1
|
Lynch VJ, Wagner GP. Cooption of polyalanine tract into a repressor domain in the mammalian transcription factor HoxA11. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:486-495. [PMID: 34125492 DOI: 10.1002/jez.b.23063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
An enduring problem in biology is explaining how novel functions of genes originated and how those functions diverge between species. Despite detailed studies on the functional evolution of a few proteins, the molecular mechanisms by which protein functions have evolved are almost entirely unknown. Here, we show that a polyalanine tract in the homeodomain transcription factor HoxA11 arose in the stem-lineage of mammals and functions as an autonomous repressor module by physically interacting with the PAH domains of SIN3 proteins. These results suggest that long polyalanine tracts, which are common in transcription factors and often associated with disease, may tend to function as repressor domains and can contribute to the diversification of transcription factor functions despite the deleterious consequences of polyalanine tract expansion.
Collapse
Affiliation(s)
- Vincent J Lynch
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, USA
| | - Gunter P Wagner
- Department of Ecology and Evolutionary Biology and Yale Systems Biology Institute, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Xu R, Dai F, Wu H, Jiao R, He F, Ma J. Shaping the scaling characteristics of gap gene expression patterns in Drosophila. Heliyon 2023; 9:e13623. [PMID: 36879745 PMCID: PMC9984453 DOI: 10.1016/j.heliyon.2023.e13623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
How patterns are formed to scale with tissue size remains an unresolved problem. Here we investigate embryonic patterns of gap gene expression along the anterior-posterior (AP) axis in Drosophila. We use embryos that greatly differ in length and, importantly, possess distinct length-scaling characteristics of the Bicoid (Bcd) gradient. We systematically analyze the dynamic movements of gap gene expression boundaries in relation to both embryo length and Bcd input as a function of time. We document the process through which such dynamic movements drive both an emergence of a global scaling landscape and evolution of boundary-specific scaling characteristics. We show that, despite initial differences in pattern scaling characteristics that mimic those of Bcd in the anterior, such characteristics of final patterns converge. Our study thus partitions the contributions of Bcd input and regulatory dynamics inherent to the AP patterning network in shaping embryonic pattern's scaling characteristics.
Collapse
Affiliation(s)
- Ruoqing Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Fei Dai
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Honggang Wu
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510182, China
- Key Laboratory of Interdisciplinary Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Renjie Jiao
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510182, China
- Key Laboratory of Interdisciplinary Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng He
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Corresponding author. Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| | - Jun Ma
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China
- Corresponding author. Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
3
|
Gutierrez JI, Brittingham GP, Karadeniz YB, Tran KD, Dutta A, Holehouse AS, Peterson CL, Holt LJ. SWI/SNF senses carbon starvation with a pH-sensitive low complexity sequence. eLife 2022; 11:70344. [PMID: 35129437 PMCID: PMC8890752 DOI: 10.7554/elife.70344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/06/2022] [Indexed: 11/16/2022] Open
Abstract
It is increasingly appreciated that intracellular pH changes are important biological signals. This motivates the elucidation of molecular mechanisms of pH sensing. We determined that a nucleocytoplasmic pH oscillation was required for the transcriptional response to carbon starvation in Saccharomyces cerevisiae. The SWI/SNF chromatin remodeling complex is a key mediator of this transcriptional response. A glutamine-rich low-complexity domain (QLC) in the SNF5 subunit of this complex, and histidines within this sequence, was required for efficient transcriptional reprogramming. Furthermore, the SNF5 QLC mediated pH-dependent recruitment of SWI/SNF to an acidic transcription factor in a reconstituted nucleosome remodeling assay. Simulations showed that protonation of histidines within the SNF5 QLC leads to conformational expansion, providing a potential biophysical mechanism for regulation of these interactions. Together, our results indicate that pH changes are a second messenger for transcriptional reprogramming during carbon starvation and that the SNF5 QLC acts as a pH sensor.
