka, 813-8529, Japan.
| | - Yukito Aiba
- Department of Biology, Graduate School of Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masahiro Yuge
- Department of Enviromental Science, International College of Arts and Sciences, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-Ku, Fukuoka, 813-8529, Japan
| | - Nobuaki Furuno
- Amphibian Research Center, Hiroshima University, Kagamiyama 1-3-1, Higashihiroshima, 739-8526, Japan
| | - Minoru Watanabe
- Institute of Liberal Arts and Sciences, Tokushima University, Minamijosanjima-cho 1-1, Tokushima, 770-8502, Japan
| | - Nobushige Nakajo
- Department of Biology, Graduate School of Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
4
|
Liu C, Ma Y, Shang Y, Huo R, Li W. Post-translational regulation of the maternal-to-zygotic transition. Cell Mol Life Sci 2018; 75:1707-1722. [PMID: 29427077 PMCID: PMC11105290 DOI: 10.1007/s00018-018-2750-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/24/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
Abstract
The maternal-to-zygotic transition (MZT) is essential for the developmental control handed from maternal products to newly synthesized zygotic genome in the earliest stages of embryogenesis, including maternal component (mRNAs and proteins) degradation and zygotic genome activation (ZGA). Various protein post-translational modifications have been identified during the MZT, such as phosphorylation, methylation and ubiquitination. Precise post-translational regulation mechanisms are essential for the timely transition of early embryonic development. In this review, we summarize recent progress regarding the molecular mechanisms underlying post-translational regulation of maternal component degradation and ZGA during the MZT and discuss some important issues in the field.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanjie Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China
- Department of Animal Science and Technology, Northeast Agricultural University, Haerbin, 150030, People's Republic of China
| | - Yongliang Shang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, People's Republic of China.
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
5
|
Rasmussen ML, Ortolano NA, Romero-Morales AI, Gama V. Wnt Signaling and Its Impact on Mitochondrial and Cell Cycle Dynamics in Pluripotent Stem Cells. Genes (Basel) 2018; 9:genes9020109. [PMID: 29463061 PMCID: PMC5852605 DOI: 10.3390/genes9020109] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/17/2022] Open
Abstract
The core transcriptional network regulating stem cell self-renewal and pluripotency remains an intense area of research. Increasing evidence indicates that modified regulation of basic cellular processes such as mitochondrial dynamics, apoptosis, and cell cycle are also essential for pluripotent stem cell identity and fate decisions. Here, we review evidence for Wnt regulation of pluripotency and self-renewal, and its connections to emerging features of pluripotent stem cells, including (1) increased mitochondrial fragmentation, (2) increased sensitivity to cell death, and (3) shortened cell cycle. We provide a general overview of the stem cell–specific mechanisms involved in the maintenance of these uncharacterized hallmarks of pluripotency and highlight potential links to the Wnt signaling pathway. Given the physiological importance of stem cells and their enormous potential for regenerative medicine, understanding fundamental mechanisms mediating the crosstalk between Wnt, organelle-dynamics, apoptosis, and cell cycle will be crucial to gain insight into the regulation of stemness.
Collapse
Affiliation(s)
- Megan L Rasmussen
- Department of Cell and Developmental Biology; Vanderbilt University, Nashville, TN37232, United States.
| | - Natalya A Ortolano
- Department of Cell and Developmental Biology; Vanderbilt University, Nashville, TN37232, United States.
| | | | - Vivian Gama
- Department of Cell and Developmental Biology; Vanderbilt University, Nashville, TN37232, United States.
- Vanderbilt Center for Stem Cell Biology; Vanderbilt University, Nashville, TN37232, United States.
- Vanderbilt Ingram Cancer Center; Vanderbilt University, Nashville, TN37232, United States.
| |
Collapse
|
6
|
Zhang M, Skirkanich J, Lampson MA, Klein PS. Cell Cycle Remodeling and Zygotic Gene Activation at the Midblastula Transition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:441-487. [DOI: 10.1007/978-3-319-46095-6_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Heim A, Rymarczyk B, Mayer TU. Regulation of Cell Division. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:83-116. [PMID: 27975271 DOI: 10.1007/978-3-319-46095-6_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The challenging task of mitotic cell divisions is to generate two genetically identical daughter cells from a single precursor cell. To accomplish this task, a complex regulatory network evolved, which ensures that all events critical for the duplication of cellular contents and their subsequent segregation occur in the correct order, at specific intervals and with the highest possible fidelity. Transitions between cell cycle stages are triggered by changes in the phosphorylation state and levels of components of the cell cycle machinery. Entry into S-phase and M-phase are mediated by cyclin-dependent kinases (Cdks), serine-threonine kinases that require a regulatory cyclin subunit for their activity. Resetting the system to the interphase state is mediated by protein phosphatases (PPs) that counteract Cdks by dephosphorylating their substrates. To avoid futile cycles of phosphorylation and dephosphorylation, Cdks and PPs must be regulated in a manner such that their activities are mutually exclusive.
Collapse
Affiliation(s)
- Andreas Heim
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Beata Rymarczyk
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Thomas U Mayer
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany.
| |
Collapse
|
8
|
Calcium signaling and meiotic exit at fertilization in Xenopus egg. Int J Mol Sci 2014; 15:18659-76. [PMID: 25322156 PMCID: PMC4227238 DOI: 10.3390/ijms151018659] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/01/2014] [Accepted: 10/09/2014] [Indexed: 11/16/2022] Open
Abstract
Calcium is a universal messenger that mediates egg activation at fertilization in all sexually reproducing species studied. However, signaling pathways leading to calcium generation and the mechanisms of calcium-induced exit from meiotic arrest vary substantially among species. Here, we review the pathways of calcium signaling and the mechanisms of meiotic exit at fertilization in the eggs of the established developmental model, African clawed frog, Xenopus laevis. We also discuss calcium involvement in the early fertilization-induced events in Xenopus egg, such as membrane depolarization, the increase in intracellular pH, cortical granule exocytosis, cortical contraction, contraction wave, cortical rotation, reformation of the nuclear envelope, sperm chromatin decondensation and sister chromatid segregation.
Collapse
|
9
|
Cragle C, MacNicol AM. Musashi protein-directed translational activation of target mRNAs is mediated by the poly(A) polymerase, germ line development defective-2. J Biol Chem 2014; 289:14239-51. [PMID: 24644291 DOI: 10.1074/jbc.m114.548271] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mRNA-binding protein, Musashi, has been shown to regulate translation of select mRNAs and to control cellular identity in both stem cells and cancer cells. Within the mammalian cells, Musashi has traditionally been characterized as a repressor of translation. However, we have demonstrated that Musashi is an activator of translation in progesterone-stimulated oocytes of the frog Xenopus laevis, and recent evidence has revealed Musashi's capability to function as an activator of translation in mammalian systems. The molecular mechanism by which Musashi directs activation of target mRNAs has not been elucidated. Here, we report a specific association of Musashi with the noncanonical poly(A) polymerase germ line development defective-2 (GLD2) and map the association domain to 31 amino acids within the C-terminal domain of Musashi. We show that loss of GLD2 interaction through deletion of the binding domain or treatment with antisense oligonucleotides compromises Musashi function. Additionally, we demonstrate that overexpression of both Musashi and GLD2 significantly enhances Musashi function. Finally, we report a similar co-association also occurs between murine Musashi and GLD2 orthologs, suggesting that coupling of Musashi to the polyadenylation apparatus is a conserved mechanism to promote target mRNA translation.
Collapse
Affiliation(s)
- Chad Cragle
- From the Interdiciplinary Biomedical Sciences, Departments of Neurobiology and Developmental Sciences
| | - Angus M MacNicol
- Departments of Neurobiology and Developmental Sciences, Physiology and Biophysics, and Genetics, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205
| |
Collapse
|
10
|
Zheng Z, Zhao MH, Jia JL, Heo YT, Cui XS, Oh JS, Kim NH. Knockdown of maternal homeobox transcription factor SEBOX gene impaired early embryonic development in porcine parthenotes. J Reprod Dev 2013; 59:557-62. [PMID: 24018616 PMCID: PMC3934157 DOI: 10.1262/jrd.2013-050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A number of germ cell-specific transcription factors essential for ovarian formation
and folliculogenesis have been identified and studied. However, the role of these
factors during early embryonic development has been poorly explored. In the present
study, we investigated the role of SEBOX, a maternal homeobox transcription factor,
during early embryonic development in porcine parthenotes. mRNA for
SEBOX is preferentially expressed in oocytes, and expression
persists until embryonic genome activation (EGA). Knockdown of SEBOX by siRNA
disrupted early embryonic development, but not oocyte maturation. Many maternal genes
essential for early embryonic development were upregulated in SEBOX-depleted embryos.
Moreover, some pluripotency-associated genes, including SOX2 and
NANOG, were upregulated when SEBOX was knocked down. Therefore,
our data demonstrate that SEBOX is required for early embryonic development in pigs
and appears to regulate the degradation of maternal transcripts and the expression of
pluripotency genes.
