1
|
Calva Moreno JF, Jose G, Weaver YM, Weaver BP. UBR-5 and UBE2D mediate timely exit from stem fate via destabilization of poly(A)-binding protein PABP-2 in cell state transition. Proc Natl Acad Sci U S A 2024; 121:e2407561121. [PMID: 39405353 PMCID: PMC11513905 DOI: 10.1073/pnas.2407561121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
UBR5 E3 ligase has been associated with cancer susceptibility and neuronal integrity, with functions in chromatin regulation and proteostasis. However, the functions of ubr5 within animals remain unclear due to lethality in both mammals and flies when disrupted. Using Caenorhabditis elegans, we show that UBR-5 E3 ligase is required for timely exit of stem fate and complete transition into multiple cell type descendants in an ectodermal blast lineage. Animals lacking intact UBR-5 function simultaneously exhibit both stem fate and differentiated fate in the same descendant cells. A functional screen of UBR-5 physical interactors allowed us to identify the UBE2D2/3 E2 conjugase LET-70 working with UBR-5 to exit stem fate. Strikingly, we revealed that another UBR-5 physical interactor, namely the nuclear poly(A)-binding protein PABPN1 ortholog PABP-2, worked antagonistically to UBR-5 and LET-70. Lowering pabp-2 levels restored normal transition of cell state out of stemness and promoted normal cell fusion when either ubr-5 or let-70 UBE2D function was compromised. The UBR-5-LET-70 and PABP-2 switch works independently of the stem pool size determined by pluripotency factors like lin-28. UBR-5 limits PABP-2 protein and reverses the PABP-2-dependent gene expression program including developmental, proteostasis, and innate immunity genes. Loss of ubr-5 rescues the developmental stall when pabp-2 is compromised. Disruption of ubr-5 elevates PABP-2 levels and prolongs expression of ectodermal and muscle stem markers at the transition to adulthood. Additionally, ubr-5 mutants exhibit an extended period of motility during aging and suppress pabp-2-dependent early onset of immobility.
Collapse
Affiliation(s)
| | - George Jose
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Yi M. Weaver
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Benjamin P. Weaver
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
2
|
Zhen S, Rocheleau CE. ALG-1, a microRNA argonaute, promotes vulva induction in C. elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001373. [PMID: 39493436 PMCID: PMC11529891 DOI: 10.17912/micropub.biology.001373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024]
Abstract
Signaling by the LET-60 Ras GTPase/ MPK-1 Extracellular Regulated Kinase pathway specifies the vulva cell fate in C. elegans . The let-7 miRNA family negatively regulates LET-60 Ras but other miRNAs can also modulate vulva induction. To determine the impact of globally reducing miRNA function on LET-60 Ras-mediated vulva induction we analyzed the effect of loss of the ALG-1 miRNA regulator on vulva development . Contrary to our expectations, we find that ALG-1 promotes vulva induction independently of LET-60 Ras. We found that the reduced vulva cell fate induction of alg-1 deletion mutants could be due to delayed development of the vulva, or a requirement to maintain the competence of the uninduced precursor cells.
Collapse
Affiliation(s)
- Sunny Zhen
- Department of Biomedical Sciences, University of Waterloo
| | - Christian E Rocheleau
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre
| |
Collapse
|
3
|
Slade L, Etheridge T, Szewczyk NJ. Consolidating multiple evolutionary theories of ageing suggests a need for new approaches to study genetic contributions to ageing decline. Ageing Res Rev 2024; 100:102456. [PMID: 39153601 DOI: 10.1016/j.arr.2024.102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Understanding mechanisms of ageing remains a complex challenge for biogerontologists, but recent adaptations of evolutionary ageing theories offer a compelling lens in which to view both age-related molecular and physiological deterioration. Ageing is commonly associated with progressive declines in biochemical and molecular processes resulting from damage accumulation, yet the role of continued developmental gene activation is less appreciated. Natural selection pressures are at their highest in youthful periods to modify gene expression towards maximising reproductive capacity. After sexual maturation, selective pressure diminishes, subjecting individuals to maladaptive pleiotropic gene functions that were once beneficial for developmental growth but become pathogenic later in life. Due to this selective 'shadowing' in ageing, mechanisms to counter such hyper/hypofunctional genes are unlikely to evolve. Interventions aimed at targeting gene hyper/hypofunction during ageing might, therefore, represent an attractive therapeutic strategy. The nematode Caenorhabditis elegans offers a strong model for post-reproductive mechanistic and therapeutic investigations, yet studies examining the mechanisms of, and countermeasures against, ageing decline largely intervene from larval stages onwards. Importantly, however, lifespan extending conditions frequently impair early-life fitness and fail to correspondingly increase healthspan. Here, we consolidate multiple evolutionary theories of ageing and discuss data supporting hyper/hypofunctional changes at a global molecular and functional level in C. elegans, and how classical lifespan-extension mutations alter these dynamics. The relevance of such mutant models for exploring mechanisms of ageing are discussed, highlighting that post-reproductive gene optimisation represents a more translatable approach for C. elegans research that is not constrained by evolutionary trade-offs. Where some genetic mutations in C. elegans that promote late-life health map accordingly with healthy ageing in humans, other widely used genetic mutations that extend worm lifespan are associated with life-limiting pathologies in people. Lifespan has also become the gold standard for quantifying 'ageing', but we argue that gerospan compression (i.e., 'healthier' ageing) is an appropriate goal for anti-ageing research, the mechanisms of which appear distinct from those regulating lifespan alone. There is, therefore, an evident need to re-evaluate experimental approaches to study the role of hyper/hypofunctional genes in ageing in C. elegans.
Collapse
Affiliation(s)
- Luke Slade
- University of Exeter Medical School, Exeter, UK.
| | - Timothy Etheridge
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Nathaniel J Szewczyk
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Athens, OH 45701, United States.
| |
Collapse
|
4
|
Das M, Semple JI, Haemmerli A, Volodkina V, Scotton J, Gitchev T, Annan A, Campos J, Statzer C, Dakhovnik A, Ewald CY, Mozziconacci J, Meister P. Condensin I folds the Caenorhabditis elegans genome. Nat Genet 2024; 56:1737-1749. [PMID: 39039278 DOI: 10.1038/s41588-024-01832-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/13/2024] [Indexed: 07/24/2024]
Abstract
The structural maintenance of chromosome (SMC) complexes-cohesin and condensins-are crucial for chromosome separation and compaction during cell division. During the interphase, mammalian cohesins additionally fold the genome into loops and domains. Here we show that, in Caenorhabditis elegans, a species with holocentric chromosomes, condensin I is the primary, long-range loop extruder. The loss of condensin I and its X-specific variant, condensin IDC, leads to genome-wide decompaction, chromosome mixing and disappearance of X-specific topologically associating domains, while reinforcing fine-scale epigenomic compartments. In addition, condensin I/IDC inactivation led to the upregulation of X-linked genes and unveiled nuclear bodies grouping together binding sites for the X-targeting loading complex of condensin IDC. C. elegans condensin I/IDC thus uniquely organizes holocentric interphase chromosomes, akin to cohesin in mammals, as well as regulates X-chromosome gene expression.
Collapse
Affiliation(s)
- Moushumi Das
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jennifer I Semple
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Anja Haemmerli
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Valeriia Volodkina
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Janik Scotton
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Todor Gitchev
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Ahrmad Annan
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Julie Campos
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Cyril Statzer
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Alexander Dakhovnik
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Collin Y Ewald
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Julien Mozziconacci
- Laboratoire Structure et Instabilité des Génomes UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
| | - Peter Meister
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Liu J, Murray JI. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023; 225:iyad174. [PMID: 37847877 PMCID: PMC11491538 DOI: 10.1093/genetics/iyad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Kalbfuss N, Berger A, Gönczy P. Mapping of centriolar proteins onto the post-embryonic lineage of C. elegans. Dev Biol 2023; 502:68-76. [PMID: 37414202 DOI: 10.1016/j.ydbio.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Centrioles, together with the surrounding peri-centriolar material (PCM), constitute the centrosome, a major microtubule-organizing center of animal cells. Despite being critical in many cells for signaling, motility and division, centrioles can be eliminated in some systems, including in the vast majority of differentiating cells during embryogenesis in Caenorhabditis elegans. Whether the cells retaining centrioles in the resulting L1 larvae do so because they lack an activity that eliminates centrioles in the other cells is not known. Moreover, the extent to which centrioles and PCM remain present in later stages of worm development, when all cells but those of the germ line are terminally differentiated, is not known. Here, by fusing cells that lack centrioles with cells that retain them, we established that L1 larvae do not possess a diffusible elimination activity sufficient to remove centrioles. Moreover, analyzing PCM core proteins in L1 larval cells that retain centrioles, we found that some such proteins, but not all, are present as well. Furthermore, we uncovered that foci of centriolar proteins remain present in specific terminally differentiated cells of adult hermaphrodites and males, in particular in the somatic gonad. Correlating the time at which cells were born with the fate of their centrioles revealed that it is not cell age, but instead cell fate, that determines whether and when centrioles are eliminated. Overall, our work maps the localization of centriolar and PCM core proteins in the post-embryonic C. elegans lineage, thereby providing an essential blueprint for uncovering mechanisms modulating their presence and function.
Collapse
Affiliation(s)
- Nils Kalbfuss
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Antonin Berger
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, CH-1015, Switzerland.
| |
Collapse
|
7
|
Broitman-Maduro G, Maduro MF. Evolutionary Change in Gut Specification in Caenorhabditis Centers on the GATA Factor ELT-3 in an Example of Developmental System Drift. J Dev Biol 2023; 11:32. [PMID: 37489333 PMCID: PMC10366740 DOI: 10.3390/jdb11030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
Cells in a developing animal embryo become specified by the activation of cell-type-specific gene regulatory networks. The network that specifies the gut in the nematode Caenorhabditis elegans has been the subject of study for more than two decades. In this network, the maternal factors SKN-1/Nrf and POP-1/TCF activate a zygotic GATA factor cascade consisting of the regulators MED-1,2 → END-1,3 → ELT-2,7, leading to the specification of the gut in early embryos. Paradoxically, the MED, END, and ELT-7 regulators are present only in species closely related to C. elegans, raising the question of how the gut can be specified without them. Recent work found that ELT-3, a GATA factor without an endodermal role in C. elegans, acts in a simpler ELT-3 → ELT-2 network to specify gut in more distant species. The simpler ELT-3 → ELT-2 network may thus represent an ancestral pathway. In this review, we describe the elucidation of the gut specification network in C. elegans and related species and propose a model by which the more complex network might have formed. Because the evolution of this network occurred without a change in phenotype, it is an example of the phenomenon of Developmental System Drift.
Collapse
Affiliation(s)
- Gina Broitman-Maduro
- Department of Molecular, Cell, and Systems Biology, University of California-Riverside, Riverside, CA 92521, USA
| | - Morris F Maduro
- Department of Molecular, Cell, and Systems Biology, University of California-Riverside, Riverside, CA 92521, USA
| |
Collapse
|
8
|
Kalbfuss N, Gönczy P. Extensive programmed centriole elimination unveiled in C. elegans embryos. SCIENCE ADVANCES 2023; 9:eadg8682. [PMID: 37256957 PMCID: PMC10413642 DOI: 10.1126/sciadv.adg8682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
Centrioles are critical for fundamental cellular processes, including signaling, motility, and division. The extent to which centrioles are present after cell cycle exit in a developing organism is not known. The stereotypical lineage of Caenorhabditis elegans makes it uniquely well-suited to investigate this question. Using notably lattice light-sheet microscopy, correlative light electron microscopy, and lineage assignment, we found that ~88% of cells lose centrioles during embryogenesis. Our analysis reveals that centriole elimination is stereotyped, occurring invariably at a given time in a given cell type. Moreover, we established that experimentally altering cell fate results in corresponding changes in centriole fate. Overall, we uncovered the existence of an extensive centriole elimination program, which we anticipate to be paradigmatic for a broad understanding of centriole fate regulation.