Collapse
Affiliation(s)
| | - Gregory P Brittingham
- Institute for Systems Genetics, New York University Langone Health, New York, United States
| | - Yonca B Karadeniz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Kathleen D Tran
- Department of Cell and Molecular Biology, University of Rhode Island, South Kingstown, United States
| | - Arnob Dutta
- Department of Cell and Molecular Biology, University of Rhode Island, South Kingstown, United States
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St Louis, United States
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Health, New York, United States
| |
Collapse
|
4
|
Hannon CE, Blythe SA, Wieschaus EF. Concentration dependent chromatin states induced by the bicoid morphogen gradient. eLife 2017; 6:28275. [PMID: 28891464 PMCID: PMC5624782 DOI: 10.7554/elife.28275] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022] Open
Abstract
In Drosophila, graded expression of the maternal transcription factor Bicoid (Bcd) provides positional information to activate target genes at different positions along the anterior-posterior axis. We have measured the genome-wide binding profile of Bcd using ChIP-seq in embryos expressing single, uniform levels of Bcd protein, and grouped Bcd-bound targets into four classes based on occupancy at different concentrations. By measuring the biochemical affinity of target enhancers in these classes in vitro and genome-wide chromatin accessibility by ATAC-seq, we found that the occupancy of target sequences by Bcd is not primarily determined by Bcd binding sites, but by chromatin context. Bcd drives an open chromatin state at a subset of its targets. Our data support a model where Bcd influences chromatin structure to gain access to concentration-sensitive targets at high concentrations, while concentration-insensitive targets are found in more accessible chromatin and are bound at low concentrations. This may be a common property of developmental transcription factors that must gain early access to their target enhancers while the chromatin state of the genome is being remodeled during large-scale transitions in the gene regulatory landscape.
Collapse
Affiliation(s)
- Colleen E Hannon
- Department of Molecular Biology, Howard Hughes Medical Institute, Princeton University, Princeton, United States
| | - Shelby A Blythe
- Department of Molecular Biology, Howard Hughes Medical Institute, Princeton University, Princeton, United States
| | - Eric F Wieschaus
- Department of Molecular Biology, Howard Hughes Medical Institute, Princeton University, Princeton, United States
| |
Collapse
|
5
|
Jermusyk AA, Murphy NP, Reeves GT. Analyzing negative feedback using a synthetic gene network expressed in the Drosophila melanogaster embryo. BMC SYSTEMS BIOLOGY 2016; 10:85. [PMID: 27576572 PMCID: PMC5006508 DOI: 10.1186/s12918-016-0330-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/20/2016] [Indexed: 12/29/2022]
Abstract
Background A complex network of gene interactions controls gene regulation throughout development and the life of the organisms. Insights can be made into these processes by studying the functional interactions (or “motifs”) which make up these networks. Results We sought to understand the functionality of one of these network motifs, negative feedback, in a multi-cellular system. This was accomplished using a synthetic network expressed in the Drosophila melanogaster embryo using the yeast proteins Gal4 (a transcriptional activator) and Gal80 (an inhibitor of Gal4 activity). This network is able to produce an attenuation or shuttling phenotype depending on the Gal80/Gal4 ratio. This shuttling behavior was validated by expressing Gal3, which inhibits Gal80, to produce a localized increase in free Gal4 and therefore signaling. Mathematical modeling was used to demonstrate the capacity for negative feedback to produce these varying outputs. Conclusions The capacity of a network motif to exhibit different phenotypes due to minor changes to the network in multi-cellular systems was shown. This work demonstrates the importance of studying network motifs in multi-cellular systems. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0330-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ashley A Jermusyk
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Nicholas P Murphy
- Department of Chemical Engineering, University of Virginia, 102 Engineers' Way, Charlottesville, USA
| | - Gregory T Reeves
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27606, USA.
| |
Collapse
|
6
|
Radó-Trilla N, Arató K, Pegueroles C, Raya A, de la Luna S, Albà MM. Key Role of Amino Acid Repeat Expansions in the Functional Diversification of Duplicated Transcription Factors. Mol Biol Evol 2015; 32:2263-72. [PMID: 25931513 PMCID: PMC4540963 DOI: 10.1093/molbev/msv103] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The high regulatory complexity of vertebrates has been related to two rounds of whole genome duplication (2R-WGD) that occurred before the divergence of the major vertebrate groups. Following these events, many developmental transcription factors (TFs) were retained in multiple copies and subsequently specialized in diverse functions, whereas others reverted to their singleton state. TFs are known to be generally rich in amino acid repeats or low-complexity regions (LCRs), such as polyalanine or polyglutamine runs, which can evolve rapidly and potentially influence the transcriptional activity of the protein. Here we test the hypothesis that LCRs have played a major role in the diversification of TF gene duplicates. We find that nearly half of the TF gene families originated during the 2R-WGD contains LCRs. The number of gene duplicates with LCRs is 155 out of 550 analyzed (28%), about twice as many as the number of single copy genes with LCRs (15 out of 115, 13%). In addition, duplicated TFs preferentially accumulate certain LCR types, the most prominent of which are alanine repeats. We experimentally test the role of alanine-rich LCRs in two different TF gene families, PHOX2A/PHOX2B and LHX2/LHX9. In both cases, the presence of the alanine-rich LCR in one of the copies (PHOX2B and LHX2) significantly increases the capacity of the TF to activate transcription. Taken together, the results provide strong evidence that LCRs are important driving forces of evolutionary change in duplicated genes.