Collapse
Affiliation(s)
- Zhong Zheng
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Hörmanseder E, Tischer T, Mayer TU. Modulation of cell cycle control during oocyte-to-embryo transitions. EMBO J 2013; 32:2191-203. [PMID: 23892458 DOI: 10.1038/emboj.2013.164] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/03/2013] [Indexed: 12/17/2022] Open
Abstract
Ex ovo omnia--all animals come from eggs--this statement made in 1651 by the English physician William Harvey marks a seminal break with the doctrine that all essential characteristics of offspring are contributed by their fathers, while mothers contribute only a material substrate. More than 360 years later, we now have a comprehensive understanding of how haploid gametes are generated during meiosis to allow the formation of diploid offspring when sperm and egg cells fuse. In most species, immature oocytes are arrested in prophase I and this arrest is maintained for few days (fruit flies) or for decades (humans). After completion of the first meiotic division, most vertebrate eggs arrest again at metaphase of meiosis II. Upon fertilization, this second meiotic arrest point is released and embryos enter highly specialized early embryonic divisions. In this review, we discuss how the standard somatic cell cycle is modulated to meet the specific requirements of different developmental stages. Specifically, we focus on cell cycle regulation in mature vertebrate eggs arrested at metaphase II (MII-arrest), the first mitotic cell cycle, and early embryonic divisions.
Collapse
Affiliation(s)
- Eva Hörmanseder
- Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | | | | |
Collapse
|
12
|
Zar1 represses translation in Xenopus oocytes and binds to the TCS in maternal mRNAs with different characteristics than Zar2. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1034-46. [PMID: 23827238 DOI: 10.1016/j.bbagrm.2013.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 12/23/2022]
Abstract
Maternal mRNAs are translationally regulated during early development. Zar1 and its closely related homolog, Zar2, are both crucial in early development. Xenopus laevis Zygote arrest 2 (Zar2) binds to the Translational Control Sequence (TCS) in maternal mRNAs and regulates translation. The molecular mechanism of Zar1 has not been described. Here we report similarities and differences between Xenopus Zar1 and Zar2. Analysis of Zar sequences in vertebrates revealed two Zar family members with conserved, characteristic amino acid differences in the C-terminal domain. The presence of only two vertebrate Zar proteins was supported by analyzing Zar1 synteny. We propose that the criteria for naming Zar sequences are based on the characteristic amino acids and the chromosomal context. We also propose reclassification of some Zar sequences. We found that Zar1 is expressed throughout oogenesis and is stable during oocyte maturation. The N-terminal domain of Zar1 repressed translation of a reporter construct in immature oocytes. Both Zar1 and Zar2 bound to the TCS in the Wee1 and Mos 3' UTRs using a zinc finger in the C-terminal domain. However, Zar1 had much higher affinity for RNA than Zar2. To show the functional significance of the conserved amino acid substitutions, these residues in Zar2 were mutated to those found in Zar1. We show that these residues contributed to the different RNA binding characteristics of Zar1 compared to Zar2. Our study shows that Zar proteins have generally similar molecular functions in the translational regulation of maternal mRNAs, but they may have different roles in early development.
Collapse
|
13
|
Vinod P, Zhou X, Zhang T, Mayer TU, Novak B. The role of APC/C inhibitor Emi2/XErp1 in oscillatory dynamics of early embryonic cell cycles. Biophys Chem 2013; 177-178:1-6. [DOI: 10.1016/j.bpc.2013.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/06/2013] [Accepted: 03/08/2013] [Indexed: 10/27/2022]
|
14
|
Intracellular and extracellular pH and Ca are bound to control mitosis in the early sea urchin embryo via ERK and MPF activities. PLoS One 2013; 8:e66113. [PMID: 23785474 PMCID: PMC3681939 DOI: 10.1371/journal.pone.0066113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/01/2013] [Indexed: 11/19/2022] Open
Abstract
Studies aiming to predict the impact on marine life of ocean acidification and of altered salinity have shown altered development in various species including sea urchins. We have analyzed how external Na, Ca, pH and bicarbonate control the first mitotic divisions of sea urchin embryos. Intracellular free Ca (Cai) and pH (pHi) and the activities of the MAP kinase ERK and of MPF regulate mitosis in various types of cells including oocytes and early embryos. We found that intracellular acidification of fertilized eggs by Na-acetate induces a huge activation of ERK at time of mitosis. This also stops the cell cycle and leads to cell death, which can be bypassed by treatment with the MEK inhibitor U0126. Similar intracellular acidification induced in external medium containing low sodium or 5-(N-Methyl-N-isobutyl) amiloride, an inhibitor of the Na+/H+ exchanger, also stops the cell cycle and leads to cell death. In that case, an increase in Cai and in the phosphorylation of tyr-cdc2 occurs during mitosis, modifications that depend on external Ca. Our results indicate that the levels of pHi and Cai determine accurate levels of Ptyr-Cdc2 and P-ERK capable of ensuring progression through the first mitotic cycles. These intracellular parameters rely on external Ca, Na and bicarbonate, alterations of which during climate changes could act synergistically to perturb the early marine life.
Collapse
|
15
|
Huang TL, Pian JP, Pan BT. Oncogenic Ras suppresses Cdk1 in a complex manner during the incubation of activated Xenopus egg extracts. Arch Biochem Biophys 2013; 532:61-72. [PMID: 23376039 DOI: 10.1016/j.abb.2013.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/12/2013] [Accepted: 01/18/2013] [Indexed: 12/30/2022]
Abstract
The activity of Cdk1 is the driving force for entry into M-phase during the cell cycle. Activation of Cdk1 requires synthesis and accumulation of cyclin B, binding of cyclin B to Cdk1, and removal of the inhibitory tyr-15-Cdk1 phosphorylation. It was previously shown that oncogenic Ras suppresses Cdk1 activation during the incubation of activated Xenopus egg extracts. However, how oncogenic Ras suppresses Cdk1 remained unclear. Using the histone H1 kinase assay to follow Cdk1 activity and Western blot analysis to assess levels of both cyclin B2 and phosphorylated-tyr-15-Cdk1, how oncogenic Ras suppresses Cdk1 is studied. The results indicate that oncogenic Ras suppresses Cdk1 via induction of persistent phosphorylation of tyr-15-Cdk1. Interestingly, the results reveal that, compared with cyclin B2 in control activated egg extracts, which increased, peaked and then declined during the incubation, oncogenic Ras induced continuous accumulation of cyclin B2. The results also indicate that oncogenic Ras induces continuous accumulation of cyclin B2 primarily through stabilization of cyclin B2, which is mediated by constitutive activation of the Raf-Mek-Erk-p90(rsk) pathway. Taken together, these results indicate that oncogenic Ras suppresses Cdk1 in a complex manner: It induces continuous accumulation of cyclin B2, but also causes persistent inhibitory phosphorylation of tyr-15-Cdk1.
Collapse
Affiliation(s)
- Tun-Lan Huang
- Graduate Center for Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | |
Collapse
|
16
|
Illert AL, Zech M, Moll C, Albers C, Kreutmair S, Peschel C, Bassermann F, Duyster J. Extracellular signal-regulated kinase 2 (ERK2) mediates phosphorylation and inactivation of nuclear interaction partner of anaplastic lymphoma kinase (NIPA) at G2/M. J Biol Chem 2012; 287:37997-8005. [PMID: 22955283 DOI: 10.1074/jbc.m112.373464] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
NIPA is an F-box-like protein that contributes to the timing of mitotic entry. It targets nuclear cyclin B1 for ubiquitination in interphase, whereas in G(2)/M phase, NIPA is inactivated by phosphorylation to allow for cyclin B1 accumulation, a critical event for proper G(2)/M transition. We recently specified three serine residues of NIPA and demonstrated a sequential phosphorylation at G(2)/M, where initial Ser-354 and Ser-359 phosphorylation is most crucial for SCF(NIPA) inactivation. In this study, we identified ERK2 as the kinase responsible for this critical initial phosphorylation step. Using in vitro kinase assays, we found that both ERK1 and ERK2 phosphorylated NIPA with high efficiency. Mutation of either Ser-354 or Ser-359 abolished ERK-dependent NIPA phosphorylation. Pharmacologic inhibition of ERK1/2 in cell lines resulted in decreased NIPA phosphorylation at G(2)/M. By combining cell cycle synchronization with stable expression of shRNA targeting either ERK1 or ERK2, we showed that ERK2 but not ERK1 mediated NIPA inactivation at G(2)/M. ERK2 knockdown led to a delay at the G(2)/M transition, a phenotype also observed in cells expressing a phospho-deficient mutant of NIPA. Thus, our data add to the recently described divergent functions of ERK1 and ERK2 in cell cycle regulation, which may be due in part to the differential ability of these kinases to phosphorylate and inactivate NIPA at G(2)/M.