Collapse
Affiliation(s)
- Nils Kalbfuss
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
9
|
Broitman-Maduro G, Sun S, Kikuchi T, Maduro MF. The GATA factor ELT-3 specifies endoderm in Caenorhabditis angaria in an ancestral gene network. Development 2022; 149:277064. [PMID: 36196618 PMCID: PMC9720673 DOI: 10.1242/dev.200984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022]
Abstract
ABSTRACT
Endoderm specification in Caenorhabditis elegans occurs through a network in which maternally provided SKN-1/Nrf, with additional input from POP-1/TCF, activates the GATA factor cascade MED-1,2→END-1,3→ELT-2,7. Orthologues of the MED, END and ELT-7 factors are found only among nematodes closely related to C. elegans, raising the question of how gut is specified in their absence in more distant species in the genus. We find that the C. angaria, C. portoensis and C. monodelphis orthologues of the GATA factor gene elt-3 are expressed in the early E lineage, just before their elt-2 orthologues. In C. angaria, Can-pop-1(RNAi), Can-elt-3(RNAi) and a Can-elt-3 null mutation result in a penetrant ‘gutless’ phenotype. Can-pop-1 is necessary for Can-elt-3 activation, showing that it acts upstream. Forced early E lineage expression of Can-elt-3 in C. elegans can direct the expression of a Can-elt-2 transgene and rescue an elt-7 end-1 end-3; elt-2 quadruple mutant strain to viability. Our results demonstrate an ancestral mechanism for gut specification and differentiation in Caenorhabditis involving a simpler POP-1→ELT-3→ELT-2 gene network.
Collapse
Affiliation(s)
- Gina Broitman-Maduro
- University of California 1 Department of Molecular, Cell and Systems Biology , , Riverside, CA 92521 , USA
| | - Simo Sun
- Faculty of Medicine, University of Miyazaki 2 Department of Infectious Diseases , , 5200 Kihara, Miyazaki 889-1692 , Japan
- Graduate School of Frontier Sciences, The University of Tokyo 3 Department of Integrated Biosciences , , Chiba 277-8562 , Japan
| | - Taisei Kikuchi
- Faculty of Medicine, University of Miyazaki 2 Department of Infectious Diseases , , 5200 Kihara, Miyazaki 889-1692 , Japan
- Graduate School of Frontier Sciences, The University of Tokyo 3 Department of Integrated Biosciences , , Chiba 277-8562 , Japan
| | - Morris F. Maduro
- University of California 1 Department of Molecular, Cell and Systems Biology , , Riverside, CA 92521 , USA
| |
Collapse
|
10
|
Katsanos D, Barkoulas M. Targeted DamID in C. elegans reveals a direct role for LIN-22 and NHR-25 in antagonizing the epidermal stem cell fate. SCIENCE ADVANCES 2022; 8:eabk3141. [PMID: 35119932 PMCID: PMC8816332 DOI: 10.1126/sciadv.abk3141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/13/2021] [Indexed: 05/13/2023]
Abstract
Transcription factors are key players in gene networks controlling cell fate specification during development. In multicellular organisms, they display complex patterns of expression and binding to their targets, hence, tissue specificity is required in the characterization of transcription factor-target interactions. We introduce here targeted DamID (TaDa) as a method for tissue-specific transcription factor target identification in intact Caenorhabditis elegans animals. We use TaDa to recover targets in the epidermis for two factors, the HES1 homolog LIN-22, and the NR5A1/2 nuclear hormone receptor NHR-25. We demonstrate a direct link between LIN-22 and the Wnt signaling pathway through repression of the Frizzled receptor lin-17. We report a direct role for NHR-25 in promoting cell differentiation via repressing the expression of stem cell-promoting GATA factors. Our results expand our understanding of the epidermal gene network and highlight the potential of TaDa to dissect the architecture of tissue-specific gene regulatory networks.
Collapse
|
11
|
daf-16/FOXO blocks adult cell fate in Caenorhabditis elegans dauer larvae via lin-41/TRIM71. PLoS Genet 2021; 17:e1009881. [PMID: 34780472 PMCID: PMC8629381 DOI: 10.1371/journal.pgen.1009881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/29/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
Many tissue-specific stem cells maintain the ability to produce multiple cell types during long periods of non-division, or quiescence. FOXO transcription factors promote quiescence and stem cell maintenance, but the mechanisms by which FOXO proteins promote multipotency during quiescence are still emerging. The single FOXO ortholog in C. elegans, daf-16, promotes entry into a quiescent and stress-resistant larval stage called dauer in response to adverse environmental cues. During dauer, stem and progenitor cells maintain or re-establish multipotency to allow normal development to resume after dauer. We find that during dauer, daf-16/FOXO prevents epidermal stem cells (seam cells) from prematurely adopting differentiated, adult characteristics. In particular, dauer larvae that lack daf-16 misexpress collagens that are normally adult-enriched. Using col-19p::gfp as an adult cell fate marker, we find that all major daf-16 isoforms contribute to opposing col-19p::gfp expression during dauer. By contrast, daf-16(0) larvae that undergo non-dauer development do not misexpress col-19p::gfp. Adult cell fate and the timing of col-19p::gfp expression are regulated by the heterochronic gene network, including lin-41 and lin-29. lin-41 encodes an RNA-binding protein orthologous to LIN41/TRIM71 in mammals, and lin-29 encodes a conserved zinc finger transcription factor. In non-dauer development, lin-41 opposes adult cell fate by inhibiting the translation of lin-29, which directly activates col-19 transcription and promotes adult cell fate. We find that during dauer, lin-41 blocks col-19p::gfp expression, but surprisingly, lin-29 is not required in this context. Additionally, daf-16 promotes the expression of lin-41 in dauer larvae. The col-19p::gfp misexpression phenotype observed in dauer larvae with reduced daf-16 requires the downregulation of lin-41, but does not require lin-29. Taken together, this work demonstrates a novel role for daf-16/FOXO as a heterochronic gene that promotes expression of lin-41/TRIM71 to contribute to multipotent cell fate in a quiescent stem cell model. In adults and juveniles, tissue-specific stem cells divide as needed to replace cells that are lost due to injury or normal wear and tear. Many stem cells spend long periods of time in cellular quiescence, or non-division. During quiescence, stem cells remain multipotent, where they retain the ability to produce all cell types within their tissue. In this study, we define a new role for the FOXO protein DAF-16 in promoting multipotency during the quiescent C. elegans dauer larva stage. C. elegans larvae enter dauer midway through development in response to adverse environmental conditions. Epidermal stem cells are multipotent in C. elegans larvae but differentiate at adulthood, a process controlled by the “heterochronic” genes. We found that daf-16 blocks the expression of adult cell fate specifically in dauer larvae by promoting the expression of the heterochronic gene lin-41. lin-41 normally blocks adult fate by repressing the expression of another heterochronic gene, lin-29, but surprisingly, lin-29 is not needed for the expression of adult cell fate in this context. These findings may be relevant to mammals where the orthologs of daf-16 and lin-41 are important in stem cell maintenance and opposing differentiation.
Collapse
|
12
|
Tsutsui K, Kim HS, Yoshikata C, Kimura K, Kubota Y, Shibata Y, Tian C, Liu J, Nishiwaki K. Repulsive guidance molecule acts in axon branching in Caenorhabditis elegans. Sci Rep 2021; 11:22370. [PMID: 34785759 PMCID: PMC8595726 DOI: 10.1038/s41598-021-01853-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022] Open
Abstract
Repulsive guidance molecules (RGMs) are evolutionarily conserved proteins implicated in repulsive axon guidance. Here we report the function of the Caenorhabditis elegans ortholog DRAG-1 in axon branching. The axons of hermaphrodite-specific neurons (HSNs) extend dorsal branches at the region abutting the vulval muscles. The drag-1 mutants exhibited defects in HSN axon branching in addition to a small body size phenotype. DRAG-1 expression in the hypodermal cells was required for the branching of the axons. Although DRAG-1 is normally expressed in the ventral hypodermis excepting the vulval region, its ectopic expression in vulval precursor cells was sufficient to induce the branching. The C-terminal glycosylphosphatidylinositol anchor of DRAG-1 was important for its function, suggesting that DRAG-1 should be anchored to the cell surface. Genetic analyses suggested that the membrane receptor UNC-40 acts in the same pathway with DRAG-1 in HSN branching. We propose that DRAG-1 expressed in the ventral hypodermis signals via the UNC-40 receptor expressed in HSNs to elicit branching activity of HSN axons.
Collapse
Affiliation(s)
- Kaname Tsutsui
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Hon-Song Kim
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Chizu Yoshikata
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Kenji Kimura
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Yukihiko Kubota
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Yukimasa Shibata
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Chenxi Tian
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Kiyoji Nishiwaki
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan.
| |
Collapse
|
13
|
Katsanos D, Ferrando-Marco M, Razzaq I, Aughey G, Southall TD, Barkoulas M. Gene expression profiling of epidermal cell types in C. elegans using Targeted DamID. Development 2021; 148:dev199452. [PMID: 34397094 PMCID: PMC7613258 DOI: 10.1242/dev.199452] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
The epidermis of Caenorhabditis elegans is an essential tissue for survival because it contributes to the formation of the cuticle barrier as well as facilitating developmental progression and animal growth. Most of the epidermis consists of the hyp7 hypodermal syncytium, the nuclei of which are largely generated by the seam cells, which exhibit stem cell-like behaviour during development. How seam cell progenitors differ transcriptionally from the differentiated hypodermis is poorly understood. Here, we introduce Targeted DamID (TaDa) in C. elegans as a method for identifying genes expressed within a tissue of interest without cell isolation. We show that TaDa signal enrichment profiles can be used to identify genes transcribed in the epidermis and use this method to resolve differences in gene expression between the seam cells and the hypodermis. Finally, we predict and functionally validate new transcription and chromatin factors acting in seam cell development. These findings provide insights into cell type-specific gene expression profiles likely associated with epidermal cell fate patterning.
Collapse
Affiliation(s)
- Dimitris Katsanos
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Mar Ferrando-Marco
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Iqrah Razzaq
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Gabriel Aughey
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Tony D. Southall
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Michalis Barkoulas
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
14
|
A 4D single-cell protein atlas of transcription factors delineates spatiotemporal patterning during embryogenesis. Nat Methods 2021; 18:893-902. [PMID: 34312566 DOI: 10.1038/s41592-021-01216-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/17/2021] [Indexed: 12/27/2022]
Abstract
Complex biological processes such as embryogenesis require precise coordination of cell differentiation programs across both space and time. Using protein-fusion fluorescent reporters and four-dimensional live imaging, we present a protein expression atlas of transcription factors (TFs) mapped onto developmental cell lineages during Caenorhabditis elegans embryogenesis, at single-cell resolution. This atlas reveals a spatiotemporal combinatorial code of TF expression, and a cascade of lineage-specific, tissue-specific and time-specific TFs that specify developmental states. The atlas uncovers regulators of embryogenesis, including an unexpected role of a skin specifier in neurogenesis and the critical function of an uncharacterized TF in convergent muscle differentiation. At the systems level, the atlas provides an opportunity to model cell state-fate relationships, revealing a lineage-dependent state diversity within functionally related cells and a winding trajectory of developmental state progression. Collectively, this single-cell protein atlas represents a valuable resource for elucidating metazoan embryogenesis at the molecular and systems levels.