Collapse
Affiliation(s)
- Núria Radó-Trilla
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Krisztina Arató
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain Centre for Genomic Regulation (CRG), Barcelona, Spain Centro de Investigación Biomèdica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Cinta Pegueroles
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Barcelona, Spain Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Alicia Raya
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain Centre for Genomic Regulation (CRG), Barcelona, Spain Centro de Investigación Biomèdica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Susana de la Luna
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain Centre for Genomic Regulation (CRG), Barcelona, Spain Centro de Investigación Biomèdica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - M Mar Albà
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Barcelona, Spain Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
7
|
Ilsley GR, Fisher J, Apweiler R, DePace AH, Luscombe NM. Cellular resolution models for even skipped regulation in the entire Drosophila embryo. eLife 2013; 2:e00522. [PMID: 23930223 PMCID: PMC3736529 DOI: 10.7554/elife.00522] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 06/17/2013] [Indexed: 12/14/2022] Open
Abstract
Transcriptional control ensures genes are expressed in the right amounts at the correct times and locations. Understanding quantitatively how regulatory systems convert input signals to appropriate outputs remains a challenge. For the first time, we successfully model even skipped (eve) stripes 2 and 3+7 across the entire fly embryo at cellular resolution. A straightforward statistical relationship explains how transcription factor (TF) concentrations define eve's complex spatial expression, without the need for pairwise interactions or cross-regulatory dynamics. Simulating thousands of TF combinations, we recover known regulators and suggest new candidates. Finally, we accurately predict the intricate effects of perturbations including TF mutations and misexpression. Our approach imposes minimal assumptions about regulatory function; instead we infer underlying mechanisms from models that best fit the data, like the lack of TF-specific thresholds and the positional value of homotypic interactions. Our study provides a general and quantitative method for elucidating the regulation of diverse biological systems. DOI:http://dx.doi.org/10.7554/eLife.00522.001.
Collapse
Affiliation(s)
- Garth R Ilsley
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jasmin Fisher
- Microsoft Research Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Rolf Apweiler
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Nicholas M Luscombe
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- UCL Genetics Institute, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
- London Research Institute, Cancer Research UK, London, United Kingdom
| |
Collapse
|
8
|
Functional synthetic Antennapedia genes and the dual roles of YPWM motif and linker size in transcriptional activation and repression. Proc Natl Acad Sci U S A 2011; 108:11959-64. [PMID: 21712439 DOI: 10.1073/pnas.1108686108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Segmental identity along the anteroposterior axis of bilateral animals is specified by Hox genes. These genes encode transcription factors, harboring the conserved homeodomain and, generally, a YPWM motif, which binds Hox cofactors and increases Hox transcriptional specificity in vivo. Here we derive synthetic Drosophila Antennapedia genes, consisting only of the YPWM motif and homeodomain, and investigate their functional role throughout development. Synthetic peptides and full-length Antennapedia proteins cause head-to-thorax transformations in the embryo, as well as antenna-to-tarsus and eye-to-wing transformations in the adult, thus converting the entire head to a mesothorax. This conversion is achieved by repression of genes required for head and antennal development and ectopic activation of genes promoting thoracic and tarsal fates, respectively. Synthetic Antennapedia peptides bind DNA specifically and interact with Extradenticle and Bric-à-brac interacting protein 2 cofactors in vitro and ex vivo. Substitution of the YPWM motif by alanines abolishes Antennapedia homeotic function, whereas substitution of YPWM by the WRPW repressor motif, which binds the transcriptional corepressor Groucho, allows all proteins to act as repressors only. Finally, naturally occurring variations in the size of the linker between the homeodomain and YPWM motif enhance Antennapedia repressive or activating efficiency, emphasizing the importance of linker size, rather than sequence, for specificity. Our results clearly show that synthetic Antennapedia genes are functional in vivo and therefore provide powerful tools for synthetic biology. Moreover, the YPWM motif is necessary--whereas the entire N terminus of the protein is dispensable--for Antennapedia homeotic function, indicating its dual role in transcriptional activation and repression by recruiting either coactivators or corepressors.