Collapse
Affiliation(s)
- Anna Lena Illert
- Department of Internal Medicine III, Technical University of Munich, 81675 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Xenopus laevis zygote arrest 2 (zar2) encodes a zinc finger RNA-binding protein that binds to the translational control sequence in the maternal Wee1 mRNA and regulates translation. Dev Biol 2012; 369:177-90. [PMID: 22732570 DOI: 10.1016/j.ydbio.2012.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/12/2012] [Accepted: 06/17/2012] [Indexed: 11/22/2022]
Abstract
Zygote arrest (Zar) proteins are crucial for early embryonic development, but their molecular mechanism of action is unknown. The Translational Control Sequence (TCS) in the 3' untranslated region (UTR) of the maternal mRNA, Wee1, mediates translational repression in immature Xenopus oocytes and translational activation in mature oocytes, but the protein that binds to the TCS and mediates translational control is not known. Here we show that Xenopus laevis Zar2 (encoded by zar2) binds to the TCS in maternal Wee1 mRNA and represses translation in immature oocytes. Using yeast 3 hybrid assays and electrophoretic mobility shift assays, Zar2 was shown to bind specifically to the TCS in the Wee1 3'UTR. RNA binding required the presence of Zn(2+) and conserved cysteines in the C-terminal domain, suggesting that Zar2 contains a zinc finger. Consistent with regulating maternal mRNAs, Zar2 was present throughout oogenesis, and endogenous Zar2 co-immunoprecipitated endogenous Wee1 mRNA from immature oocytes, demonstrating the physiological significance of the protein-RNA interaction. Interestingly, Zar2 levels decreased during oocyte maturation. Dual luciferase reporter tethered assays showed that Zar2 repressed translation in immature oocytes. Translational repression was relieved during oocyte maturation and this coincided with degradation of Zar2 during maturation. This is the first report of a molecular function of zygote arrest proteins. These data show that Zar2 contains a zinc finger and is a trans-acting factor for the TCS in maternal mRNAs in immature Xenopus oocytes.
Collapse
|
18
|
Cell-Cycle Control in Oocytes and During Early Embryonic Cleavage Cycles in Ascidians. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 297:235-64. [DOI: 10.1016/b978-0-12-394308-8.00006-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Gaffré M, Martoriati A, Belhachemi N, Chambon JP, Houliston E, Jessus C, Karaiskou A. A critical balance between Cyclin B synthesis and Myt1 activity controls meiosis entry in Xenopus oocytes. Development 2011; 138:3735-44. [DOI: 10.1242/dev.063974] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In fully grown oocytes, meiosis is arrested at first prophase until species-specific initiation signals trigger maturation. Meiotic resumption universally involves early activation of M phase-promoting factor (Cdc2 kinase-Cyclin B complex, MPF) by dephosphorylation of the inhibitory Thr14/Tyr15 sites of Cdc2. However, underlying mechanisms vary. In Xenopus oocytes, deciphering the intervening chain of events has been hampered by a sensitive amplification loop involving Cdc2-Cyclin B, the inhibitory kinase Myt1 and the activating phosphatase Cdc25. In this study we provide evidence that the critical event in meiotic resumption is a change in the balance between inhibitory Myt1 activity and Cyclin B neosynthesis. First, we show that in fully grown oocytes Myt1 is essential for maintaining prophase I arrest. Second, we demonstrate that, upon upregulation of Cyclin B synthesis in response to progesterone, rapid inactivating phosphorylation of Myt1 occurs, mediated by Cdc2 and without any significant contribution of Mos/MAPK or Plx1. We propose a model in which the appearance of active MPF complexes following increased Cyclin B synthesis causes Myt1 inhibition, upstream of the MPF/Cdc25 amplification loop.
Collapse
Affiliation(s)
- Melina Gaffré
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| | - Alain Martoriati
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| | - Naima Belhachemi
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| | - Jean-Philippe Chambon
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| | - Evelyn Houliston
- UPMC Université Paris 06, UMR7009-Biologie du Développement, 06230 Villefranche sur mer, France
- CNRS, UMR7009-Biologie du Développement, 06230 Villefranche sur mer, France
| | - Catherine Jessus
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| | - Anthi Karaiskou
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| |
Collapse
|
20
|
Gotoh T, Villa LM, Capelluto DGS, Finkielstein CV. Regulatory pathways coordinating cell cycle progression in early Xenopus development. Results Probl Cell Differ 2011; 53:171-99. [PMID: 21630146 DOI: 10.1007/978-3-642-19065-0_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The African clawed frog, Xenopus laevis, is used extensively as a model organism for studying both cell development and cell cycle regulation. For over 20 years now, this model organism has contributed to answering fundamental questions concerning the mechanisms that underlie cell cycle transitions--the cellular components that synthesize, modify, repair, and degrade nucleic acids and proteins, the signaling pathways that allow cells to communicate, and the regulatory pathways that lead to selective expression of subsets of genes. In addition, the remarkable simplicity of the Xenopus early cell cycle allows for tractable manipulation and dissection of the basic components driving each transition. In this organism, early cell divisions are characterized by rapid cycles alternating phases of DNA synthesis and division. The post-blastula stages incorporate gap phases, lengthening progression, and allowing more time for DNA repair. Various cyclin/Cdk complexes are differentially expressed during the early cycles with orderly progression being driven by both the combined action of cyclin synthesis and degradation and the appropriate selection of specific substrates by their Cdk components. Like other multicellular organisms, chief developmental events in early Xenopus embryogenesis coincide with profound remodeling of the cell cycle, suggesting that cell proliferation and differentiation events are linked and coordinated through crosstalk mechanisms acting on signaling pathways involving the expression of cell cycle control genes.
Collapse
Affiliation(s)
- Tetsuya Gotoh
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
21
|
Dumollard R, Levasseur M, Hebras C, Huitorel P, Carroll M, Chambon JP, McDougall A. Mos limits the number of meiotic divisions in urochordate eggs. Development 2011; 138:885-95. [DOI: 10.1242/dev.057133] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mos kinase is a universal mediator of oocyte meiotic maturation and is produced during oogenesis and destroyed after fertilization. The hallmark of maternal meiosis is that two successive M phases (meiosis I and II) drive two rounds of asymmetric cell division (ACD). However, how the egg limits the number of meioses to just two, thereby preventing gross aneuploidy, is poorly characterized. Here, in urochordate eggs, we show that loss of Mos/MAPK activity is necessary to prevent entry into meiosis III. Remarkably, maintaining the Mos/MAPK pathway active after fertilization at near physiological levels induces additional rounds of meiotic M phase (meiosis III, IV and V). During these additional rounds of meiosis, the spindle is positioned asymmetrically resulting in further rounds of ACD. In addition, inhibiting meiotic exit with Mos prevents pronuclear formation, cyclin A accumulation and maintains sperm-triggered Ca2+ oscillations, all of which are hallmarks of the meiotic cell cycle in ascidians. It will be interesting to determine whether Mos availability in mammals can also control the number of meioses as it does in the urochordates. Our results demonstrate the power of urochordate eggs as a model to dissect the egg-to-embryo transition.
Collapse
Affiliation(s)
- Rémi Dumollard
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Mark Levasseur
- Institute of Cell and Molecular Bioscences, The Medical School, Framlington Place, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| | - Céline Hebras
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Philippe Huitorel
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Michael Carroll
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Jean-Philippe Chambon
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Alex McDougall
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| |
Collapse
|
22
|
MacNicol MC, MacNicol AM. Developmental timing of mRNA translation--integration of distinct regulatory elements. Mol Reprod Dev 2010; 77:662-9. [PMID: 20652998 DOI: 10.1002/mrd.21191] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Targeted mRNA translation is emerging as a critical mechanism to control gene expression during developmental processes. Exciting new findings have revealed a critical role for regulatory elements within the mRNA untranslated regions to direct the timing of mRNA translation. Regulatory elements can be targeted by sequence-specific binding proteins to direct either repression or activation of mRNA translation in response to developmental signals. As new regulatory elements continue to be identified it has become clear that targeted mRNAs can contain multiple regulatory elements, directing apparently contradictory translational patterns. How is this complex regulatory input integrated? In this review, we focus on a new challenge area-how sequence-specific RNA binding proteins respond to developmental signals and functionally integrate to regulate the extent and timing of target mRNA translation. We discuss current understanding with a particular emphasis on the control of cell cycle progression that is mediated through a complex interplay of distinct mRNA regulatory elements during Xenopus oocyte maturation.
Collapse
Affiliation(s)
- Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | |
Collapse
|
23
|
Lorca T, Bernis C, Vigneron S, Burgess A, Brioudes E, Labbé JC, Castro A. Constant regulation of both the MPF amplification loop and the Greatwall-PP2A pathway is required for metaphase II arrest and correct entry into the first embryonic cell cycle. J Cell Sci 2010; 123:2281-91. [PMID: 20554897 DOI: 10.1242/jcs.064527] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Recent results indicate that regulating the balance between cyclin-B-Cdc2 kinase, also known as M-phase-promoting factor (MPF), and protein phosphatase 2A (PP2A) is crucial to enable correct mitotic entry and exit. In this work, we studied the regulatory mechanisms controlling the cyclin-B-Cdc2 and PP2A balance by analysing the activity of the Greatwall kinase and PP2A, and the different components of the MPF amplification loop (Myt1, Wee1, Cdc25) during the first embryonic cell cycle. Previous data indicated that the Myt1-Wee1-Cdc25 equilibrium is tightly regulated at the G2-M and M-G1 phase transitions; however, no data exist regarding the regulation of this balance during M phase and interphase. Here, we demonstrate that constant regulation of the cyclin-B-Cdc2 amplification loop is required for correct mitotic division and to promote correct timing of mitotic entry. Our results show that removal of Cdc25 from metaphase-II-arrested oocytes promotes mitotic exit, whereas depletion of either Myt1 or Wee1 in interphase egg extracts induces premature mitotic entry. We also provide evidence that, besides the cyclin-B-Cdc2 amplification loop, the Greatwall-PP2A pathway must also be tightly regulated to promote correct first embryonic cell division. When PP2A is prematurely inhibited in the absence of cyclin-B-Cdc2 activation, endogenous cyclin-A-Cdc2 activity induces irreversible aberrant mitosis in which there is, first, partial transient phosphorylation of mitotic substrates and, second, subsequent rapid and complete degradation of cyclin A and cyclin B, thus promoting premature and rapid exit from mitosis.