Collapse
|
15
|
Koneru SL, Hintze M, Katsanos D, Barkoulas M. Cryptic genetic variation in a heat shock protein modifies the outcome of a mutation affecting epidermal stem cell development in C. elegans. Nat Commun 2021; 12:3263. [PMID: 34059684 PMCID: PMC8166903 DOI: 10.1038/s41467-021-23567-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
A fundamental question in medical genetics is how the genetic background modifies the phenotypic outcome of mutations. We address this question by focusing on the seam cells, which display stem cell properties in the epidermis of Caenorhabditis elegans. We demonstrate that a putative null mutation in the GATA transcription factor egl-18, which is involved in seam cell fate maintenance, is more tolerated in the CB4856 isolate from Hawaii than the lab reference strain N2 from Bristol. We identify multiple quantitative trait loci (QTLs) underlying the difference in phenotype expressivity between the two isolates. These QTLs reveal cryptic genetic variation that reinforces seam cell fate through potentiating Wnt signalling. Within one QTL region, a single amino acid deletion in the heat shock protein HSP-110 in CB4856 is sufficient to modify Wnt signalling and seam cell development, highlighting that natural variation in conserved heat shock proteins can shape phenotype expressivity. How the genetic background modifies the expression of mutations is a key question that is addressed in this study in the context of seam cell development in Caenorhabditis elegans isolates. One amino acid deletion in a conserved heat shock protein is sufficient to shape phenotype expressivity upon mutation of a GATA transcription factor.
Collapse
Affiliation(s)
- Sneha L Koneru
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Mark Hintze
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Dimitris Katsanos
- Department of Life Sciences, Imperial College, London, United Kingdom
| | | |
Collapse
|
16
|
Hintze M, Katsanos D, Shahrezaei V, Barkoulas M. Phenotypic Robustness of Epidermal Stem Cell Number in C. elegans Is Modulated by the Activity of the Conserved N-acetyltransferase nath-10/NAT10. Front Cell Dev Biol 2021; 9:640856. [PMID: 34084768 PMCID: PMC8168469 DOI: 10.3389/fcell.2021.640856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Individual cells and organisms experience perturbations from internal and external sources, yet manage to buffer these to produce consistent phenotypes, a property known as robustness. While phenotypic robustness has often been examined in unicellular organisms, it has not been sufficiently studied in multicellular animals. Here, we investigate phenotypic robustness in Caenorhabditis elegans seam cells. Seam cells are stem cell-like epithelial cells along the lateral edges of the animal, which go through asymmetric and symmetric divisions contributing cells to the hypodermis and neurons, while replenishing the stem cell reservoir. The terminal number of seam cells is almost invariant in the wild-type population, allowing the investigation of how developmental precision is achieved. We report here that a loss-of-function mutation in the highly conserved N-acetyltransferase nath-10/NAT10 increases seam cell number variance in the isogenic population. RNA-seq analysis revealed increased levels of mRNA transcript variability in nath-10 mutant populations, which may have an impact on the phenotypic variability observed. Furthermore, we found disruption of Wnt signaling upon perturbing nath-10 function, as evidenced by changes in POP-1/TCF nuclear distribution and ectopic activation of its GATA transcription factor target egl-18. These results highlight that NATH-10/NAT-10 can influence phenotypic variability partly through modulation of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Mark Hintze
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Dimitris Katsanos
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College, London, United Kingdom
| | | |
Collapse
|
17
|
Koneru SL, Quah FX, Ghose R, Hintze M, Gritti N, van Zon JS, Barkoulas M. A role for the fusogen eff-1 in epidermal stem cell number robustness in Caenorhabditis elegans. Sci Rep 2021; 11:9787. [PMID: 33963222 PMCID: PMC8105389 DOI: 10.1038/s41598-021-88500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/13/2021] [Indexed: 02/03/2023] Open
Abstract
Developmental patterning in Caenorhabditis elegans is known to proceed in a highly stereotypical manner, which raises the question of how developmental robustness is achieved despite the inevitable stochastic noise. We focus here on a population of epidermal cells, the seam cells, which show stem cell-like behaviour and divide symmetrically and asymmetrically over post-embryonic development to generate epidermal and neuronal tissues. We have conducted a mutagenesis screen to identify mutants that introduce phenotypic variability in the normally invariant seam cell population. We report here that a null mutation in the fusogen eff-1 increases seam cell number variability. Using time-lapse microscopy and single molecule fluorescence hybridisation, we find that seam cell division and differentiation patterns are mostly unperturbed in eff-1 mutants, indicating that cell fusion is uncoupled from the cell differentiation programme. Nevertheless, seam cell losses due to the inappropriate differentiation of both daughter cells following division, as well as seam cell gains through symmetric divisions towards the seam cell fate were observed at low frequency. We show that these stochastic errors likely arise through accumulation of defects interrupting the continuity of the seam and changing seam cell shape, highlighting the role of tissue homeostasis in suppressing phenotypic variability during development.
Collapse
Affiliation(s)
- Sneha L Koneru
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Fu Xiang Quah
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Ritobrata Ghose
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Mark Hintze
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Nicola Gritti
- AMOLF, Science Park 104, 1098 XG, Amsterdam, the Netherlands
| | | | | |
Collapse
|
18
|
Hintze M, Koneru SL, Gilbert SPR, Katsanos D, Lambert J, Barkoulas M. A Cell Fate Switch in the Caenorhabditis elegans Seam Cell Lineage Occurs Through Modulation of the Wnt Asymmetry Pathway in Response to Temperature Increase. Genetics 2020; 214:927-939. [PMID: 31988193 PMCID: PMC7153939 DOI: 10.1534/genetics.119.302896] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
Populations often display consistent developmental phenotypes across individuals despite inevitable biological stochasticity. Nevertheless, developmental robustness has limits, and systems can fail upon change in the environment or the genetic background. We use here the seam cells, a population of epidermal stem cells in Caenorhabditis elegans, to study the influence of temperature change and genetic variation on cell fate. Seam cell development has mostly been studied so far in the laboratory reference strain (N2), grown at 20° temperature. We demonstrate that an increase in culture temperature to 25° introduces variability in the wild-type seam cell lineage, with a proportion of animals showing an increase in seam cell number. We map this increase to lineage-specific symmetrization events of normally asymmetric cell divisions at the fourth larval stage, leading to the retention of seam cell fate in both daughter cells. Using genetics and single-molecule imaging, we demonstrate that this symmetrization occurs via changes in the Wnt asymmetry pathway, leading to aberrant Wnt target activation in anterior cell daughters. We find that intrinsic differences in the Wnt asymmetry pathway already exist between seam cells at 20° and this may sensitize cells toward a cell fate switch at increased temperature. Finally, we demonstrate that wild isolates of C. elegans display variation in seam cell sensitivity to increased culture temperature, although their average seam cell number is comparable at 20°. Our results highlight how temperature can modulate cell fate decisions in an invertebrate model of stem cell patterning.
Collapse
Affiliation(s)
- Mark Hintze
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Sneha L Koneru
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | | | | | - Julien Lambert
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | | |
Collapse
|
19
|
Role of PRY-1/Axin in heterochronic miRNA-mediated seam cell development. BMC DEVELOPMENTAL BIOLOGY 2019; 19:17. [PMID: 31307392 PMCID: PMC6631683 DOI: 10.1186/s12861-019-0197-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/04/2019] [Indexed: 02/04/2023]
Abstract
Background Caenorhabditis elegans seam cells serve as a good model to understand how genes and signaling pathways interact to control asymmetric cell fates. The stage-specific pattern of seam cell division is coordinated by a genetic network that includes WNT asymmetry pathway components WRM-1, LIT-1, and POP-1, as well as heterochronic microRNAs (miRNAs) and their downstream targets. Mutations in pry-1, a negative regulator of WNT signaling that belongs to the Axin family, were shown to cause seam cell defects; however, the mechanism of PRY-1 action and its interactions with miRNAs remain unclear. Results We found that pry-1 mutants in C. elegans exhibit seam cell, cuticle, and alae defects. To examine this further, a miRNA transcriptome analysis was carried out, which showed that let-7 (miR-48, miR-84, miR-241) and lin-4 (lin-4, miR-237) family members were upregulated in the absence of pry-1 function. Similar phenotypes and patterns of miRNA overexpression were also observed in C. briggsae pry-1 mutants, a species that is closely related to C. elegans. RNA interference-mediated silencing of wrm-1 and lit-1 in the C. elegans pry-1 mutants rescued the seam cell defect, whereas pop-1 silencing enhanced the phenotype, suggesting that all three proteins are likely important for PRY-1 function in seam cells. We also found that these miRNAs were overexpressed in pop-1 hypomorphic animals, suggesting that PRY-1 may be required for POP-1-mediated miRNA suppression. Analysis of the let-7 and lin-4-family heterochronic targets, lin-28 and hbl-1, showed that both genes were significantly downregulated in pry-1 mutants, and furthermore, lin-28 silencing reduced the number of seam cells in mutant animals. Conclusions Our results show that PRY-1 plays a conserved role to maintain normal expression of heterochronic miRNAs in nematodes. Furthermore, we demonstrated that PRY-1 acts upstream of the WNT asymmetry pathway components WRM-1, LIT-1, and POP-1, and miRNA target genes in seam cell development. Electronic supplementary material The online version of this article (10.1186/s12861-019-0197-5) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Xiaoliang Hou, Sun J, Wang Y, Jiang X. Identification of Specific Genes and Pathways by a Comparative Transcriptomic Study of Hypodermal and Body Muscle Development. Russ J Dev Biol 2019. [DOI: 10.1134/s106236041903007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Aeschimann F, Neagu A, Rausch M, Großhans H. let-7 coordinates the transition to adulthood through a single primary and four secondary targets. Life Sci Alliance 2019; 2:e201900335. [PMID: 30910805 PMCID: PMC6435043 DOI: 10.26508/lsa.201900335] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022] Open
Abstract
The juvenile-to-adult (J/A) transition, or puberty, is a period of extensive changes of animal body morphology and function. The onset of puberty is genetically controlled, and the let-7 miRNA temporally regulates J/A transition events in nematodes and mammals. Here, we uncover the targets and downstream pathways through which Caenorhabditis elegans let-7 controls male and female sexual organ morphogenesis and skin progenitor cell fates. We find that let-7 directs all three processes by silencing a single target, the post-transcriptional regulator lin-41 In turn, the RNA-binding protein LIN41/TRIM71 regulates these processes by silencing only four target mRNAs. Thus, by silencing LIN41, let-7 activates LIN-29a and MAB-10 (an early growth response-type transcription factor and its NAB1/2-orthologous cofactor, respectively) to terminate progenitor cell self-renewal and to promote vulval integrity. By contrast, let-7 promotes development of the male sexual organ by up-regulating DMD-3 and MAB-3, two Doublesex/MAB-3 domain-containing transcription factors. Our results provide mechanistic insight into how a linear chain of post-transcriptional regulators diverges in the control of a small set of transcriptional regulators to achieve a coordinated J/A transition.