Collapse
|
9
|
Whan V, Hobbs M, McWilliam S, Lynn DJ, Lutzow YS, Khatkar M, Barendse W, Raadsma H, Tellam RL. Bovine proteins containing poly-glutamine repeats are often polymorphic and enriched for components of transcriptional regulatory complexes. BMC Genomics 2010; 11:654. [PMID: 21092319 PMCID: PMC3014979 DOI: 10.1186/1471-2164-11-654] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 11/23/2010] [Indexed: 11/12/2022] Open
Abstract
Background About forty human diseases are caused by repeat instability mutations. A distinct subset of these diseases is the result of extreme expansions of polymorphic trinucleotide repeats; typically CAG repeats encoding poly-glutamine (poly-Q) tracts in proteins. Polymorphic repeat length variation is also apparent in human poly-Q encoding genes from normal individuals. As these coding sequence repeats are subject to selection in mammals, it has been suggested that normal variations in some of these typically highly conserved genes are implicated in morphological differences between species and phenotypic variations within species. At present, poly-Q encoding genes in non-human mammalian species are poorly documented, as are their functions and propensities for polymorphic variation. Results The current investigation identified 178 bovine poly-Q encoding genes (Q ≥ 5) and within this group, 26 genes with orthologs in both human and mouse that did not contain poly-Q repeats. The bovine poly-Q encoding genes typically had ubiquitous expression patterns although there was bias towards expression in epithelia, brain and testes. They were also characterised by unusually large sizes. Analysis of gene ontology terms revealed that the encoded proteins were strongly enriched for functions associated with transcriptional regulation and many contributed to physical interaction networks in the nucleus where they presumably act cooperatively in transcriptional regulatory complexes. In addition, the coding sequence CAG repeats in some bovine genes impacted mRNA splicing thereby generating unusual transcriptional diversity, which in at least one instance was tissue-specific. The poly-Q encoding genes were prioritised using multiple criteria for their likelihood of being polymorphic and then the highest ranking group was experimentally tested for polymorphic variation within a cattle diversity panel. Extensive and meiotically stable variation was identified. Conclusions Transcriptional diversity can potentially be generated in poly-Q encoding genes by the impact of CAG repeat tracts on mRNA alternative splicing. This effect, combined with the physical interactions of the encoded proteins in large transcriptional regulatory complexes suggests that polymorphic variations of proteins in these complexes have strong potential to affect phenotype.
Collapse
Affiliation(s)
- Vicki Whan
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Queensland 4067, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Several fundamental concepts of developmental biology have emerged from studies on the early development of the Drosophila melanogaster embryo. In the late 1980s, studies on Bicoid provided the first solid experimental evidence for the existence of morphogenetic gradients and their implication in axial patterning. Bicoid has since stimulated further research, bringing together developmental and cell biologists, physicists and theoreticians to address fundamental biological questions. These include mechanistic aspects of transcriptional and translational control, molecular and functional aspects of evolution and, more recently with the development of quantitative approaches, the robustness of axial patterning in a systems biology view. However, recent studies provide data which lead to contradictory interpretations. Here, we discuss these recent observations, highlighting the data helping to understand how anterior patterning is achieved under the control of Bicoid and point to novel challenges for future studies.
Collapse
|
11
|
Mularoni L, Ledda A, Toll-Riera M, Albà MM. Natural selection drives the accumulation of amino acid tandem repeats in human proteins. Genome Res 2010; 20:745-54. [PMID: 20335526 DOI: 10.1101/gr.101261.109] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Amino acid tandem repeats are found in a large number of eukaryotic proteins. They are often encoded by trinucleotide repeats and exhibit high intra- and interspecies size variability due to the high mutation rate associated with replication slippage. The extent to which natural selection is important in shaping amino acid repeat evolution is a matter of debate. On one hand, their high frequency may simply reflect their high probability of expansion by slippage, and they could essentially evolve in a neutral manner. On the other hand, there is experimental evidence that changes in repeat size can influence protein-protein interactions, transcriptional activity, or protein subcellular localization, indicating that repeats could be functionally relevant and thus shaped by selection. To gauge the relative contribution of neutral and selective forces in amino acid repeat evolution, we have performed a comparative analysis of amino acid repeat conservation in a large set of orthologous proteins from 12 vertebrate species. As a neutral model of repeat evolution we have used sequences with the same DNA triplet composition as the coding sequences--and thus expected to be subject to the same mutational forces--but located in syntenic noncoding genomic regions. The results strongly indicate that selection has played a more important role than previously suspected in amino acid tandem repeat evolution, by increasing the repeat retention rate and by modulating repeat size. The data obtained in this study have allowed us to identify a set of 92 repeats that are postulated to play important functional roles due to their strong selective signature, including five cases with direct experimental evidence.