Collapse
Affiliation(s)
- Thierry Lorca
- Universités Montpellier 2 et 1, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, IFR 122, 1919 Route de Mende, 34293 Montpellier CEDEX 5, France.
| | | | | | | | | | | | | |
Collapse
|
24
|
Arumugam K, Wang Y, Hardy LL, MacNicol MC, MacNicol AM. Enforcing temporal control of maternal mRNA translation during oocyte cell-cycle progression. EMBO J 2009; 29:387-97. [PMID: 19959990 DOI: 10.1038/emboj.2009.337] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 10/21/2009] [Indexed: 02/07/2023] Open
Abstract
Meiotic cell-cycle progression in progesterone-stimulated Xenopus oocytes requires that the translation of pre-existing maternal mRNAs occur in a strict temporal order. Timing of translation is regulated through elements within the mRNA 3' untranslated region (3' UTR), which respond to cell cycle-dependant signalling. One element that has been previously implicated in the temporal control of mRNA translation is the cytoplasmic polyadenylation element (CPE). In this study, we show that the CPE does not direct early mRNA translation. Rather, early translation is directed through specific early factors, including the Musashi-binding element (MBE) and the MBE-binding protein, Musashi. Our findings indicate that although the cyclin B5 3' UTR contains both CPEs and an MBE, the MBE is the critical regulator of early translation. The cyclin B2 3' UTR contains CPEs, but lacks an MBE and is translationally activated late in maturation. Finally, utilizing antisense oligonucleotides to attenuate endogenous Musashi synthesis, we show that Musashi is critical for the initiation of early class mRNA translation and for the subsequent activation of CPE-dependant mRNA translation.
Collapse
Affiliation(s)
- Karthik Arumugam
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | | | |
Collapse
|
25
|
Rafikova ER, Melikov K, Ramos C, Dye L, Chernomordik LV. Transmembrane protein-free membranes fuse into xenopus nuclear envelope and promote assembly of functional pores. J Biol Chem 2009; 284:29847-59. [PMID: 19696024 PMCID: PMC2785615 DOI: 10.1074/jbc.m109.044453] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/17/2009] [Indexed: 11/06/2022] Open
Abstract
Post-mitotic reassembly of nuclear envelope (NE) and the endoplasmic reticulum (ER) has been reconstituted in a cell-free system based on interphase Xenopus egg extract. To evaluate the relative contributions of cytosolic and transmembrane proteins in NE and ER assembly, we replaced a part of native membrane vesicles with ones either functionally impaired by trypsin or N-ethylmaleimide treatments or with protein-free liposomes. Although neither impaired membrane vesicles nor liposomes formed ER and nuclear membrane, they both supported assembly reactions by fusing with native membrane vesicles. At membrane concentrations insufficient to generate full-sized functional nuclei, addition of liposomes and their fusion with membrane vesicles resulted in an extensive expansion of NE, further chromatin decondensation, restoration of the functionality, and spatial distribution of the nuclear pore complexes (NPCs), and, absent newly delivered transmembrane proteins, an increase in NPC numbers. This rescue of the nuclear assembly by liposomes was inhibited by wheat germ agglutinin and thus required active nuclear transport, similarly to the assembly of full-sized functional NE with membrane vesicles. Mechanism of fusion between liposomes and between liposomes and membrane vesicles was investigated using lipid mixing assay. This fusion required interphase cytosol and, like fusion between native membrane vesicles, was inhibited by guanosine 5'-3-O-(thio)triphosphate, soluble N-ethylmaleimide-sensitive factor attachment protein, and N-ethylmaleimide. Our findings suggest that interphase cytosol contains proteins that mediate the fusion stage of ER and NE reassembly, emphasize an unexpected tolerance of nucleus assembly to changes in concentrations of transmembrane proteins, and reveal the existence of a feedback mechanism that couples NE expansion with NPC assembly.
Collapse
Affiliation(s)
- Elvira R. Rafikova
- From the Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-1855
| | - Kamran Melikov
- From the Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-1855
| | - Corinne Ramos
- the Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0347, and
| | - Louis Dye
- the Microscopy and Imaging Core, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-1855
| | - Leonid V. Chernomordik
- From the Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-1855
| |
Collapse
|
26
|
Isoda M, Kanemori Y, Nakajo N, Uchida S, Yamashita K, Ueno H, Sagata N. The extracellular signal-regulated kinase-mitogen-activated protein kinase pathway phosphorylates and targets Cdc25A for SCF beta-TrCP-dependent degradation for cell cycle arrest. Mol Biol Cell 2009; 20:2186-95. [PMID: 19244340 DOI: 10.1091/mbc.e09-01-0008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The extracellular signal-regulated kinase (ERK) pathway is generally mitogenic, but, upon strong activation, it causes cell cycle arrest by a not-yet fully understood mechanism. In response to genotoxic stress, Chk1 hyperphosphorylates Cdc25A, a positive cell cycle regulator, and targets it for Skp1/Cullin1/F-box protein (SCF)(beta-TrCP) ubiquitin ligase-dependent degradation, thereby leading to cell cycle arrest. Here, we show that strong ERK activation can also phosphorylate and target Cdc25A for SCF(beta-TrCP)-dependent degradation. When strongly activated in Xenopus eggs, the ERK pathway induces prominent phosphorylation and SCF(beta-TrCP)-dependent degradation of Cdc25A. p90rsk, the kinase downstream of ERK, directly phosphorylates Cdc25A on multiple sites, which, interestingly, overlap with Chk1 phosphorylation sites. Furthermore, ERK itself phosphorylates Cdc25A on multiple sites, a major site of which apparently is phosphorylated by cyclin-dependent kinase (Cdk) in Chk1-induced degradation. p90rsk phosphorylation and ERK phosphorylation contribute, roughly equally and additively, to the degradation of Cdc25A, and such Cdc25A degradation occurs during oocyte maturation in which the endogenous ERK pathway is fully activated. Finally, and importantly, ERK-induced Cdc25A degradation can elicit cell cycle arrest in early embryos. These results suggest that strong ERK activation can target Cdc25A for degradation in a manner similar to, but independent of, Chk1 for cell cycle arrest.
Collapse
Affiliation(s)
- Michitaka Isoda
- Department of Biology, Kyushu University, Hakozaki, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Sible JC, Wroble BN. Expression of exogenous mRNA in Xenopus laevis embryos for the study of cell cycle regulation. Methods Mol Biol 2009; 518:1-15. [PMID: 19085142 DOI: 10.1007/978-1-59745-202-1_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The microinjection of mRNA that is transcribed and capped in vitro into fertilized eggs and embryos of Xenopus laevis provides a powerful means for discovering the function of proteins during early development. Proteins may be overexpressed for a gain-of-function effect or exogenous protein function may be compromised by the microinjection of mRNA encoding "dominant-negative" proteins. This methodology is particularly suited for the investigation of the regulation of the cell cycle, checkpoints, and apoptosis in early development.
Collapse
Affiliation(s)
- Jill C Sible
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | |
Collapse
|
28
|
Abstract
The maize sex determination pathway results in the arrest of stamen in ear spikelets and the abortion of pistils in both the tassel spikelets and in the secondary florets of ear spikelets. Arrested stamen cells showed no signs of DNA fragmentation, an absence of CYCLIN B expression, and an accumulation of the negative cell cycle regulator WEE1 RNA.
Collapse
|
29
|
Wang YY, Charlesworth A, Byrd SM, Gregerson R, MacNicol MC, MacNicol AM. A novel mRNA 3' untranslated region translational control sequence regulates Xenopus Wee1 mRNA translation. Dev Biol 2008; 317:454-66. [PMID: 18395197 DOI: 10.1016/j.ydbio.2008.02.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 11/16/2022]
Abstract
Cell cycle progression during oocyte maturation requires the strict temporal regulation of maternal mRNA translation. The intrinsic basis of this temporal control has not been fully elucidated but appears to involve distinct mRNA 3' UTR regulatory elements. In this study, we identify a novel translational control sequence (TCS) that exerts repression of target mRNAs in immature oocytes of the frog, Xenopus laevis, and can direct early cytoplasmic polyadenylation and translational activation during oocyte maturation. The TCS is functionally distinct from the previously characterized Musashi/polyadenylation response element (PRE) and the cytoplasmic polyadenylation element (CPE). We report that TCS elements exert translational repression in both the Wee1 mRNA 3' UTR and the pericentriolar material-1 (Pcm-1) mRNA 3' UTR in immature oocytes. During oocyte maturation, TCS function directs the early translational activation of the Pcm-1 mRNA. By contrast, we demonstrate that CPE sequences flanking the TCS elements in the Wee1 3' UTR suppress the ability of the TCS to direct early translational activation. Our results indicate that a functional hierarchy exists between these distinct 3' UTR regulatory elements to control the timing of maternal mRNA translational activation during oocyte maturation.