Collapse
Affiliation(s)
- Florian Aeschimann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Anca Neagu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Magdalene Rausch
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
22
|
Hughes S, Vrinds I, de Roo J, Francke C, Shimeld SM, Woollard A, Sato A. DnaJ chaperones contribute to canalization. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2019; 331:201-212. [PMID: 30653842 DOI: 10.1002/jez.2254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/04/2023]
Abstract
Canalization, an intrinsic robustness of development to external (environmental) or internal (genetic) perturbations, was first proposed over half a century ago. However, whether the robustness to environmental stress (environmental canalization [EC]) and to genetic variation (genetic canalization) are underpinned by the same molecular basis remains elusive. The recent discovery of the involvement of two endoplasmic reticulum (ER)-associated DnaJ genes in developmental buffering, orthologues of which are conserved across Metazoa, indicates that the role of ER-associated DnaJ genes might be conserved across the animal kingdom. To test this, we surveyed the ER-associated DnaJ chaperones in the nematode Caenorhabditis elegans. We then quantified the phenotype, in the form of variance and mean of seam cell counts, from RNA interference knockdown of DnaJs under three different temperatures. We find that seven out of eight ER-associated DnaJs are involved in either EC or microenvironmental canalization. Moreover, we also found two DnaJ genes not specifically associated with ER (DNAJC2/dnj-11 and DNAJA2/dnj-19) were involved in canalization. Protein expression pattern showed that these DnaJs are upregulated by heat stress, yet not all of them are expressed in the seam cells. Moreover, we found that most of the buffering DnaJs also control lifespan. We therefore concluded that a number of DnaJ chaperones, not limited to those associated with the ER, are involved in canalization as a part of the complex system that underlies development.
Collapse
Affiliation(s)
- Samantha Hughes
- HAN BioCentre, HAN University of Applied Science, Isnstitute of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | - Inge Vrinds
- HAN BioCentre, HAN University of Applied Science, Isnstitute of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | - Joris de Roo
- HAN BioCentre, HAN University of Applied Science, Isnstitute of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | - Christof Francke
- HAN BioCentre, HAN University of Applied Science, Isnstitute of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | | | - Alison Woollard
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Atsuko Sato
- Department of Biology, Ochanomizu University, Tokyo, Japan
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
23
|
Katsanos D, Koneru SL, Mestek Boukhibar L, Gritti N, Ghose R, Appleford PJ, Doitsidou M, Woollard A, van Zon JS, Poole RJ, Barkoulas M. Stochastic loss and gain of symmetric divisions in the C. elegans epidermis perturbs robustness of stem cell number. PLoS Biol 2017; 15:e2002429. [PMID: 29108019 PMCID: PMC5690688 DOI: 10.1371/journal.pbio.2002429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 11/16/2017] [Accepted: 10/20/2017] [Indexed: 11/19/2022] Open
Abstract
Biological systems are subject to inherent stochasticity. Nevertheless, development is remarkably robust, ensuring the consistency of key phenotypic traits such as correct cell numbers in a certain tissue. It is currently unclear which genes modulate phenotypic variability, what their relationship is to core components of developmental gene networks, and what is the developmental basis of variable phenotypes. Here, we start addressing these questions using the robust number of Caenorhabditis elegans epidermal stem cells, known as seam cells, as a readout. We employ genetics, cell lineage tracing, and single molecule imaging to show that mutations in lin-22, a Hes-related basic helix-loop-helix (bHLH) transcription factor, increase seam cell number variability. We show that the increase in phenotypic variability is due to stochastic conversion of normally symmetric cell divisions to asymmetric and vice versa during development, which affect the terminal seam cell number in opposing directions. We demonstrate that LIN-22 acts within the epidermal gene network to antagonise the Wnt signalling pathway. However, lin-22 mutants exhibit cell-to-cell variability in Wnt pathway activation, which correlates with and may drive phenotypic variability. Our study demonstrates the feasibility to study phenotypic trait variance in tractable model organisms using unbiased mutagenesis screens.
Collapse
Affiliation(s)
- Dimitris Katsanos
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Sneha L. Koneru
- Department of Life Sciences, Imperial College, London, United Kingdom
| | | | - Nicola Gritti
- Institute for Atomic and Molecular Physics (AMOLF), Amsterdam, The Netherlands
| | - Ritobrata Ghose
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Peter J. Appleford
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Maria Doitsidou
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison Woollard
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jeroen S. van Zon
- Institute for Atomic and Molecular Physics (AMOLF), Amsterdam, The Netherlands
| | - Richard J. Poole
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | |
Collapse
|
24
|
Ding SS, Woollard A. Non-muscle myosin II is required for correct fate specification in the Caenorhabditis elegans seam cell divisions. Sci Rep 2017; 7:3524. [PMID: 28615630 PMCID: PMC5471188 DOI: 10.1038/s41598-017-01675-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/31/2017] [Indexed: 11/09/2022] Open
Abstract
During development, cell division often generates two daughters with different developmental fates. Distinct daughter identities can result from the physical polarity and size asymmetry itself, as well as the subsequent activation of distinct fate programmes in each daughter. Asymmetric divisions are a feature of the C. elegans seam lineage, in which a series of post-embryonic, stem-like asymmetric divisions give rise to an anterior daughter that differentiates and a posterior daughter that continues to divide. Here we have investigated the role of non-muscle myosin II (nmy-2) in these asymmetric divisions. We show that nmy-2 does not appear to be involved in generating physical division asymmetry, but nonetheless is important for specifying differential cell fate. While cell polarity appears normal, and chromosome and furrow positioning remains unchanged when nmy-2 is inactivated, seam cell loss occurs through inappropriate terminal differentiation of posterior daughters. This reveals a role for nmy-2 in cell fate determination not obviously linked to the primary polarity determination mechanisms it has been previously associated with.
Collapse
Affiliation(s)
- Siyu Serena Ding
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.,Institution of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, United Kingdom.,MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Alison Woollard
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
25
|
Oh S, Yoon S, Youn E, Kawasaki I, Shim YH. cdc-25.2, a Caenorhabditis elegans ortholog of cdc25, is required for male tail morphogenesis. Biochem Biophys Res Commun 2017; 482:1213-1218. [PMID: 27923661 DOI: 10.1016/j.bbrc.2016.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 12/02/2016] [Indexed: 01/25/2023]
Abstract
Cell division cycle 25 (Cdc25) is an evolutionarily conserved phosphatase that promotes cell cycle progression by activating cyclin-dependent kinases (Cdks) which are inactivated by Wee1/Myt1 kinases. It was previously reported that cdc-25.2 promotes oocyte maturation and intestinal cell divisions in Caenorhabditis elegans hermaphrodites. Here, we report a novel function of cdc-25.2 in male tail development which was significantly deformed by cdc-25.2 RNAi depletion and in cdc-25.2 mutant males. The deformation was also observed after RNAi depletion of other cell cycle regulators, cdk-1, cyb-3, cyd-1, and cyl-1. Furthermore, wee-1.3 counteracted cdc-25.2 in male tail development as observed in oocyte maturation and intestine development. The number of cells in ray precursor cell lineages was significantly reduced in cdc-25.2 depleted males. These results indicate that CDC-25.2 is essential for cell divisions in ray precursor cell lineages for proper male tail development.
Collapse
Affiliation(s)
- Sangmi Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Sunghee Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Esther Youn
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Ichiro Kawasaki
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yhong-Hee Shim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
26
|
Stage-Specific Timing of the microRNA Regulation of lin-28 by the Heterochronic Gene lin-14 in Caenorhabditis elegans. Genetics 2016; 205:251-262. [PMID: 27815363 DOI: 10.1534/genetics.116.195040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/20/2016] [Indexed: 01/01/2023] Open
Abstract
In normal development, the order and synchrony of diverse developmental events must be explicitly controlled. In the nematode Caenorhabditis elegans, the timing of larval events is regulated by hierarchy of proteins and microRNAs (miRNAs) known as the heterochronic pathway. These regulators are organized in feedforward and feedback interactions to form a robust mechanism for specifying the timing and execution of cell fates at successive stages. One member of this pathway is the RNA binding protein LIN-28, which promotes pluripotency and cell fate decisions in successive stages. Two genetic circuits control LIN-28 abundance: it is negatively regulated by the miRNA lin-4, and positively regulated by the transcription factor LIN-14 through a mechanism that was previously unknown. In this report, we used animals that lack lin-4 to elucidate LIN-14's activity in this circuit. We demonstrate that three let-7 family miRNAs-miR-48, miR-84, and miR-241-inhibit lin-28 expression. Furthermore, we show genetically that these miRNAs act between lin-14 and lin-28, and that they comprise the pathway by which lin-14 positively regulates lin-28 We also show that the lin-4 family member mir-237, also regulates early cell fates. Finally, we show that the expression of these miRNAs is directly inhibited by lin-14 activity, making them the first known targets of lin-14 that act in the heterochronic pathway.
Collapse
|
27
|
Thompson KW, Joshi P, Dymond JS, Gorrepati L, Smith HE, Krause MW, Eisenmann DM. The Paired-box protein PAX-3 regulates the choice between lateral and ventral epidermal cell fates in C. elegans. Dev Biol 2016; 412:191-207. [PMID: 26953187 PMCID: PMC4846358 DOI: 10.1016/j.ydbio.2016.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 01/12/2023]
Abstract
The development of the single cell layer skin or hypodermis of Caenorhabditis elegans is an excellent model for understanding cell fate specification and differentiation. Early in C. elegans embryogenesis, six rows of hypodermal cells adopt dorsal, lateral or ventral fates that go on to display distinct behaviors during larval life. Several transcription factors are known that function in specifying these major hypodermal cell fates, but our knowledge of the specification of these cell types is sparse, particularly in the case of the ventral hypodermal cells, which become Vulval Precursor Cells and form the vulval opening in response to extracellular signals. Previously, the gene pvl-4 was identified in a screen for mutants with defects in vulval development. We found by whole genome sequencing that pvl-4 is the Paired-box gene pax-3, which encodes the sole PAX-3 transcription factor homolog in C. elegans. pax-3 mutants show embryonic and larval lethality, and body morphology abnormalities indicative of hypodermal cell defects. We report that pax-3 is expressed in ventral P cells and their descendants during embryogenesis and early larval stages, and that in pax-3 reduction-of-function animals the ventral P cells undergo a cell fate transformation and express several markers of the lateral seam cell fate. Furthermore, forced expression of pax-3 in the lateral hypodermal cells causes them to lose expression of seam cell markers. We propose that pax-3 functions in the ventral hypodermal cells to prevent these cells from adopting the lateral seam cell fate. pax-3 represents the first gene required for specification solely of the ventral hypodermal fate in C. elegans providing insights into cell type diversification.