Collapse
Affiliation(s)
- Loris Mularoni
- Biomedical Informatics Research Programme (GRIB), Fundació Institut Municipal d'Investigació Mèdica, Barcelona 08003, Spain
| | | | | | | |
Collapse
|
12
|
Anterior-posterior positional information in the absence of a strong Bicoid gradient. Proc Natl Acad Sci U S A 2009; 106:3823-8. [PMID: 19237583 DOI: 10.1073/pnas.0807878105] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Bicoid (Bcd) transcription factor is distributed as a long-range concentration gradient along the anterior posterior (AP) axis of the Drosophila embryo. Bcd is required for the activation of a series of target genes, which are expressed at specific positions within the gradient. Here we directly tested whether different concentration thresholds within the Bcd gradient establish the relative positions of its target genes by flattening the gradient and systematically varying expression levels. Genome-wide expression profiles were used to estimate the total number of Bcd target genes, and a general correlation was found between the Bcd concentration required for activation and the positions where target genes are expressed in wild-type embryos. However, concentrations required for target gene activation in embryos with flattened Bcd were consistently lower than those present at each target gene's position in the wild-type gradient, suggesting that Bcd is in excess at every position along the AP axis. Also, several Bcd target genes were positioned in correctly ordered stripes in embryos with flattened Bcd, and we suggest that these stripes are normally regulated by interactions between Bcd and the terminal patterning system. Our findings argue strongly against the strict interpretation of the Bcd morphogen hypothesis, and support the idea that target gene positioning involves combinatorial interactions that are mediated by the binding site architecture of each gene's cis-regulatory elements.
Collapse
|
13
|
Gregor T, McGregor AP, Wieschaus EF. Shape and function of the Bicoid morphogen gradient in dipteran species with different sized embryos. Dev Biol 2008; 316:350-8. [PMID: 18328473 DOI: 10.1016/j.ydbio.2008.01.039] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 01/21/2008] [Accepted: 01/23/2008] [Indexed: 12/19/2022]
Abstract
The Bicoid morphogen evolved approximately 150 MYA from a Hox3 duplication and is only found in higher dipterans. A major difference between dipteran species, however, is the size of the embryo, which varies up to 5-fold. Although the expression of developmental factors scale with egg length, it remains unknown how this scaling is achieved. To test whether scaling is accounted for by the properties of Bicoid, we expressed eGFP fused to the coding region of bicoid from three dipteran species in transgenic Drosophila embryos using the Drosophila bicoid cis-regulatory and mRNA localization sequences. In such embryos, we find that Lucilia sericata and Calliphora vicina Bicoid produce gradients very similar to the endogenous Drosophila gradient and much shorter than what they would have produced in their own respective species. The common shape of the Drosophila, Lucilia and Calliphora Bicoid gradients appears to be a conserved feature of the Bicoid protein. Surprisingly, despite their similar distributions, we find that Bicoid from Lucilia and Calliphora do not rescue Drosophila bicoid mutants, suggesting that that Bicoid proteins have evolved species-specific functional amino acid differences. We also found that maternal expression and anteriorly localization of proteins other than Bcd does not necessarily give rise to a gradient; eGFP produced a uniform protein distribution. However, a shallow gradient was observed using eGFP-NLS, suggesting nuclear localization may be necessary but not sufficient for gradient formation.
Collapse
Affiliation(s)
- Thomas Gregor
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
14
|
Sears KE, Goswami A, Flynn JJ, Niswander LA. The correlated evolution of Runx2 tandem repeats, transcriptional activity, and facial length in carnivora. Evol Dev 2008; 9:555-65. [PMID: 17976052 DOI: 10.1111/j.1525-142x.2007.00196.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To assess the ability of protein-coding mutations to contribute to subtle, inter-specific morphologic evolution, here, we test the hypothesis that mutations within the protein-coding region of runt-related transcription factor 2 (Runx2) have played a role in facial evolution in 30 species from a naturally evolving group, the mammalian order Carnivora. Consistent with this hypothesis, we find significant correlations between changes in Runx2 glutamine-alanine tandem-repeat ratio, and both Runx2 transcriptional activity and carnivoran facial length. Furthermore, we identify a potential evolutionary mechanism for the correlation between Runx2 tandem repeat ratio and facial length. Specifically, our results are consistent with the Runx2 tandem repeat system providing a flexible genetic mechanism to rapidly change the timing of ossification. These heterochronic changes, in turn, potentially act on existing allometric variation in carnivoran facial length to generate the disparity in adult facial lengths observed among carnivoran species. Our results suggest that despite potentially great pleiotropic effects, changes to the protein-coding regions of genes such as Runx2 do occur and have the potential to affect subtle morphologic evolution across a diverse array of species in naturally evolving lineages.