Collapse
Affiliation(s)
- Yi Ying Wang
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Slot 814, 4301 W. Markham St., Little Rock, AR 72205, USA
| | | | | | | | | | | |
Collapse
|
30
|
Wroble BN, Finkielstein CV, Sible JC. Wee1 kinase alters cyclin E/Cdk2 and promotes apoptosis during the early embryonic development of Xenopus laevis. BMC DEVELOPMENTAL BIOLOGY 2007; 7:119. [PMID: 17961226 PMCID: PMC2176066 DOI: 10.1186/1471-213x-7-119] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 10/25/2007] [Indexed: 12/04/2022]
Abstract
Background The cell cycles of the Xenopus laevis embryo undergo extensive remodeling beginning at the midblastula transition (MBT) of early development. Cell divisions 2–12 consist of rapid cleavages without gap phases or cell cycle checkpoints. Some remodeling events depend upon a critical nucleo-cytoplasmic ratio, whereas others rely on a maternal timer controlled by cyclin E/Cdk2 activity. One key event that occurs at the MBT is the degradation of maternal Wee1, a negative regulator of cyclin-dependent kinase (Cdk) activity. Results In order to assess the effect of Wee1 on embryonic cell cycle remodeling, Wee1 mRNA was injected into one-cell stage embryos. Overexpression of Wee1 caused cell cycle delay and tyrosine phosphorylation of Cdks prior to the MBT. Furthermore, overexpression of Wee1 disrupted key developmental events that normally occur at the MBT such as the degradation of Cdc25A, cyclin E, and Wee1. Overexpression of Wee1 also resulted in post-MBT apoptosis, tyrosine phosphorylation of Cdks and persistence of cyclin E/Cdk2 activity. To determine whether Cdk2 was required specifically for the survival of the embryo, the cyclin E/Cdk2 inhibitor, Δ34-Xic1, was injected in embryos and also shown to induce apoptosis. Conclusion Taken together, these data suggest that Wee1 triggers apoptosis through the disruption of the cyclin E/Cdk2 timer. In contrast to Wee1 and Δ34-Xic1, altering Cdks by expression of Chk1 and Chk2 kinases blocks rather than promotes apoptosis and causes premature degradation of Cdc25A. Collectively, these data implicate Cdc25A as a key player in the developmentally regulated program of apoptosis in X. laevis embryos.
Collapse
Affiliation(s)
- Brian N Wroble
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | | | | |
Collapse
|
31
|
Pelczar H, Caulet S, Thibier C, Aubet G, Poulhe R, Vallianou I, Yamashita M, Andéol Y. Characterization and expression of a maternal axolotl cyclin B1 during oogenesis and early development. Dev Growth Differ 2007; 49:407-19. [PMID: 17428262 DOI: 10.1111/j.1440-169x.2007.00934.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The M phase promoting factor (MPF) is a dimer composed of a catalytic Cdk1 subunit and a Cyclin B regulatory subunit. We have characterized a cDNA containing the entire coding sequence of an axolotl Cyclin B1 protein that is able to promote MPF activity when added to a fraction from prophase I oocytes that contains monomeric Cdk1. The axolotl cyclin B1 gene is expressed as a maternal mRNA in oocytes and early embryos. Its poly(A) tail length increases in metaphase II oocytes and then decreases regularly during the first embryonic cell cycles. Endogenous Cyclin B1 protein is first expressed during oocyte meiotic maturation. Its level oscillates after fertilization and is coordinated to the phosphorylation level of tyrosine 15 residue of Cdk1 (pTyr15), with both maxima preceding each cell division. As expected, when translated into microinjected oocytes, axolotl Cyclin B1 induces the resumption of meiosis. In electrically activated unfertilized eggs (UFE), Cyclin B1 and pTyr15 cyclic accumulations are observed with kinetics different from those of the early embryonic cycles. The axolotl embryo and UFE provide interesting in vivo comparative models for studying events controlling Cyclin B1 regulation during development.
Collapse
Affiliation(s)
- Hélène Pelczar
- Equipe Biochimie du Développement précoce, Laboratoire de Biologie du Développement, UMR CNRS 7622, Université Pierre et Marie Curie, 75252 Paris cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Feinstein TN, Linstedt AD. Mitogen-activated protein kinase kinase 1-dependent Golgi unlinking occurs in G2 phase and promotes the G2/M cell cycle transition. Mol Biol Cell 2006; 18:594-604. [PMID: 17182854 PMCID: PMC1783781 DOI: 10.1091/mbc.e06-06-0530] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Two controversies have emerged regarding the signaling pathways that regulate Golgi disassembly at the G(2)/M cell cycle transition. The first controversy concerns the role of mitogen-activated protein kinase activator mitogen-activated protein kinase kinase (MEK)1, and the second controversy concerns the participation of Golgi structure in a novel cell cycle "checkpoint." A potential simultaneous resolution is suggested by the hypothesis that MEK1 triggers Golgi unlinking in late G(2) to control G(2)/M kinetics. Here, we show that inhibition of MEK1 by RNA interference or by using the MEK1/2-specific inhibitor U0126 delayed the passage of synchronized HeLa cells into M phase. The MEK1 requirement for normal mitotic entry was abrogated if Golgi proteins were dispersed before M phase by treatment of cells with brefeldin A or if GRASP65, which links Golgi stacks into a ribbon network, was depleted. Imaging revealed that unlinking of the Golgi apparatus begins before M phase, is independent of cyclin-dependent kinase 1 activation, and requires MEK signaling. Furthermore, expression of the GRASP family member GRASP55 after alanine substitution of its MEK1-dependent mitotic phosphorylation sites inhibited both late G(2) Golgi unlinking and the G(2)/M transition. Thus, MEK1 plays an in vivo role in Golgi reorganization, which regulates cell cycle progression.
Collapse
Affiliation(s)
- Timothy N. Feinstein
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Adam D. Linstedt
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
33
|
Charlesworth A, Wilczynska A, Thampi P, Cox LL, MacNicol AM. Musashi regulates the temporal order of mRNA translation during Xenopus oocyte maturation. EMBO J 2006; 25:2792-801. [PMID: 16763568 PMCID: PMC1500856 DOI: 10.1038/sj.emboj.7601159] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 04/28/2006] [Indexed: 11/08/2022] Open
Abstract
A strict temporal order of maternal mRNA translation is essential for meiotic cell cycle progression in oocytes of the frog Xenopus laevis. The molecular mechanisms controlling the ordered pattern of mRNA translational activation have not been elucidated. We report a novel role for the neural stem cell regulatory protein, Musashi, in controlling the translational activation of the mRNA encoding the Mos proto-oncogene during meiotic cell cycle progression. We demonstrate that Musashi interacts specifically with the polyadenylation response element in the 3' untranslated region of the Mos mRNA and that this interaction is necessary for early Mos mRNA translational activation. A dominant inhibitory form of Musashi blocks maternal mRNA cytoplasmic polyadenylation and meiotic cell cycle progression. Our data suggest that Musashi is a target of the initiating progesterone signaling pathway and reveal that late cytoplasmic polyadenylation element-directed mRNA translation requires early, Musashi-dependent mRNA translation. These findings indicate that Musashi function is necessary to establish the temporal order of maternal mRNA translation during Xenopus meiotic cell cycle progression.
Collapse
Affiliation(s)
- Amanda Charlesworth
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Anna Wilczynska
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Prajitha Thampi
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Linda L Cox
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- The Arkansas Cancer Research Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Neurobiology and Developmental Sciences, The Arkansas Cancer Research Center, Slot 814, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA. Tel.: +1 501 686 8164; Fax: +1 501 686 6517; E-mail:
| |
Collapse
|
34
|
Kondoh E, Tachibana K, Deguchi R. Intracellular Ca2+ increase induces post-fertilization events via MAP kinase dephosphorylation in eggs of the hydrozoan jellyfish Cladonema pacificum. Dev Biol 2006; 293:228-41. [PMID: 16530749 DOI: 10.1016/j.ydbio.2006.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 02/03/2006] [Accepted: 02/03/2006] [Indexed: 11/24/2022]
Abstract
Naturally spawned eggs of the hydrozoan jellyfish Cladonema pacificum are arrested at G1-like pronuclear stage until fertilization. Fertilized eggs of Cladonema undergo a series of post-fertilization events, including loss of sperm-attracting ability, expression of adhesive materials on the egg surface, and initiation of cell cycle leading to DNA synthesis and cleavage. Here, we investigate whether these events are regulated by changes in intracellular Ca2+ concentration and mitogen-activated protein kinase (MAP kinase) activity in Cladonema eggs. We found that MAP kinase is maintained in the phosphorylated form in unfertilized eggs. Initiation of sperm-induced Ca2+ increase, which is the first sign of fertilization, was immediately followed by MAP kinase dephosphorylation within a few minutes of fertilization. The fertilized eggs typically stopped sperm attraction by an additional 5 min and became sticky around this time. They further underwent cytokinesis yielding 2-cell embryos at approximately 1 h post-fertilization, which was preceded by DNA synthesis evidenced by BrdU incorporation into the nuclei. Injection of inositol 1,4,5-trisphosphate (IP3) into unfertilized eggs, which produced a Ca2+ increase similar to that seen at fertilization, triggered MAP kinase dephosphorylation and the above post-fertilization events without insemination. Conversely, injection of BAPTA/Ca2+ into fertilized eggs at approximately 10 s after the initiation of Ca2+ increase immediately lowered the elevating Ca2+ level and inhibited the subsequent post-fertilization events. Treatment with U0126, an inhibitor of MAP kinase kinase (MEK), triggered the post-fertilization events in unfertilized eggs, where MAP kinase dephosphorylation but not Ca2+ increase was generated. Conversely, preinjection of the glutathione S-transferase (GST) fusion protein of MAP kinase kinase kinase (Mos), which maintained the phosphorylated state of MAP kinase, blocked the post-fertilization events in fertilized eggs without preventing a Ca2+ increase. These results strongly suggest that all of the three post-fertilization events, cessation of sperm attraction, expression of surface adhesion, and progression of cell cycle, lie downstream of MAP kinase dephosphorylation that is triggered by a Ca2+ increase.