Collapse
Affiliation(s)
- Kenneth W Thompson
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Pradeep Joshi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Jessica S Dymond
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Lakshmi Gorrepati
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Harold E Smith
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Center Drive, Bethesda, MD 20892, USA.
| | - Michael W Krause
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Center Drive, Bethesda, MD 20892, USA.
| | - David M Eisenmann
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
28
|
Casein kinase II promotes target silencing by miRISC through direct phosphorylation of the DEAD-box RNA helicase CGH-1. Proc Natl Acad Sci U S A 2015; 112:E7213-22. [PMID: 26669440 DOI: 10.1073/pnas.1509499112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) play essential, conserved roles in diverse developmental processes through association with the miRNA-induced silencing complex (miRISC). Whereas fundamental insights into the mechanistic framework of miRNA biogenesis and target gene silencing have been established, posttranslational modifications that affect miRISC function are less well understood. Here we report that the conserved serine/threonine kinase, casein kinase II (CK2), promotes miRISC function in Caenorhabditis elegans. CK2 inactivation results in developmental defects that phenocopy loss of miRISC cofactors and enhances the loss of miRNA function in diverse cellular contexts. Whereas CK2 is dispensable for miRNA biogenesis and the stability of miRISC cofactors, it is required for efficient miRISC target mRNA binding and silencing. Importantly, we identify the conserved DEAD-box RNA helicase, CGH-1/DDX6, as a key CK2 substrate within miRISC and demonstrate phosphorylation of a conserved N-terminal serine is required for CGH-1 function in the miRNA pathway.
Collapse
|
29
|
Christensen RP, Bokinsky A, Santella A, Wu Y, Marquina-Solis J, Guo M, Kovacevic I, Kumar A, Winter PW, Tashakkori N, McCreedy E, Liu H, McAuliffe M, Mohler W, Colón-Ramos DA, Bao Z, Shroff H. Untwisting the Caenorhabditis elegans embryo. eLife 2015; 4. [PMID: 26633880 PMCID: PMC4764590 DOI: 10.7554/elife.10070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/25/2015] [Indexed: 01/08/2023] Open
Abstract
The nematode Caenorhabditis elegans possesses a simple embryonic nervous system with few enough neurons that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open-source untwisting and annotation software (http://mipav.cit.nih.gov/plugin_jws/mipav_worm_plugin.php) that allows the investigation of neurodevelopmental events in late embryogenesis and apply it to track the 3D positions of seam cell nuclei, neurons, and neurites in multiple elongating embryos. We also provide a tutorial describing how to use the software (Supplementary file 1) and a detailed description of the untwisting algorithm (Appendix). The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an 'average' worm embryo. The untwisting and cell tracking capabilities of our method provide a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis. DOI:http://dx.doi.org/10.7554/eLife.10070.001 Understanding how the brain and nervous system develops from a few cells into complex, interconnected networks is a key goal for neuroscientists. Although researchers have identified many of the genes involved in this process, how these work together to form an entire brain remains unknown. A simple worm called Caenorhabiditis elegans is commonly used to study brain development because it has only about 300 neurons, simplifying the study of its nervous system. The worms are easy to grow in the laboratory and are transparent, allowing scientists to observe how living worms develop using a microscope. Researchers have learned a great deal about the initial growth of the nervous system in C. elegans embryos. However, it has been difficult to study the embryos once their muscles have formed because they constantly twist, fold, and move, making it hard to track the cells. Now, Christensen, Bokinsky, Santella, Wu et al. have developed a computer program that allows scientists to virtually untwist the embryos and follow the development of the nervous system from its beginning to when the embryo hatches. First, images are taken of worm embryos that produce fluorescent proteins marking certain body parts. The program, with user input, labels the fluorescent cells in the images, which indicates how the embryo is bending and allows the program to straighten the worm. The program can also track how cells move around the embryo during development and show the positional relationships between different cells at different stages of development. Christensen et al. have made the program freely available for other researchers to use. The next step is to increase automation, making the software faster and more straightforward for users. Ultimately, the software could help in the challenge to comprehensively examine the development of each neuron in the worm. DOI:http://dx.doi.org/10.7554/eLife.10070.002
Collapse
Affiliation(s)
- Ryan Patrick Christensen
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Alexandra Bokinsky
- Biomedical Imaging Research Services Section, Center for Information Technology, National Institutes of Health, Bethesda, United States
| | - Anthony Santella
- Developmental Biology Program, Sloan-Kettering Institute, New York, United States
| | - Yicong Wu
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Javier Marquina-Solis
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Min Guo
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States.,State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Ismar Kovacevic
- Developmental Biology Program, Sloan-Kettering Institute, New York, United States
| | - Abhishek Kumar
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Peter W Winter
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Nicole Tashakkori
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Evan McCreedy
- Biomedical Imaging Research Services Section, Center for Information Technology, National Institutes of Health, Bethesda, United States
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Matthew McAuliffe
- Biomedical Imaging Research Services Section, Center for Information Technology, National Institutes of Health, Bethesda, United States
| | - William Mohler
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, United States
| | - Daniel A Colón-Ramos
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Zhirong Bao
- Developmental Biology Program, Sloan-Kettering Institute, New York, United States
| | - Hari Shroff
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| |
Collapse
|
30
|
Block DH, Shapira M. GATA transcription factors as tissue-specific master regulators for induced responses. WORM 2015; 4:e1118607. [PMID: 27123374 PMCID: PMC4826149 DOI: 10.1080/21624054.2015.1118607] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 01/15/2023]
Abstract
GATA transcription factors play important roles in directing developmental genetic programs and cell differentiation, and are conserved in animals, plants and fungi. C. elegans has 11 GATA-type transcription factors that orchestrate development of the gut, epidermis and vulva. However, the expression of certain GATA proteins persists into adulthood, where their function is less understood. Accumulating evidence demonstrates contributions of 2 terminal differentiation GATA transcription factors, ELT-2 and ELT-3, to epithelial immune responses in the adult intestine and epidermis (hypodermis), respectively. Involvement in other stress responses has also been documented. We recently showed that ELT-2 acted as a tissue-specific master regulator, cooperating with 2 transcription factors activated by the p38 pathway, ATF-7 and SKN-1, to control immune responses in the adult C. elegans intestine. Here, we discuss the broader implications of these findings for understanding the involvement of GATA transcription factors in adult stress responses, and draw parallels between ELT-2 and ELT-3 to speculate that the latter may fulfill similar tissue-specific functions in the epidermis.
Collapse
Affiliation(s)
- Dena Hs Block
- Department of Integrative Biology; University of California ; Berkeley, CA USA
| | - Michael Shapira
- Department of Integrative Biology; University of California; Berkeley, CA USA; Graduate Group in Microbiology; University of California; Berkeley, CA USA
| |
Collapse
|
31
|
Asymmetric Wnt Pathway Signaling Facilitates Stem Cell-Like Divisions via the Nonreceptor Tyrosine Kinase FRK-1 in Caenorhabditis elegans. Genetics 2015; 201:1047-60. [PMID: 26358719 DOI: 10.1534/genetics.115.181412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/05/2015] [Indexed: 11/18/2022] Open
Abstract
Asymmetric cell division is critical during development, as it influences processes such as cell fate specification and cell migration. We have characterized FRK-1, a homolog of the mammalian Fer nonreceptor tyrosine kinase, and found it to be required for differentiation and maintenance of epithelial cell types, including the stem cell-like seam cells of the hypodermis. A genomic knockout of frk-1, allele ok760, results in severely uncoordinated larvae that arrest at the L1 stage and have an excess number of lateral hypodermal cells that appear to have lost asymmetry in the stem cell-like divisions of the seam cell lineage. frk-1(ok760) mutants show that there are excess lateral hypodermal cells that are abnormally shaped and smaller in size compared to wild type, a defect that could be rescued only in a manner dependent on the kinase activity of FRK-1. Additionally, we observed a significant change in the expression of heterochronic regulators in frk-1(ok760) mutants. However, frk-1(ok760) mutants do not express late, nonseam hypodermal GFP markers, suggesting the seam cells do not precociously differentiate as adult-hyp7 cells. Finally, our data also demonstrate a clear role for FRK-1 in seam cell proliferation, as eliminating FRK-1 during the L3-L4 transition results in supernumerary seam cell nuclei that are dependent on asymmetric Wnt signaling. Specifically, we observe aberrant POP-1 and WRM-1 localization that is dependent on the presence of FRK-1 and APR-1. Overall, our data suggest a requirement for FRK-1 in maintaining the identity and proliferation of seam cells primarily through an interaction with the asymmetric Wnt pathway.
Collapse
|
32
|
The Rho guanine exchange factor RHGF-2 acts through the Rho-binding kinase LET-502 to mediate embryonic elongation in C. elegans. Dev Biol 2015; 405:250-9. [DOI: 10.1016/j.ydbio.2015.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 07/08/2015] [Accepted: 07/11/2015] [Indexed: 12/31/2022]
|
33
|
Gruber J, Chen CB, Fong S, Ng LF, Teo E, Halliwell B. Caenorhabditis elegans: What We Can and Cannot Learn from Aging Worms. Antioxid Redox Signal 2015; 23:256-79. [PMID: 25544992 DOI: 10.1089/ars.2014.6210] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE The nematode Caenorhabditis elegans is a widely used model organism for research into aging. However, nematodes diverged from other animals between 600 and 1300 million years ago. Beyond the intuitive impression that some aspects of aging appear to be universal, is there evidence that insights into the aging process of nematodes may be applicable to humans? RECENT ADVANCES There have been a number of results in nematodes that appear to contradict long-held beliefs about mechanisms and causes of aging. For example, ablation of several key antioxidant systems has often failed to result in lifespan shortening in C. elegans. CRITICAL ISSUES While it is clear that some central signaling pathways controlling lifespan are broadly conserved across large evolutionary distances, it is less clear to what extent downstream molecular mechanisms of aging are conserved. In this review we discuss the biology of C. elegans and mammals in the context of aging and age-dependent diseases. We consider evidence from studies that attempt to investigate basic, possibly conserved mechanisms of aging especially in the context of the free radical theory of aging. Practical points, such as the need for blinding of lifespan studies and for appropriate biomarkers, are also considered. FUTURE DIRECTIONS As data on the aging process(es) in different organisms increase, it is becoming increasingly clear that there are both conserved (public) and private aspects to aging. It is important to explore the dividing lines between these two aspects and to be aware of the large gray areas in-between.
Collapse
Affiliation(s)
- Jan Gruber
- 1 Department of Biochemistry, National University of Singapore , Singapore, Singapore .,2 Yale-NUS College , Singapore, Singapore
| | - Ce-Belle Chen
- 3 Department of Physics, National University of Singapore , Singapore, Singapore
| | - Sheng Fong
- 4 Duke-NUS Graduate Medical School , Singapore, Singapore
| | - Li Fang Ng
- 1 Department of Biochemistry, National University of Singapore , Singapore, Singapore
| | - Emelyne Teo
- 1 Department of Biochemistry, National University of Singapore , Singapore, Singapore
| | - Barry Halliwell
- 1 Department of Biochemistry, National University of Singapore , Singapore, Singapore
| |
Collapse
|
34
|
Gorrepati L, Krause MW, Chen W, Brodigan TM, Correa-Mendez M, Eisenmann DM. Identification of Wnt Pathway Target Genes Regulating the Division and Differentiation of Larval Seam Cells and Vulval Precursor Cells in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2015; 5:1551-66. [PMID: 26048561 PMCID: PMC4528312 DOI: 10.1534/g3.115.017715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/18/2015] [Indexed: 12/29/2022]
Abstract
The evolutionarily conserved Wnt/β-catenin signaling pathway plays a fundamental role during metazoan development, regulating numerous processes including cell fate specification, cell migration, and stem cell renewal. Wnt ligand binding leads to stabilization of the transcriptional effector β-catenin and upregulation of target gene expression to mediate a cellular response. During larval development of the nematode Caenorhabditis elegans, Wnt/β-catenin pathways act in fate specification of two hypodermal cell types, the ventral vulval precursor cells (VPCs) and the lateral seam cells. Because little is known about targets of the Wnt signaling pathways acting during larval VPC and seam cell differentiation, we sought to identify genes regulated by Wnt signaling in these two hypodermal cell types. We conditionally activated Wnt signaling in larval animals and performed cell type-specific "mRNA tagging" to enrich for VPC and seam cell-specific mRNAs, and then used microarray analysis to examine gene expression compared to control animals. Two hundred thirty-nine genes activated in response to Wnt signaling were identified, and we characterized 50 genes further. The majority of these genes are expressed in seam and/or vulval lineages during normal development, and reduction of function for nine genes caused defects in the proper division, fate specification, fate execution, or differentiation of seam cells and vulval cells. Therefore, the combination of these techniques was successful at identifying potential cell type-specific Wnt pathway target genes from a small number of cells and at increasing our knowledge of the specification and behavior of these C. elegans larval hypodermal cells.