Collapse
Affiliation(s)
- K E Sears
- Pediatrics Department, Howard Hughes Medical Institute, University of Colorado at Denver and Health Sciences Center, 12800 East, 19th Avenue, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
15
|
Astigarraga S, Grossman R, Díaz-Delfín J, Caelles C, Paroush Z, Jiménez G. A MAPK docking site is critical for downregulation of Capicua by Torso and EGFR RTK signaling. EMBO J 2007; 26:668-77. [PMID: 17255944 PMCID: PMC1794389 DOI: 10.1038/sj.emboj.7601532] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 12/07/2006] [Indexed: 11/09/2022] Open
Abstract
Early Drosophila development requires two receptor tyrosine kinase (RTK) pathways: the Torso and the Epidermal growth factor receptor (EGFR) pathways, which regulate terminal and dorsal-ventral patterning, respectively. Previous studies have shown that these pathways, either directly or indirectly, lead to post-transcriptional downregulation of the Capicua repressor in the early embryo and in the ovary. Here, we show that both regulatory effects are direct and depend on a MAPK docking site in Capicua that physically interacts with the MAPK Rolled. Capicua derivatives lacking this docking site cause dominant phenotypes similar to those resulting from loss of Torso and EGFR activities. Such phenotypes arise from inappropriate repression of genes normally expressed in response to Torso and EGFR signaling. Our results are consistent with a model whereby Capicua is the main nuclear effector of the Torso pathway, but only one of different effectors responding to EGFR signaling. Finally, we describe differences in the modes of Capicua downregulation by Torso and EGFR signaling, raising the possibility that such differences contribute to the tissue specificity of both signals.
Collapse
Affiliation(s)
- Sergio Astigarraga
- Institut de Biologia Molecular de Barcelona-CSIC, Parc Científic de Barcelona, Barcelona, Spain
| | - Rona Grossman
- Department of Biochemistry, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Julieta Díaz-Delfín
- Institut de Recerca Biomèdica, Parc Científic de Barcelona, Barcelona, Spain
| | - Carme Caelles
- Institut de Recerca Biomèdica, Parc Científic de Barcelona, Barcelona, Spain
| | - Ze'ev Paroush
- Department of Biochemistry, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Gerardo Jiménez
- Institut de Biologia Molecular de Barcelona-CSIC, Parc Científic de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Molecular and Cellular Biology, Institut de Biologia Molecular de Barcelona-CSIC, Parc Cientific de Barcelona, Josep Samitier, 1-5, Barcelona 08028, Spain. Tel.: +34 934 034 970; Fax: +34 934 034 979; E-mail:
| |
Collapse
|
16
|
Hofmeyer K, Maurel-Zaffran C, Sink H, Treisman JE. Liprin-alpha has LAR-independent functions in R7 photoreceptor axon targeting. Proc Natl Acad Sci U S A 2006; 103:11595-600. [PMID: 16864797 PMCID: PMC1544215 DOI: 10.1073/pnas.0604766103] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the Drosophila visual system, the color-sensing photoreceptors R7 and R8 project their axons to two distinct layers in the medulla. Loss of the receptor tyrosine phosphatase LAR from R7 photoreceptors causes their axons to terminate prematurely in the R8 layer. Here we identify a null mutation in the Liprin-alpha gene based on a similar R7 projection defect. Liprin-alpha physically interacts with the inactive D2 phosphatase domain of LAR, and this domain is also essential for R7 targeting. However, another LAR-dependent function, egg elongation, requires neither Liprin-alpha nor the LAR D2 domain. Although human and Caenorhabditis elegans Liprin-alpha proteins have been reported to control the localization of LAR, we find that LAR localizes to focal adhesions in Drosophila S2R+ cells and to photoreceptor growth cones in vivo independently of Liprin-alpha. In addition, Liprin-alpha overexpression or loss of function can affect R7 targeting in the complete absence of LAR. We conclude that Liprin-alpha does not simply act by regulating LAR localization but also has LAR-independent functions.
Collapse
Affiliation(s)
- Kerstin Hofmeyer
- Skirball Institute for Biomolecular Medicine and Departments of *Cell Biology and
| | | | - Helen Sink
- Pharmacology, New York University School of Medicine, 540 First Avenue, New York, NY 10016
| | - Jessica E. Treisman
- Skirball Institute for Biomolecular Medicine and Departments of *Cell Biology and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Crauk O, Dostatni N. Bicoid Determines Sharp and Precise Target Gene Expression in the Drosophila Embryo. Curr Biol 2005; 15:1888-98. [PMID: 16271865 DOI: 10.1016/j.cub.2005.09.046] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 09/20/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND The activity of the Bicoid (Bcd) transcription factor is a useful example of how quantitative information contained in a smooth morphogen gradient is transformed into discrete and precise patterns of target gene expression. There are two distinct and important aspects to this process: the "sharpening" of the posterior borders of the expression domains and the "precision" of where the target genes are expressed along the length of the embryo as the syncytial embryo begins to cellularize. Although the sharpening phenomenon was observed over a decade ago, it is still poorly understood. RESULTS Here, we show that a Bcd reporter gene containing binding sites only for Bcd is expressed, like natural targets of Bcd, in a precise domain with a sharp boundary. Analysis of embryos expressing deleted forms of Bcd indicates that the sharpness of the Bcd target gene hunchback's expression involves the glutamine-rich and C-terminal activation domains of Bcd. Furthermore, several artificial Gal4-derived transcription factors expressed as gradients in the embryo share Bcd's ability to drive precise target gene expression with sharp boundaries. CONCLUSION Thus, contrary to recent reports proposing that the Bcd gradient is not sufficient to establish precise positional information, we show that Bcd drives precise and sharp expression of its target genes through a process that depends exclusively on its ability to activate transcription.