Collapse
Affiliation(s)
- Eri Kondoh
- Department of Biology, Miyagi University of Education, Sendai, Miyagi 980-0845, Japan
| | | | | |
Collapse
|
35
|
Chesnel F, Vignaux F, Richard-Parpaillon L, Huguet A, Kubiak JZ. Differences in regulation of the first two M-phases in Xenopus laevis embryo cell-free extracts. Dev Biol 2006; 285:358-75. [PMID: 16087172 DOI: 10.1016/j.ydbio.2005.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 06/21/2005] [Accepted: 06/23/2005] [Indexed: 11/28/2022]
Abstract
The first embryonic M-phase is special, being the time when paternal and maternal chromosomes mix together for the first time. Reports from a variety of species suggest that the regulation of first M-phase has many particularities; however, no systematic comparative study of the biochemical aspects of first and the following M-phases has been previously undertaken. Here, we ask whether the regulation of the first embryonic M-phase is modified, using Xenopus cell-free extracts. We developed new types of extract specific for the first and the second M-phase obtained either from parthenogenetic or from in vitro fertilized embryos. Analyses of these extracts confirmed that the amplitude of histone H1 kinase activity reflecting CDK1/cyclin B (or MPF for M-phase Promoting Factor) activity is higher and persists longer than during the second M-phase, and that levels of cyclins B1 and B2 are correspondingly higher during the first than the second embryonic M-phase. Inhibition of protein synthesis shortly before M-phase entry reduced mitotic histone H1 kinase amplitude, shortened the period of mitotic phosphorylation of chosen marker proteins, and reduced cyclin B1 and B2 levels, suggesting a role of B-type cyclins in regulating the duration of mitotic events. Moreover, addition of exogenous cyclin B to the extract prior the second mitosis brought forward the activation of mitotic histone H1 kinase but prolonged the duration of this activity. We also confirmed that the inhibitory phosphorylation of CDK1 on tyrosine 15 oscillates between the first two embryonic M-phases, but is clearly more pronounced before the first than the second mitosis, while the MAP kinase ERK2 tended to show greater activation during the first embryonic M-phase but with a similar duration of activation. We conclude that discrete differences exist between the first two M-phases in Xenopus embryo and that higher CDK1/cyclin B activity and B-type cyclin levels could account for the different characteristics of these M-phases.
Collapse
Affiliation(s)
- Franck Chesnel
- UMR 6061 CNRS, Biology and Genetics of Development, Mitosis and Meiosis Group, IFR140 GFAS, University of Rennes 1, Faculty of Medicine, 2 Ave. Prof. Léon Bernard, CS 34317, 35043 Rennes cedex, France
| | | | | | | | | |
Collapse
|
36
|
Abstract
The Cdk1 inhibitor Wee1 is inactivated during mitotic entry by proteolysis, translational regulation, and transcriptional regulation. Wee1 is also regulated by posttranslational modifications, and here we have identified five phosphorylation sites in the N-terminal domain of embryonic Xenopus Wee1A through a combination of mutagenesis studies and matrix-assisted laser desorption ionization-time of flight mass spectrometry. All five sites conform to the Ser-Pro/Thr-Pro consensus for proline-directed kinases like Cdks. Three of the sites (Ser 38, Thr 53, and Ser 62) are required for the mitotic gel shift, and at least two of these sites (Ser 38 and Thr 53) regulate the proteolysis of Wee1A during interphase. The other two sites (Thr 104 and Thr 150) are primarily responsible for the mitotic inactivation of Wee1A. Alanine mutants of Thr 150 or Thr 104 had an increased capacity to inhibit mitotic entry in cyclin B-treated interphase extracts, and Thr 150 was found to be transiently phosphorylated just prior to nuclear envelope breakdown in cycling egg extracts. These findings establish the phosphorylation-dependent direct inactivation of Wee1A as a critical mechanism for the promotion of M-phase entry. These results also show that multisite phosphorylation cooperatively inactivates Wee1A and cooperatively promotes Wee1A proteolysis.
Collapse
Affiliation(s)
- Sun Young Kim
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | | | | | | |
Collapse
|
37
|
Nakahata S, Kotani T, Mita K, Kawasaki T, Katsu Y, Nagahama Y, Yamashita M. Involvement of Xenopus Pumilio in the translational regulation that is specific to cyclin B1 mRNA during oocyte maturation. Mech Dev 2003; 120:865-80. [PMID: 12963108 DOI: 10.1016/s0925-4773(03)00160-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein synthesis of cyclin B by translational activation of the dormant mRNA stored in oocytes is required for normal progression of maturation. In this study, we investigated the involvement of Xenopus Pumilio (XPum), a cyclin B1 mRNA-binding protein, in the mRNA-specific translational activation. XPum exhibits high homology to mammalian counterparts, with amino acid identity close to 90%, even if the conserved RNA-binding domain is excluded. XPum is bound to cytoplasmic polyadenylation element (CPE)-binding protein (CPEB) through the RNA-binding domain but not to its phosphorylated form in mature oocytes. In addition to the CPE, the XPum-binding sequence of cyclin B1 mRNA acts as a cis-element for translational repression. Injection of anti-XPum antibody accelerated oocyte maturation and synthesis of cyclin B1, and, conversely, over-expression of XPum retarded oocyte maturation and translation of cyclin B1 mRNA, which was accompanied by inhibition of poly(A) tail elongation. The injection of antibody and the over-expression of XPum, however, had no effect on translation of Mos mRNA, which also contains the CPE. These findings provide the first evidence that XPum is a translational repressor specific to cyclin B1 in vertebrates. We propose that in cooperation with the CPEB-maskin complex, the master regulator common to the CPE-containing mRNAs, XPum acts as a specific regulator that determines the timing of translational activation of cyclin B1 mRNA by its release from phosphorylated CPEB during oocyte maturation.
Collapse
Affiliation(s)
- Shingo Nakahata
- Laboratory of Molecular and Cellular Interactions, Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Kikuchi K, Naito K, Noguchi J, Kaneko H, Tojo H. Maturation/M-phase promoting factor regulates aging of porcine oocytes matured in vitro. CLONING AND STEM CELLS 2003; 4:211-22. [PMID: 12398802 DOI: 10.1089/15362300260339494] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Control of oocyte aging during manipulation of matured oocytes should have advantages for recently developed reproductive technologies, such as cloning after nuclear transfer. We have shown that the enhanced activation ability and fragmentation of porcine in vitro matured and aged oocytes bore a close relationship to the gradual decrease in maturation/M-phase promoting factor (MPF) activity and that porcine aged oocytes contained plenty of MPF, but it was in an inactive form, pre-MPF, as a result of phosphorylation of its catalytic subunit p34(cdc2) and, therefore, had low MPF activity. We incubated porcine oocytes with vanadate and caffeine, which affected the phosphorylation status and MPF activity, and evaluated their activation abilities and fragmentation frequencies. Incubation of nonaged oocytes with vanadate increased p34(cdc2) phosphorylation and reduced MPF activity to levels similar to those of aged oocytes and increased their parthenogenetic activation and fragmentation rates compared with those of the control oocytes. Conversely, treating aged oocytes with caffeine reduced p34(cdc2) phosphorylation and increased MPF activity. These oocytes showed significantly lower parthenogenetic activation and fragmentation rates than aged mature oocytes. These results suggest that MPF activity is a key mechanism of oocyte aging and controlling MPF activity by altering p34(cdc2) phosphorylation with these chemicals may enable oocyte aging to be manipulated in vitro. We expect those ideas will be applied practically to pig cloning.