Collapse
Affiliation(s)
- Lakshmi Gorrepati
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | | | - Weiping Chen
- Intramural Research Program, NIDDK, Bethesda, Maryland 20814
| | | | - Margarita Correa-Mendez
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - David M Eisenmann
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| |
Collapse
|
35
|
Milton AC, Okkema PG. Caenorhabditis elegans TBX-2 Directly Regulates Its Own Expression in a Negative Autoregulatory Loop. G3 (BETHESDA, MD.) 2015; 5:1177-86. [PMID: 25873636 PMCID: PMC4478547 DOI: 10.1534/g3.115.018101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/10/2015] [Indexed: 11/18/2022]
Abstract
T-box genes often exhibit dynamic expression patterns, and their expression levels can be crucial for normal function. Despite the importance of these genes, there is little known about T-box gene regulation. We have focused on the Caenorhabditis elegans gene tbx-2 to understand how T-box gene expression is regulated, and here we demonstrate TBX-2 itself directly represses its own expression in a negative autoregulatory loop. tbx-2 is essential for normal pharyngeal muscle development, and a tbx-2 promoter gfp fusion (Ptbx-2::gfp) is transiently expressed in the pharynx during embryogenesis and in a small number of head neurons in larvae and adults. Reduced tbx-2 function resulted in ectopic Ptbx-2::gfp expression in the seam cells and gut in larvae and adults. Mutation of potential T-box binding sites within the tbx-2 promoter resulted in a similar pattern of ectopic Ptbx-2::gfp expression, and chromatin immunoprecipitation analyses show TBX-2 binds these sites in vivo. This pattern of ectopic Ptbx-2::gfp expression in tbx-2 mutants was very similar to that observed in mutants affecting the NF-Y complex, and our results comparing tbx-2 and nfyb-1 single- and double mutants suggest TBX-2 and NF-Y function in a single pathway to repress the tbx-2 promoter. The tbx-2 promoter is the first direct target identified for TBX-2, and we used it to ask whether SUMOylation is essential for TBX-2 repression. RNAi knockdown of SUMOylation pathway components led to ectopic Ptbx-2::gfp expression in the seam cells and gut. Ectopic Ptbx-2::gfp also was observed in the syncytial hypodermis, suggesting either the tbx-2 promoter is repressed by other SUMOylation dependent mechanisms, or that decreased SUMOylation leads to stable changes in seam cell nuclei as they fuse with the syncytial hypodermis. We suggest negative autoregulation is an important mechanism that allows precise control of tbx-2 expression levels and may allow rapid changes in gene expression during development.
Collapse
Affiliation(s)
- Angenee C Milton
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Peter G Okkema
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| |
Collapse
|
36
|
Rausch M, Ecsedi M, Bartake H, Müllner A, Grosshans H. A genetic interactome of the let-7 microRNA in C. elegans. Dev Biol 2015; 401:276-86. [PMID: 25732775 DOI: 10.1016/j.ydbio.2015.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 02/08/2023]
Abstract
The heterochronic pathway controls temporal patterning during Caenorhabditis elegans larval development. The highly conserved let-7 microRNA (miRNA) plays a key role in this pathway, directing the larval-to-adult (L/A) transition. Hence, knowledge of the genetic interactome of let-7 has the potential to provide insight into both control of temporal cell fates and mechanisms of regulation and function of miRNAs. Here, we report the results of a genome-wide, RNAi-based screen for suppressors of let-7 mutant vulval bursting. The 201 genetic interaction partners of let-7 thus identified include genes that promote target silencing activity of let-7, seam cell differentiation, or both. We illustrate the suitability of our approach by uncovering the mitotic cyclin-dependent kinase CDK-1 as a downstream effector of let-7 that affects both seam cell proliferation and differentiation, and by identifying a core set of candidate modulators of let-7 activity, which includes all subunits of the condensin II complex. We propose that the genes identified in our screen thus constitute a valuable resource for studies of the heterochronic pathway and miRNAs.
Collapse
Affiliation(s)
- Magdalene Rausch
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Matyas Ecsedi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Hrishikesh Bartake
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Almuth Müllner
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Helge Grosshans
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| |
Collapse
|
37
|
Uehara T, Kage-Nakadai E, Yoshina S, Imae R, Mitani S. The Tumor Suppressor BCL7B Functions in the Wnt Signaling Pathway. PLoS Genet 2015; 11:e1004921. [PMID: 25569233 PMCID: PMC4287490 DOI: 10.1371/journal.pgen.1004921] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/24/2014] [Indexed: 01/05/2023] Open
Abstract
Human BCL7 gene family consists of BCL7A, BCL7B, and BCL7C. A number of clinical studies have reported that BCL7 family is involved in cancer incidence, progression, and development. Among them, BCL7B, located on chromosome 7q11.23, is one of the deleted genes in patients with Williams-Beuren syndrome. Although several studies have suggested that malignant diseases occurring in patients with Williams-Beuren syndrome are associated with aberrations in BCL7B, little is known regarding the function of this gene at the cellular level. In this study, we focused on bcl-7, which is the only homolog of BCL7 gene family in Caenorhabditis elegans, and analyzed bcl-7 deletion mutants. As a result, we found that bcl-7 is required for the asymmetric differentiation of epithelial seam cells, which have self-renewal properties as stem cells and divide asymmetrically through the WNT pathway. Distal tip cell development, which is regulated by the WNT pathway in Caenorhabditis elegans, was also affected in bcl-7-knockout mutants. Interestingly, bcl-7 mutants exhibited nuclear enlargement, reminiscent of the anaplastic features of malignant cells. Furthermore, in KATOIII human gastric cancer cells, BCL7B knockdown induced nuclear enlargement, promoted the multinuclei phenotype and suppressed cell death. In addition, this study showed that BCL7B negatively regulates the Wnt-signaling pathway and positively regulates the apoptotic pathway. Taken together, our data indicate that BCL7B/BCL-7 has some roles in maintaining the structure of nuclei and is involved in the modulation of multiple pathways, including Wnt and apoptosis. This study may implicate a risk of malignancies with BCL7B-deficiency, such as Williams-Beuren syndrome. BCL7B, a member of the human BCL7 gene family, is deleted in patients with Williams-Beuren syndrome. Although several clinical studies have suggested that malignant diseases occurring in patients with Williams-Beuren syndrome are associated with aberrations in BCL7B, little is known regarding the physiological function of this gene. Here, we show that bcl-7, the only homolog of BCL7 gene family in Caenorhabditis elegans, regulates asymmetric cell differentiation in somatic “stem-like” seam cells through at least the Wnt pathway and promotes the apoptotic pathway. In addition, bcl-7 deletion mutants show enlarged nuclei in epidermis and germ cells. Furthermore, in KATOIII human gastric cancer cells, BCL7B knockdown induces nuclear enlargement, as observed in Caenorhabditis elegans, and promotes the multinucleated phenotype, both of which are reminiscent of malignant diseases. BCL7B also negatively regulates the Wnt-signaling pathway and positively regulates the apoptotic pathway, similar to Caenorhabditis elegans. Altogether, this study may open the door for understanding the function of BCL7 family in cell differentiation and malignancies.
Collapse
Affiliation(s)
- Tomoko Uehara
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Eriko Kage-Nakadai
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Rieko Imae
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan; Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| |
Collapse
|
38
|
Control of stem cell self-renewal and differentiation by the heterochronic genes and the cellular asymmetry machinery in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2015; 112:E287-96. [PMID: 25561544 DOI: 10.1073/pnas.1422852112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transitions between asymmetric (self-renewing) and symmetric (proliferative) cell divisions are robustly regulated in the context of normal development and tissue homeostasis. To genetically assess the regulation of these transitions, we used the postembryonic epithelial stem (seam) cell lineages of Caenorhabditis elegans. In these lineages, the timing of these transitions is regulated by the evolutionarily conserved heterochronic pathway, whereas cell division asymmetry is conferred by a pathway consisting of Wnt (Wingless) pathway components, including posterior pharynx defect (POP-1)/TCF, APC related/adenomatosis polyposis coli (APR-1)/APC, and LIT-1/NLK (loss of intestine/Nemo-like kinase). Here we explore the genetic regulatory mechanisms underlying stage-specific transitions between self-renewing and proliferative behavior in the seam cell lineages. We show that mutations of genes in the heterochronic developmental timing pathway, including lin-14 (lineage defect), lin-28, lin-46, and the lin-4 and let-7 (lethal defects)-family microRNAs, affect the activity of LIT-1/POP-1 cellular asymmetry machinery and APR-1 polarity during larval development. Surprisingly, heterochronic mutations that enhance LIT-1 activity in seam cells can simultaneously also enhance the opposing, POP-1 activity, suggesting a role in modulating the potency of the cellular polarizing activity of the LIT-1/POP-1 system as development proceeds. These findings illuminate how the evolutionarily conserved cellular asymmetry machinery can be coupled to microRNA-regulated developmental pathways for robust regulation of stem cell maintenance and proliferation during the course of development. Such genetic interactions between developmental timing regulators and cell polarity regulators could underlie transitions between asymmetric and symmetric stem cell fates in other systems and could be deregulated in the context of developmental disorders and cancer.
Collapse
|
39
|
Gorrepati L, Eisenmann DM. The C. elegans embryonic fate specification factor EGL-18 (GATA) is reutilized downstream of Wnt signaling to maintain a population of larval progenitor cells. WORM 2015; 4:e996419. [PMID: 26430560 PMCID: PMC4588385 DOI: 10.1080/23723556.2014.996419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 11/20/2014] [Accepted: 12/04/2014] [Indexed: 10/23/2022]
Abstract
In metazoans, stem cells in developing and adult tissues can divide asymmetrically to give rise to a daughter that differentiates and a daughter that retains the progenitor fate. Although the short-lived nematode C. elegans does not possess adult somatic stem cells, the lateral hypodermal seam cells behave in a similar manner: they divide once per larval stage to generate an anterior daughter that adopts a non-dividing differentiated fate and a posterior daughter that retains the seam fate and the ability to divide further. Wnt signaling pathway is known to regulate the asymmetry of these divisions and maintain the progenitor cell fate in one daughter, but how activation of the Wnt pathway accomplished this was unknown. We describe here our recent work that identified the GATA transcription factor EGL-18 as a downstream target of Wnt signaling necessary for maintenance of a progenitor population of larval seam cells. EGL-18 was previously shown to act in the initial specification of the seam cells in the embryo. Thus the acquisition of a Wnt-responsive cis-regulatory module allows an embryonic fate specification factor to be reutilized later in life downstream of a different regulator (Wnt signaling) to maintain a progenitor cell population. These results support the use of seam cell development in C. elegans as a simple model system for studying stem and progenitor cell biology.