Collapse
Affiliation(s)
- Olivier Crauk
- Laboratory of Nuclear Dynamics and Genome Plasticity, CNRS/UMR 218, Institut Curie, Paris, France
| | | |
Collapse
|
18
|
Kulkarni MM, Arnosti DN. cis-regulatory logic of short-range transcriptional repression in Drosophila melanogaster. Mol Cell Biol 2005; 25:3411-20. [PMID: 15831448 PMCID: PMC1084297 DOI: 10.1128/mcb.25.9.3411-3420.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bioinformatics analysis of transcriptional control is guided by knowledge of the characteristics of cis-regulatory regions or enhancers. Features such as clustering of binding sites and co-occurrence of binding sites have aided enhancer identification, but quantitative predictions of enhancer function are not yet generally feasible. To facilitate the analysis of regulatory sequences in Drosophila melanogaster, we identified quantitative parameters that affect the activity of short-range transcriptional repressors, proteins that play key roles in development. In addition to the previously noted distance dependence, repression is strongly influenced by the stoichiometry, affinity, spacing, and arrangement of activator binding sites. Repression is insensitive to the type of activation domain, suggesting that short-range repression may primarily affect activators at the level of DNA binding. The activity of several short-range, but not long-range, repressors is circumscribed by the same quantitative parameters. This cis-regulatory "grammar" may aid the identification of enhancers regulated by short-range repressors and facilitate bioinformatic prediction of the functional output of transcriptional regulatory sequences.
Collapse
Affiliation(s)
- Meghana M Kulkarni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | | |
Collapse
|
19
|
van der Meulen T, Kranenbarg S, Schipper H, Samallo J, van Leeuwen JL, Franssen H. Identification and characterisation of two runx2 homologues in zebrafish with different expression patterns. ACTA ACUST UNITED AC 2005; 1729:105-17. [PMID: 15894389 DOI: 10.1016/j.bbaexp.2005.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 03/22/2005] [Accepted: 03/25/2005] [Indexed: 01/14/2023]
Abstract
Genome and gene duplications are considered to be the impetus to generate new genes, as the presence of multiple copies of a gene allows for paralogues to adopt novel function. After at least two rounds of genome/gene duplication, the Runt gene family consists of three members in vertebrates, instead of one in invertebrates. One of the family members, Runx2, plays a key role in the development of bone, a tissue that first occurs in vertebrates. The family has thus gained new gene function in the course of evolution. Two Runx2 genes were cloned in the vertebrate model system the zebrafish (Danio rerio). The expression patterns of the two genes differ and their kinetics differ up to four fold. In addition, splice forms exist that are novel when compared with mammals. Together, these findings comprise opportunities for selection and retention of the paralogues towards divergent and possibly new function.
Collapse
Affiliation(s)
- T van der Meulen
- Experimental Zoology group, Wageningen University, Marijkeweg 40, 6709 PG, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
20
|
Li WX. Functions and mechanisms of receptor tyrosine kinase Torso signaling: lessons from Drosophila embryonic terminal development. Dev Dyn 2005; 232:656-72. [PMID: 15704136 PMCID: PMC3092428 DOI: 10.1002/dvdy.20295] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Torso receptor tyrosine kinase (RTK) is required for cell fate specification in the terminal regions (head and tail) of the early Drosophila embryo. Torso contains a split tyrosine kinase domain and belongs to the type III subgroup of the RTK superfamily that also includes the platelet-derived growth factor receptors, stem cell or steel factor receptor c-Kit proto-oncoprotein, colony-stimulating factor-1 receptor, and vascular endothelial growth factor receptor. The Torso pathway has been a model system for studying RTK signal transduction. Genetic and biochemical studies of Torso signaling have provided valuable insights into the biological functions and mechanisms of RTK signaling during early Drosophila embryogenesis.