Collapse
Affiliation(s)
- Kazuhiro Kikuchi
- Genetic Diversity Department, National Institute of Agrobiological Sciences, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
39
|
Abstract
The Wee kinases block entry into mitosis by phosphorylating and inhibiting the activity of the mitotic cyclin-dependent kinase, Cdk1. We have found that the various Xenopus Wee kinases have unique temporal and spatial patterns of expression during development. In addition, we have isolated and characterized a new Wee1-like kinase, Xenopus Wee2. By both in vivo and in vitro tests, Xenopus Wee2 functions as a Wee1-like kinase. The previously isolated Wee1-like kinase, Xenopus Wee1, is expressed only as maternal gene product. In contrast, Xenopus Wee2 is predominantly a zygotic gene product, while the third Wee kinase, Xenopus Myt1, is both a maternal and zygotic gene product. Concurrent with the changing levels of these Cdk inhibitory kinases, the pattern of embryonic cell division becomes asynchronous and spatially restricted in the Xenopus embryo. Interestingly, once zygotic transcription begins, Xenopus Wee2 is expressed in regions of the embryo that are devoid of mitotic cells, such as the involuting mesoderm. In contrast, Xenopus Myt1 is expressed in regions of the embryo that have high levels of proliferation, such as the developing neural tissues. The existence of multiple Wee kinases may help explain how distinct patterns of cell division arise and are regulated during development.
Collapse
Affiliation(s)
- Walter Leise
- Department of Biochemistry and Molecular Biology, Cener for Molecular Oncology and Committees on Developmental Biology, Cancer Biology, and Genetics, University of Chicago, Ill 60637, USA
| | | |
Collapse
|
40
|
Peter M, Le Peuch C, Labbé JC, Meyer AN, Donoghue DJ, Dorée M. Initial activation of cyclin-B1-cdc2 kinase requires phosphorylation of cyclin B1. EMBO Rep 2002; 3:551-6. [PMID: 12034754 PMCID: PMC1084145 DOI: 10.1093/embo-reports/kvf111] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2001] [Revised: 03/21/2002] [Accepted: 04/04/2002] [Indexed: 11/14/2022] Open
Abstract
At the G(2)/M transition of the cell cycle, the cdc25c phosphatase dephosphorylates inhibitory residues of cdc2, and cyclin-B-cdc2 kinase (MPF) is activated. Phosphorylation of cyclin B1 induces its nuclear accumulation, and, since cdc25c is also believed to accumulate and activate shortly before G(2)/M in the nucleus, it has been proposed that this induces cyclin-B1-cdc2 kinase activation. We demonstrate that cyclin B1 phosphorylation has another essential function in vivo: it is required for cdc25c and MPF activation, which does not require nuclear accumulation of cyclin B1, and occurs in the cytoplasm.
Collapse
Affiliation(s)
- Marion Peter
- Centre de Recherches de Biochimie Macromoléculaire, CNRS UPR 1086, 1919 route de Mende, F-34293 Montpellier cedex 5, France
| | | | | | | | | | | |
Collapse
|
41
|
Cornwell WD, Kaminski PJ, Jackson JR. Identification of Drosophila Myt1 kinase and its role in Golgi during mitosis. Cell Signal 2002; 14:467-76. [PMID: 11882391 DOI: 10.1016/s0898-6568(01)00276-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Entry into mitosis is regulated by inhibitory phosphorylation of cdc2/cyclin B, and these phosphorylations can be mediated by the Wee kinase family. Here, we present the identification of Drosophila Myt1 (dMyt1) kinase and examine the relationship of Myt1 and Wee1 activities in the context of cdc2 phosphorylation. dMyt1 kinase was found by BLAST-searching the complete Drosophila genome using the amino acid sequence of human Myt1 kinase. A single predicted polypeptide was identified that shared a 48% identity within the kinase domain with human and Xenopus Myt1. Consistent with its putative role as negative regulator of mitotic entry, overexpression of this protein in Drosophila S2 cells resulted in a reduced rate of cellular proliferation while the loss of expression via RNA interference (RNAi) resulted in an increased rate of proliferation. In addition, loss of dMyt1 alone or in combination with Drosophila Wee1 (dWee1) resulted in a reduction of cells in G2/M phase and an increase in G1 phase cells. Finally, loss of dMyt1 alone resulted in a significant reduction of phosphorylation of cdc2 on the threonine-14 (Thr-14) residue as expected. Surprisingly however, a reduction in the phosphorylation of cdc2 on the tyrosine-15 (Tyr-15) residue was only observed when both dMyt1 and dWee1 expression was reduced via RNAi and not by Wee1 alone. Most strikingly, in the absence of dMyt1, Golgi fragmentation during mitosis was incomplete. Our findings suggest that dMyt1 and dWee1 have distinct roles in the regulation of cdc2 phosphorylation and the regulation of mitotic events.
Collapse
Affiliation(s)
- William D Cornwell
- Department of Oncology Research, GlaxoSmithKline Pharmaceuticals, 709 Swedeland Road, Mail Code UW 2532, King of Prussia, PA 19406, USA
| | | | | |
Collapse
|
42
|
Castro A, Peter M, Magnaghi-Jaulin L, Vigneron S, Galas S, Lorca T, Labbé JC. Cyclin B/cdc2 induces c-Mos stability by direct phosphorylation in Xenopus oocytes. Mol Biol Cell 2001; 12:2660-71. [PMID: 11553706 PMCID: PMC59702 DOI: 10.1091/mbc.12.9.2660] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The c-Mos proto-oncogene product plays an essential role during meiotic divisions in vertebrate eggs. In Xenopus, it is required for progression of oocyte maturation and meiotic arrest of unfertilized eggs. Its degradation after fertilization is essential to early embryogenesis. In this study we investigated the mechanisms involved in c-Mos degradation. We present in vivo evidence for ubiquitin-dependent degradation of c-Mos in activated eggs. We found that c-Mos degradation is not directly dependent on the anaphase-promoting factor activator Fizzy/cdc20 but requires cyclin degradation. We demonstrate that cyclin B/cdc2 controls in vivo c-Mos phosphorylation and stabilization. Moreover, we show that cyclin B/cdc2 is capable of directly phosphorylating c-Mos in vitro, inducing a similar mobility shift to the one observed in vivo. Tryptic phosphopeptide analysis revealed a practically identical in vivo and in vitro phosphopeptide map and allowed identification of serine-3 as the largely preferential phosphorylation site as previously described (Freeman et al., 1992). Altogether, these results demonstrate that, in vivo, stability of c-Mos is directly regulated by cyclin B/cdc2 kinase activity.
Collapse
Affiliation(s)
- A Castro
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique Unité Propre de Recherche 1086, 34293 Montpellier cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|
43
|
Topper LM, Bastians H, Ruderman JV, Gorbsky GJ. Elevating the level of Cdc34/Ubc3 ubiquitin-conjugating enzyme in mitosis inhibits association of CENP-E with kinetochores and blocks the metaphase alignment of chromosomes. J Cell Biol 2001; 154:707-17. [PMID: 11514588 PMCID: PMC2196447 DOI: 10.1083/jcb.200104130] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cdc34/Ubc3 is a ubiquitin-conjugating enzyme that functions in targeting proteins for proteasome-mediated degradation at the G1 to S cell cycle transition. Elevation of Cdc34 protein levels by microinjection of bacterially expressed Cdc34 into mammalian cells at prophase inhibited chromosome congression to the metaphase plate with many chromosomes remaining near the spindle poles. Chromosome condensation and nuclear envelope breakdown occurred normally, and chromosomes showed oscillatory movements along mitotic spindle microtubules. Most injected cells arrested in a prometaphase-like state. Kinetochores, even those of chromosomes that failed to congress, possessed the normal trilaminar plate ultrastructure. The elevation of Cdc34 protein levels in early mitosis selectively blocked centromere protein E (CENP-E), a mitotic kinesin, from associating with kinetochores. Other proteins, including two CENP-E-associated proteins, BubR1 and phospho-p42/p44 mitogen-activated protein kinase, and mitotic centromere-associated kinesin, cytoplasmic dynein, Cdc20, and Mad2, all exhibited normal localization to kinetochores. Proteasome inhibitors did not affect the prometaphase arrest induced by Cdc34 injection. These studies suggest that CENP-E targeting to kinetochores is regulated by ubiquitylation not involving proteasome-mediated degradation.
Collapse
Affiliation(s)
- L M Topper
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Wee1 inactivates the Cdc2-cyclin B complex during interphase by phosphorylating Cdc2 on Tyr-15. The activity of Wee1 is highly regulated during the cell cycle. In frog egg extracts, it has been established previously that Xenopus Wee1 (Xwee1) is present in a hypophosphorylated, active form during interphase and undergoes down-regulation by extensive phosphorylation at M-phase. We report that Xwee1 is also regulated by association with 14-3-3 proteins. Binding of 14-3-3 to Xwee1 occurs during interphase, but not M-phase, and requires phosphorylation of Xwee1 on Ser-549. A mutant of Xwee1 (S549A) that cannot bind 14-3-3 is substantially less active than wild-type Xwee1 in its ability to phosphorylate Cdc2. This mutation also affects the intranuclear distribution of Xwee1. In cell-free kinase assays, Xchk1 phosphorylates Xwee1 on Ser-549. The results of experiments in which Xwee1, Xchk1, or both were immunodepleted from Xenopus egg extracts suggested that these two enzymes are involved in a common pathway in the DNA replication checkpoint response. Replacement of endogenous Xwee1 with recombinant Xwee1-S549A in egg extracts attenuated the cell cycle delay induced by addition of excess recombinant Xchk1. Taken together, these results suggest that Xchk1 and 14-3-3 proteins act together as positive regulators of Xwee1.