Collapse
Affiliation(s)
- Lakshmi Gorrepati
- Carnegie Institution for Science; Department of Embryology; Baltimore, MD USA
| | - David M Eisenmann
- Department of Biological Sciences; University of Maryland Baltimore County; Baltimore, MD USA
| |
Collapse
|
40
|
Hughes S, Wilkinson H, Gilbert SPR, Kishida M, Ding SS, Woollard A. The C. elegans TPR Containing Protein, TRD-1, Regulates Cell Fate Choice in the Developing Germ Line and Epidermis. PLoS One 2014; 9:e114998. [PMID: 25493563 PMCID: PMC4262444 DOI: 10.1371/journal.pone.0114998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/17/2014] [Indexed: 02/07/2023] Open
Abstract
Correct cell fate choice is crucial in development. In post-embryonic development of the hermaphroditic Caenorhabitis elegans, distinct cell fates must be adopted in two diverse tissues. In the germline, stem cells adopt one of three possible fates: mitotic cell cycle, or gamete formation via meiosis, producing either sperm or oocytes. In the epidermis, the stem cell-like seam cells divide asymmetrically, with the daughters taking on either a proliferative (seam) or differentiated (hypodermal or neuronal) fate. We have isolated a novel conserved C. elegans tetratricopeptide repeat containing protein, TRD-1, which is essential for cell fate determination in both the germline and the developing epidermis and has homologs in other species, including humans (TTC27). We show that trd-1(RNAi) and mutant animals have fewer seam cells as a result of inappropriate differentiation towards the hypodermal fate. In the germline, trd-1 RNAi results in a strong masculinization phenotype, as well as defects in the mitosis to meiosis switch. Our data suggests that trd-1 acts downstream of tra-2 but upstream of fem-3 in the germline sex determination pathway, and exhibits a constellation of phenotypes in common with other Mog (masculinization of germline) mutants. Thus, trd-1 is a new player in both the somatic and germline cell fate determination machinery, suggestive of a novel molecular connection between the development of these two diverse tissues.
Collapse
Affiliation(s)
- Samantha Hughes
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Henry Wilkinson
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Marcia Kishida
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Siyu Serena Ding
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Alison Woollard
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
41
|
Liu WJ, Reece-Hoyes JS, Walhout AJM, Eisenmann DM. Multiple transcription factors directly regulate Hox gene lin-39 expression in ventral hypodermal cells of the C. elegans embryo and larva, including the hypodermal fate regulators LIN-26 and ELT-6. BMC DEVELOPMENTAL BIOLOGY 2014; 14:17. [PMID: 24885717 PMCID: PMC4051164 DOI: 10.1186/1471-213x-14-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 02/27/2014] [Indexed: 01/05/2023]
Abstract
Background Hox genes encode master regulators of regional fate specification during early metazoan development. Much is known about the initiation and regulation of Hox gene expression in Drosophila and vertebrates, but less is known in the non-arthropod invertebrate model system, C. elegans. The C. elegans Hox gene lin-39 is required for correct fate specification in the midbody region, including the Vulval Precursor Cells (VPCs). To better understand lin-39 regulation and function, we aimed to identify transcription factors necessary for lin-39 expression in the VPCs, and in particular sought factors that initiate lin-39 expression in the embryo. Results We used the yeast one-hybrid (Y1H) method to screen for factors that bound to 13 fragments from the lin-39 region: twelve fragments contained sequences conserved between C. elegans and two other nematode species, while one fragment was known to drive reporter gene expression in the early embryo in cells that generate the VPCs. Sixteen transcription factors that bind to eight lin-39 genomic fragments were identified in yeast, and we characterized several factors by verifying their physical interactions in vitro, and showing that reduction of their function leads to alterations in lin-39 levels and lin-39::GFP reporter expression in vivo. Three factors, the orphan nuclear hormone receptor NHR-43, the hypodermal fate regulator LIN-26, and the GATA factor ELT-6 positively regulate lin-39 expression in the embryonic precursors to the VPCs. In particular, ELT-6 interacts with an enhancer that drives GFP expression in the early embryo, and the ELT-6 site we identified is necessary for proper embryonic expression. These three factors, along with the factors ZTF-17, BED-3 and TBX-9, also positively regulate lin-39 expression in the larval VPCs. Conclusions These results significantly expand the number of factors known to directly bind and regulate lin-39 expression, identify the first factors required for lin-39 expression in the embryo, and hint at a positive feedback mechanism involving GATA factors that maintains lin-39 expression in the vulval lineage. This work indicates that, as in other organisms, the regulation of Hox gene expression in C. elegans is complicated, redundant and robust.
Collapse
Affiliation(s)
| | | | | | - David M Eisenmann
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore 21250, USA.
| |
Collapse
|
42
|
Chu YD, Wang WC, Chen SAA, Hsu YT, Yeh MW, Slack FJ, Chan SP. RACK-1 regulates let-7 microRNA expression and terminal cell differentiation in Caenorhabditis elegans. Cell Cycle 2014; 13:1995-2009. [PMID: 24776851 PMCID: PMC4111763 DOI: 10.4161/cc.29017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The let-7 microRNA (miRNA) regulates cell cycle exit and terminal differentiation in the C. elegans heterochronic gene pathway. Low expression of let-7 results in retarded vulva and hypodermal cell development in C. elegans and has been associated with several human cancers. Previously, the versatile scaffold protein receptor for activated C kinase 1 (RACK1) was proposed to facilitate recruitment of the miRNA-induced silencing complex (miRISC) to the polysome and to be required for miRNA function in C. elegans and humans. Here, we show that depletion of C. elegans RACK-1 by RNAi increases let-7 miRNA levels and suppresses the retarded terminal differentiation of lateral hypodermal seam cells in mutants carrying the hypomorphic let-7(n2853) allele or lacking the let-7 family miRNA genes mir-48 and mir-241. Depletion of RACK-1 also increases the levels of precursor let-7 miRNA. When Dicer is knocked down and pre-miRNA processing is inhibited, depletion of RACK-1 still leads to increased levels of pre-let-7, suggesting that RACK-1 affects a biogenesis mechanism upstream of Dicer. No changes in the activity of the let-7 promoter or the levels of primary let-7 miRNA are associated with depletion of RACK-1, suggesting that RACK-1 affects let-7 miRNA biogenesis at the post-transcriptional level. Interestingly, rack-1 knockdown also increases the levels of a few other precursor miRNAs. Our results reveal that RACK-1 controls the biogenesis of a subset of miRNAs, including let-7, and in this way plays a role in the heterochronic gene pathway during C. elegans development.
Collapse
Affiliation(s)
- Yu-De Chu
- Graduate Institute of Microbiology; College of Medicine; National Taiwan University; Taipei, Taiwan
| | - Wei-Chieh Wang
- Graduate Institute of Microbiology; College of Medicine; National Taiwan University; Taipei, Taiwan
| | - Shi-An A Chen
- Graduate Institute of Microbiology; College of Medicine; National Taiwan University; Taipei, Taiwan; Genome and Systems Biology Degree Program; College of Life Science; National Taiwan University; Taipei, Taiwan
| | - Yen-Ting Hsu
- Graduate Institute of Microbiology; College of Medicine; National Taiwan University; Taipei, Taiwan
| | - Meng-Wei Yeh
- Graduate Institute of Microbiology; College of Medicine; National Taiwan University; Taipei, Taiwan
| | - Frank J Slack
- Department of Molecular, Cellular, and Developmental Biology; Yale University; New Haven, CT USA
| | - Shih-Peng Chan
- Graduate Institute of Microbiology; College of Medicine; National Taiwan University; Taipei, Taiwan; Genome and Systems Biology Degree Program; College of Life Science; National Taiwan University; Taipei, Taiwan; Department of Molecular, Cellular, and Developmental Biology; Yale University; New Haven, CT USA
| |
Collapse
|
43
|
Monsalve GC, Frand AR. Toward a unified model of developmental timing: A "molting" approach. WORM 2013; 1:221-30. [PMID: 24058853 PMCID: PMC3670223 DOI: 10.4161/worm.20874] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 05/24/2012] [Indexed: 02/06/2023]
Abstract
Animal development requires temporal coordination between recurrent processes and sequential events, but the underlying timing mechanisms are not yet understood. The molting cycle of C. elegans provides an ideal system to study this basic problem. We recently characterized LIN-42, which is related to the circadian clock protein PERIOD, as a key component of the developmental timer underlying rhythmic molting cycles. In this context, LIN-42 coordinates epithelial stem cell dynamics with progression of the molting cycle. Repeated actions of LIN-42 may enable the reprogramming of seam cell temporal fates, while stage-specific actions of LIN-42 and other heterochronic genes select fates appropriate for upcoming, rather than passing, life stages. Here, we discuss the possible configuration of the molting timer, which may include interconnected positive and negative regulatory loops among lin-42, conserved nuclear hormone receptors such as NHR-23 and -25, and the let-7 family of microRNAs. Physiological and environmental conditions may modulate the activities of particular components of this molting timer. Finding that LIN-42 regulates both a sleep-like behavioral state and epidermal stem cell dynamics further supports the model of functional conservation between LIN-42 and mammalian PERIOD proteins. The molting timer may therefore represent a primitive form of a central biological clock and provide a general paradigm for the integration of rhythmic and developmental processes.
Collapse
Affiliation(s)
- Gabriela C Monsalve
- Department of Biological Chemistry; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| | | |
Collapse
|
44
|
Hughes S, Brabin C, Appleford PJ, Woollard A. CEH-20/Pbx and UNC-62/Meis function upstream of rnt-1/Runx to regulate asymmetric divisions of the C. elegans stem-like seam cells. Biol Open 2013; 2:718-27. [PMID: 23862020 PMCID: PMC3711040 DOI: 10.1242/bio.20134549] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/14/2013] [Indexed: 12/16/2022] Open
Abstract
Caenorhabditis elegans seam cells divide in the stem-like mode throughout larval development, with the ability to both self-renew and produce daughters that differentiate. Seam cells typically divide asymmetrically, giving rise to an anterior daughter that fuses with the hypodermis and a posterior daughter that proliferates further. Previously we have identified rnt-1 (a homologue of the mammalian cancer-associated stem cell regulator Runx) as being an important regulator of seam development, acting to promote proliferation; rnt-1 mutants have fewer seam cells whereas overexpressing rnt-1 causes seam cell hyperplasia. We isolated the interacting CEH-20/Pbx and UNC-62/Meis TALE-class transcription factors during a genome-wide RNAi screen for novel regulators of seam cell number. Animals lacking wild type CEH-20 or UNC-62 display seam cell hyperplasia, largely restricted to the anterior of the worm, whereas double mutants have many additional seam cells along the length of the animal. The cellular basis of the hyperplasia involves the symmetrisation of normally asymmetric seam cell divisions towards the proliferative stem-like fate. The hyperplasia is completely suppressed in rnt-1 mutants, and rnt-1 is upregulated in ceh-20 and unc-62 mutants, suggesting that CEH-20 and UNC-62 function upstream of rnt-1 to limit proliferative potential to the appropriate daughter cell. In further support of this we find that CEH-20 is asymmetrically localised in seam daughters following an asymmetric division, being predominantly restricted to anterior nuclei whose fate is to differentiate. Thus, ceh-20 and unc-62 encode crucial regulators of seam cell division asymmetry, acting via rnt-1 to regulate the balance between proliferation and differentiation.