Collapse
Affiliation(s)
- Willis X Li
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York 14642, USA.
| |
Collapse
|
21
|
Abstract
In Drosophila, a Bcd protein gradient orchestrates patterning along the anteroposterior embryonic axis. However, studies of basal flies and other insects have revealed that bcd is a derived Hox3 gene found only in higher dipterans. To understand how bcd acquired its role in flies and how anteroposterior patterning mechanisms have evolved, I first review key features of bcd function in Drosophila: anterior localization and transcriptional and translation control of gene expression. I then discuss investigations of bcd in other higher dipterans that have provided insight into the evolution of regulatory interactions and the Bcd gradient. Finally, I review studies of Drosophila and other insects that address the evolution of bcd function and integration of bcd into ancestral regulatory mechanisms. I suggest further comparative studies may allow us to identify the intermediate steps in bcd evolution. This will make bcd a paradigm for the origin and evolution of genes and regulatory networks.
Collapse
Affiliation(s)
- Alistair P McGregor
- Department of Ecology and Evolutionary Biology, Princeton University, New Jersey 08540, USA.
| |
Collapse
|
22
|
Affiliation(s)
- Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Houston, TX 77030, USA
| | | |
Collapse
|
23
|
Abstract
Protein simple sequences, a subset of low-complexity sequences, are regions of sequence highly enriched in one or a few residue types. Simple sequences are exceedingly common, the average being more than one per protein sequence. Despite being so common, such sequences are not well-studied. The simple sequences that have been subjected to detailed study are often found to possess important functions. Here we present a survey of protein simple sequences, generally enriched in a single residue type, with the aim of studying their conservation. We find that the majority of such simple sequences are not conserved. However, conserved protein simple sequences are relatively common, with approximately 11% of the surveyed protein families possessing a conserved simple sequence. The data obtained in this study support the idea that simple sequences are conserved for functional reasons. Such functions can range from substrate binding, to mediating protein-protein interactions, to structural integrity. A perhaps surprising finding is that the residue enriching a conserved simple sequence is itself not necessarily conserved. Neither is the length of many of the highly conserved simple sequences. In the few cases where structural and functional data is available it is found that the conserved simple sequences are consistent with both local structure and function. The data presented support the idea that protein simple sequences can be conserved and have important roles in protein structure and function.
Collapse
Affiliation(s)
- Kim Lan Sim
- Center for Structural Biology, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | |
Collapse
|
24
|
Merabet S, Kambris Z, Capovilla M, Bérenger H, Pradel J, Graba Y. The hexapeptide and linker regions of the AbdA Hox protein regulate its activating and repressive functions. Dev Cell 2003; 4:761-8. [PMID: 12737810 DOI: 10.1016/s1534-5807(03)00126-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Hox family transcription factors control diversified morphogenesis during development and evolution. They function in concert with Pbc cofactor proteins. Pbc proteins bind the Hox hexapeptide (HX) motif and are thereby thought to confer DNA binding specificity. Here we report that mutation of the AbdA HX motif does not alter its binding site selection but does modify its transregulatory properties in a gene-specific manner in vivo. We also show that a short, evolutionarily conserved motif, PFER, in the homeodomain-HX linker region acts together with the HX to control an AbdA activation/repression switch. Our in vivo data thus reveal functions not previously anticipated from in vitro analyses for the hexapeptide motif in the regulation of Hox activity.
Collapse
Affiliation(s)
- Samir Merabet
- Laboratoire de Génétique et Physiologie du Développement, IBDM, CNRS, Université de la méditerranée, Parc Scientifique de Luminy, Case 907, 13288 Marseille Cedex 09, France
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Homeotic (Hox) genes code for principal transcriptional regulators of animal body regionalization. The duplication and divergence of Hox genes, changes in their regulation, and changes in the regulation of Hox target genes have all been implicated in the evolution of animal diversity. It is not known whether Hox proteins have also acquired new activities during the evolution of specific lineages. Amino-acid sequences outside the DNA-binding homeodomains of Hox orthologues diverge significantly. These sequence differences may be neutral with respect to protein function, or they could be involved in the functional divergence of Hox proteins and the evolutionary diversification of animals. Here, we identify a transcriptional repression domain in the carboxy-terminal region of the Drosophila Ultrabithorax (Ubx) protein. This domain is highly conserved among Ubx orthologues in other insects, but is absent from Ubx in other arthropods and onychophorans. The evolution of this domain may have facilitated the greater morphological diversification of posterior thoracic and anterior abdominal segments characteristic of modern insects.
Collapse
Affiliation(s)
- Ron Galant
- Howard Hughes Medical Institute, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|