Collapse
Affiliation(s)
- J Lee
- Division of Biology 216-76, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
45
|
Ferrell JE, Xiong W. Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible. CHAOS (WOODBURY, N.Y.) 2001; 11:227-236. [PMID: 12779456 DOI: 10.1063/1.1349894] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Xenopus oocyte maturation is an example of an all-or-none, irreversible cell fate induction process. In response to a submaximal concentration of the steroid hormone progesterone, a given oocyte may either mature or not mature, but it can exist in intermediate states only transiently. Moreover, once an oocyte has matured, it will remain arrested in the mature state even after the progesterone is removed. It has been hypothesized that the all-or-none character of oocyte maturation, and some aspects of the irreversibility of maturation, arise out of the bistability of the signal transduction system that triggers maturation. The bistability, in turn, is hypothesized to arise from the way the signal transducers are organized into a signaling circuit that includes positive feedback (which makes it so that the system cannot rest in intermediate states) and ultrasensitivity (which filters small stimuli out of the feedback loop, allowing the system to have a stable off-state). Here we review two simple graphical methods that are commonly used to analyze bistable systems, discuss the experimental evidence for bistability in oocyte maturation, and suggest that bistability may be a common means of producing all-or-none responses and a type of biochemical memory. (c) 2001 American Institute of Physics.
Collapse
Affiliation(s)
- James E. Ferrell
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305-5174
| | | |
Collapse
|
46
|
Smith JJ, Evans EK, Murakami M, Moyer MB, Moseley MA, Woude GV, Kornbluth S. Wee1-regulated apoptosis mediated by the crk adaptor protein in Xenopus egg extracts. J Cell Biol 2000; 151:1391-400. [PMID: 11134069 PMCID: PMC2150666 DOI: 10.1083/jcb.151.7.1391] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2000] [Accepted: 11/06/2000] [Indexed: 12/19/2022] Open
Abstract
Many of the biochemical reactions of apoptotic cell death, including mitochondrial cytochrome c release and caspase activation, can be reconstituted in cell-free extracts derived from Xenopus eggs. In addition, because caspase activation does not occur until the egg extract has been incubated for several hours on the bench, upstream signaling processes occurring before full apoptosis are rendered accessible to biochemical manipulation. We reported previously that the adaptor protein Crk is required for apoptotic signaling in egg extracts (Evans, E.K., W. Lu, S.L. Strum, B.J. Mayer, and S. Kornbluth. 1997. EMBO (Eur. Mol. Biol. Organ.) J. 16:230-241). Moreover, we demonstrated that removal of Crk Src homology (SH)2 or SH3 interactors from the extracts prevented apoptosis. We now report the finding that the relevant Crk SH2-interacting protein, important for apoptotic signaling in the extract, is the well-known cell cycle regulator, Wee1. We have demonstrated a specific interaction between tyrosine-phosphorylated Wee1 and the Crk SH2 domain and have shown that recombinant Wee1 can restore apoptosis to an extract depleted of SH2 interactors. Moreover, exogenous Wee1 accelerated apoptosis in egg extracts, and this acceleration was largely dependent on the presence of endogenous Crk protein. As other Cdk inhibitors, such as roscovitine and Myt1, did not act like Wee1 to accelerate apoptosis, we propose that Wee1-Crk complexes signal in a novel apoptotic pathway, which may be unrelated to Wee1's role as a cell cycle regulator.
Collapse
Affiliation(s)
- Jesse J. Smith
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Erica K. Evans
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Monica Murakami
- National Cancer Institute–Frederick Cancer Research and Development Center, Frederick Maryland 21702
| | - Mary B. Moyer
- Glaxo Wellcome, Inc., Structural Chemistry Department, Research Triangle Park, North Carolina 27709
| | - M. Arthur Moseley
- Glaxo Wellcome, Inc., Structural Chemistry Department, Research Triangle Park, North Carolina 27709
| | | | - Sally Kornbluth
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
47
|
Abstract
The mitotic and meiotic cell cycle share many regulators, but there are also important differences between the two processes. The meiotic maturation of Xenopus oocytes has proved useful for understanding the regulation of Cdc2-cyclin-B, a key activator of G2/M progression. New insights have been made recently into the signalling mechanisms that induce G2-arrested oocytes to resume and complete the meiotic cell cycle.
Collapse
Affiliation(s)
- A R Nebreda
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| | | |
Collapse
|
48
|
Charlesworth A, Welk J, MacNicol AM. The temporal control of Wee1 mRNA translation during Xenopus oocyte maturation is regulated by cytoplasmic polyadenylation elements within the 3'-untranslated region. Dev Biol 2000; 227:706-19. [PMID: 11071785 DOI: 10.1006/dbio.2000.9922] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Wee1 protein tyrosine kinase is a key regulator of cell cycle progression. Wee1 activity is necessary for the control of the first embryonic cell cycle following the fertilization of meiotically mature Xenopus oocytes. Wee1 mRNA is present in immature oocytes, but Wee1 protein does not accumulate in immature oocytes or during the early stages of progesterone-stimulated maturation. This delay in Wee1 translation is critical since premature Wee1 protein accumulation has been shown to inhibit oocyte maturation. In this study we provide evidence that Wee1 protein accumulation is regulated at the level of mRNA translation. This translational control is directed by sequences within the Wee1 mRNA 3'-untranslated region (3' UTR). Specifically, cytoplasmic polyadenylation element (CPE) sequences within the Wee1 3' UTR are necessary for full translational repression in immature oocytes. Our data further indicate that while CPE-independent mechanisms may regulate the levels of Wee1 protein accumulation during progesterone-stimulated oocyte maturation, the timing of Wee1 mRNA translational induction is directed through a CPE-dependent mechanism.
Collapse
Affiliation(s)
- A Charlesworth
- Department of Medicine, Committee on Developmental Biology, Ben May Institute for Cancer Research, The University of Chicago, 5841 S. Maryland Avenue, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
49
|
Bhatt RR, Ferrell JE. Cloning and characterization of Xenopus Rsk2, the predominant p90 Rsk isozyme in oocytes and eggs. J Biol Chem 2000; 275:32983-90. [PMID: 10934212 DOI: 10.1074/jbc.m006386200] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 90-kDa ribosomal S6 kinases, the p90 Rsks, are a family of intracellular serine/threonine protein kinases distinguished by two distinct kinase domains. Rsks are activated downstream of the ERK1 (p44) and ERK2 (p42) mitogen-activated protein (MAP) kinases in diverse biological contexts, including progression through meiotic and mitotic M phases in Xenopus oocytes and cycling Xenopus egg extracts, and are critical for the M phase functions of Xenopus p42 MAPK. Here we report the cloning and biochemical characterization of Xenopus Rsk2. Xenopus Rsk1 and Rsk2 are specifically recognized by commercially available RSK1 and RSK2 antisera on immunoblots, but both Rsk1 and Rsk2 are immunoprecipitated by RSK1, RSK2, and RSK3 sera. Rsk2 is about 20-fold more abundant than the previously described Xenopus Rsk1 protein; their concentrations are approximately 120 and 5 nm, respectively. Rsk2, like Rsk1, forms a heteromeric complex with p42 MAP kinase. This interaction depends on sequences at the extreme C terminus of Rsk2 and can be disrupted by a synthetic peptide derived from the C-terminal 20 amino acids of Rsk2. Finally, we demonstrate that p42 MAP kinase can activate recombinant Rsk2 in vitro to a specific activity comparable to that found in Rsk2 that has been activated maximally in vivo. These findings underscore the importance of the Rsk2 isozyme in the M phase functions of p42 MAP kinase and provide tools for further examining Rsk2 function.
Collapse
Affiliation(s)
- R R Bhatt
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305-5174, USA
| | | |
Collapse
|
50
|
Hayne C, Tzivion G, Luo Z. Raf-1/MEK/MAPK pathway is necessary for the G2/M transition induced by nocodazole. J Biol Chem 2000; 275:31876-82. [PMID: 10884385 DOI: 10.1074/jbc.m002766200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dynamic balance between polymerization and depolymerization of microtubules is critical for cells to enter and exit mitosis, and drugs that disrupt this balance, such as taxol, colchicine, and nocodazole, arrest the cell cycle in mitosis. Although the Raf/MEK/MAPK pathway can be activated by these drugs, its role in mitosis has not been addressed. Here, we characterize activation of Raf/MEK/MAPK by nocodazole when mitosis is induced. We find that at early time points (up to 3 h) in nocodazole induction, Raf/MEK/MAPK is activated, and inhibition of MAPK activation by a MEK inhibitor, PD98059 or U0126, reduces the number of cells entering mitosis by creating a block at G(2). At later time points and in mitosis, activation of MEK/MAPK is severely inhibited, even though Raf-1 activity remains high and can be further increased by growth factor. This inhibition is reversed when cells are released from metaphase and enter G(0)/G(1) phase. In addition, we find that binding of Raf-1 to 14-3-3 is progressively induced by nocodazole, reaching a maximum in mitosis, and that this binding is necessary to maintain mitotic Raf-1 activity. Our present study indicates that activation of the Raf/MEK/MAPK pathway is necessary for the G(2)/M progression.
Collapse
Affiliation(s)
- C Hayne
- Diabetes and Metabolism Research Unit, Section of Endocrinology, Evans Department of Medicine and the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|