Collapse
Affiliation(s)
- Samantha Hughes
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU , UK
| | | | | | | |
Collapse
|
45
|
Gorrepati L, Thompson KW, Eisenmann DM. C. elegans GATA factors EGL-18 and ELT-6 function downstream of Wnt signaling to maintain the progenitor fate during larval asymmetric divisions of the seam cells. Development 2013; 140:2093-102. [PMID: 23633508 PMCID: PMC3640217 DOI: 10.1242/dev.091124] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2013] [Indexed: 11/20/2022]
Abstract
The C. elegans seam cells are lateral epithelial cells arrayed in a single line from anterior to posterior that divide in an asymmetric, stem cell-like manner during larval development. These asymmetric divisions are regulated by Wnt signaling; in most divisions, the posterior daughter in which the Wnt pathway is activated maintains the progenitor seam fate, while the anterior daughter in which the Wnt pathway is not activated adopts a differentiated hypodermal fate. Using mRNA tagging and microarray analysis, we identified the functionally redundant GATA factor genes egl-18 and elt-6 as Wnt pathway targets in the larval seam cells. EGL-18 and ELT-6 have previously been shown to be required for initial seam cell specification in the embryo. We show that in larval seam cell asymmetric divisions, EGL-18 is expressed strongly in the posterior seam-fated daughter. egl-18 and elt-6 are necessary for larval seam cell specification, and for hypodermal to seam cell fate transformations induced by ectopic Wnt pathway overactivation. The TCF homolog POP-1 binds a site in the egl-18 promoter in vitro, and this site is necessary for robust seam cell expression in vivo. Finally, larval overexpression of EGL-18 is sufficient to drive expression of a seam marker in other hypodermal cells in wild-type animals, and in anterior hypodermal-fated daughters in a Wnt pathway-sensitized background. These data suggest that two GATA factors that are required for seam cell specification in the embryo independently of Wnt signaling are reused downstream of Wnt signaling to maintain the progenitor fate during stem cell-like divisions in larval development.
Collapse
Affiliation(s)
| | | | - David M. Eisenmann
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
46
|
Van Nostrand EL, Sánchez-Blanco A, Wu B, Nguyen A, Kim SK. Roles of the developmental regulator unc-62/Homothorax in limiting longevity in Caenorhabditis elegans. PLoS Genet 2013; 9:e1003325. [PMID: 23468654 PMCID: PMC3585033 DOI: 10.1371/journal.pgen.1003325] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 01/03/2013] [Indexed: 12/24/2022] Open
Abstract
The normal aging process is associated with stereotyped changes in gene expression, but the regulators responsible for these age-dependent changes are poorly understood. Using a novel genomics approach, we identified HOX co-factor unc-62 (Homothorax) as a developmental regulator that binds proximal to age-regulated genes and modulates lifespan. Although unc-62 is expressed in diverse tissues, its functions in the intestine play a particularly important role in modulating lifespan, as intestine-specific knockdown of unc-62 by RNAi increases lifespan. An alternatively-spliced, tissue-specific isoform of unc-62 is expressed exclusively in the intestine and declines with age. Through analysis of the downstream consequences of unc-62 knockdown, we identify multiple effects linked to aging. First, unc-62 RNAi decreases the expression of yolk proteins (vitellogenins) that aggregate in the body cavity in old age. Second, unc-62 RNAi results in a broad increase in expression of intestinal genes that typically decrease expression with age, suggesting that unc-62 activity balances intestinal resource allocation between yolk protein expression and fertility on the one hand and somatic functions on the other. Finally, in old age, the intestine shows increased expression of several aberrant genes; these UNC-62 targets are expressed predominantly in neuronal cells in developing animals, but surprisingly show increased expression in the intestine of old animals. Intestinal expression of some of these genes during aging is detrimental for longevity; notably, increased expression of insulin ins-7 limits lifespan by repressing activity of insulin pathway response factor DAF-16/FOXO in aged animals. These results illustrate how unc-62 regulation of intestinal gene expression is responsible for limiting lifespan during the normal aging process.
Collapse
Affiliation(s)
- Eric L. Van Nostrand
- Department of Genetics, Stanford University Medical Center, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| | - Adolfo Sánchez-Blanco
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| | - Beijing Wu
- Department of Genetics, Stanford University Medical Center, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| | - Andy Nguyen
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| | - Stuart K. Kim
- Department of Genetics, Stanford University Medical Center, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| |
Collapse
|
47
|
Chisholm AD, Hsiao TI. The Caenorhabditis elegans epidermis as a model skin. I: development, patterning, and growth. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:861-78. [PMID: 23539299 DOI: 10.1002/wdev.79] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The skin of the nematode Caenorhabditis elegans is composed of a simple epidermal epithelium and overlying cuticle. The skin encloses the animal and plays central roles in body morphology and physiology; its simplicity and accessibility make it a tractable genetic model for several aspects of skin biology. Epidermal precursors are specified by a hierarchy of transcriptional regulators. Epidermal cells form on the dorsal surface of the embryo and differentiate to form the epidermal primordium, which then spreads out in a process of epiboly to enclose internal tissues. Subsequent elongation of the embryo into a vermiform larva is driven by cell shape changes and cell fusions in the epidermis. Most epidermal cells fuse in mid-embryogenesis to form a small number of multinucleate syncytia. During mid-embryogenesis the epidermis also becomes intimately associated with underlying muscles, performing a tendon-like role in transmitting muscle force. Post-embryonic development of the epidermis involves growth by addition of new cells to the syncytia from stem cell-like epidermal seam cells and by an increase in cell size driven by endoreplication of the chromosomes in epidermal nuclei.
Collapse
Affiliation(s)
- Andrew D Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
48
|
Kumsta C, Hansen M. C. elegans rrf-1 mutations maintain RNAi efficiency in the soma in addition to the germline. PLoS One 2012; 7:e35428. [PMID: 22574120 PMCID: PMC3344830 DOI: 10.1371/journal.pone.0035428] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/16/2012] [Indexed: 12/01/2022] Open
Abstract
Gene inactivation through RNA interference (RNAi) has proven to be a valuable tool for studying gene function in C. elegans. When combined with tissue-specific gene inactivation methods, RNAi has the potential to shed light on the function of a gene in distinct tissues. In this study we characterized C. elegans rrf-1 mutants to determine their ability to process RNAi in various tissues. These mutants have been widely used in RNAi studies to assess the function of genes specifically in the C. elegans germline. Upon closer analysis, we found that two rrf-1 mutants carrying different loss-of-function alleles were capable of processing RNAi targeting several somatically expressed genes. Specifically, we observed that the intestine was able to process RNAi triggers efficiently, whereas cells in the hypodermis showed partial susceptibility to RNAi in rrf-1 mutants. Other somatic tissues in rrf-1 mutants, such as the muscles and the somatic gonad, appeared resistant to RNAi. In addition to these observations, we found that the rrf-1(pk1417) mutation induced the expression of several transgenic arrays, including the FOXO transcription factor DAF-16. Unexpectedly, rrf-1(pk1417) mutants showed increased endogenous expression of the DAF-16 target gene sod-3; however, the lifespan and thermo-tolerance of rrf-1(pk1417) mutants were similar to those of wild-type animals. In sum, these data show that rrf-1 mutants display several phenotypes not previously appreciated, including broader tissue-specific RNAi-processing capabilities, and our results underscore the need for careful characterization of tissue-specific RNAi tools.
Collapse
Affiliation(s)
- Caroline Kumsta
- Program of Development and Aging, Sanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, La Jolla, California, United States of America
| | - Malene Hansen
- Program of Development and Aging, Sanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Abdus-Saboor I, Stone CE, Murray JI, Sundaram MV. The Nkx5/HMX homeodomain protein MLS-2 is required for proper tube cell shape in the C. elegans excretory system. Dev Biol 2012; 366:298-307. [PMID: 22537498 DOI: 10.1016/j.ydbio.2012.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/26/2012] [Accepted: 03/28/2012] [Indexed: 01/20/2023]
Abstract
Cells perform wide varieties of functions that are facilitated, in part, by adopting unique shapes. Many of the genes and pathways that promote cell fate specification have been elucidated. However, relatively few transcription factors have been identified that promote shape acquisition after fate specification. Here we show that the Nkx5/HMX homeodomain protein MLS-2 is required for cellular elongation and shape maintenance of two tubular epithelial cells in the C. elegans excretory system, the duct and pore cells. The Nkx5/HMX family is highly conserved from sea urchins to humans, with known roles in neuronal and glial development. MLS-2 is expressed in the duct and pore, and defects in mls-2 mutants first arise when the duct and pore normally adopt unique shapes. MLS-2 cooperates with the EGF-Ras-ERK pathway to turn on the LIN-48/Ovo transcription factor in the duct cell during morphogenesis. These results reveal a novel interaction between the Nkx5/HMX family and the EGF-Ras pathway and implicate a transcription factor, MLS-2, as a regulator of cell shape.
Collapse
Affiliation(s)
- Ishmail Abdus-Saboor
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
50
|
Vadla B, Kemper K, Alaimo J, Heine C, Moss EG. lin-28 controls the succession of cell fate choices via two distinct activities. PLoS Genet 2012; 8:e1002588. [PMID: 22457637 PMCID: PMC3310729 DOI: 10.1371/journal.pgen.1002588] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 01/25/2012] [Indexed: 12/29/2022] Open
Abstract
lin-28 is a conserved regulator of cell fate succession in animals. In Caenorhabditis elegans, it is a component of the heterochronic gene pathway that governs larval developmental timing, while its vertebrate homologs promote pluripotency and control differentiation in diverse tissues. The RNA binding protein encoded by lin-28 can directly inhibit let-7 microRNA processing by a novel mechanism that is conserved from worms to humans. We found that C. elegans LIN-28 protein can interact with four distinct let-7 family pre-microRNAs, but in vivo inhibits the premature accumulation of only let-7. Surprisingly, however, lin-28 does not require let-7 or its relatives for its characteristic promotion of second larval stage cell fates. In other words, we find that the premature accumulation of mature let-7 does not account for lin-28's precocious phenotype. To explain let-7's role in lin-28 activity, we provide evidence that lin-28 acts in two steps: first, the let-7-independent positive regulation of hbl-1 through its 3'UTR to control L2 stage-specific cell fates; and second, a let-7-dependent step that controls subsequent fates via repression of lin-41. Our evidence also indicates that let-7 functions one stage earlier in C. elegans development than previously thought. Importantly, lin-28's two-step mechanism resembles that of the heterochronic gene lin-14, and the overlap of their activities suggests a clockwork mechanism for developmental timing. Furthermore, this model explains the previous observation that mammalian Lin28 has two genetically separable activities. Thus, lin-28's two-step mechanism may be an essential feature of its evolutionarily conserved role in cell fate succession.
Collapse
Affiliation(s)
- Bhaskar Vadla
- Department of Molecular Biology, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey, United States of America
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey, United States of America
| | - Kevin Kemper
- Department of Molecular Biology, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey, United States of America
| | - Jennifer Alaimo
- Department of Molecular Biology, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey, United States of America
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey, United States of America
| | - Christian Heine
- Department of Molecular Biology, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey, United States of America
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey, United States of America
| | - Eric G. Moss
- Department of Molecular Biology, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey, United States of America
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey, United States of America
- * E-mail:
| |
Collapse
|