1
|
Zheng Z, Su Z, Zhang W. Melatonin's Role in Hair Follicle Growth and Development: A Cashmere Goat Perspective. Int J Mol Sci 2025; 26:2844. [PMID: 40243438 PMCID: PMC11988770 DOI: 10.3390/ijms26072844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Hair follicles, unique skin appendages, undergo cyclic phases (anagen, catagen, telogen) governed by melatonin and associated molecular pathways. Melatonin, synthesized in the pineal gland, skin, and gut, orchestrates these cycles through antioxidant activity and signaling cascades (e.g., Wnt, BMP). This review examines melatonin's biosynthesis across tissues, its regulation of cashmere growth patterns, and its interplay with non-coding RNAs and the gut-skin axis. Recent advances highlight melatonin's dual role in enhancing antioxidant capacity (via Keap1-Nrf2) and modulating gene expression (e.g., Wnt10b, CTNNB1) to promote hair follicle proliferation. By integrating multi-omics insights, we construct a molecular network of melatonin's regulatory mechanisms, offering strategies to improve cashmere yield and quality while advancing therapies for human alopecia.
Collapse
Affiliation(s)
| | | | - Wei Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.Z.); (Z.S.)
| |
Collapse
|
2
|
Lainšček D, Forstnerič V, Miroševič Š. CTNNB1 syndrome mouse models. Mamm Genome 2025:10.1007/s00335-025-10105-3. [PMID: 39833474 DOI: 10.1007/s00335-025-10105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
CTNNB1 syndrome is a rare neurodevelopmental disorder, affecting children worldwide with a prevalence of 2.6-3.2 per 100,000 births and often misdiagnosed as cerebral palsy. De novo loss-of-function mutations in the Ctnnb1 gene result in dysfunction of the β-catenin protein, disrupting the canonical Wnt signaling pathway, which plays a key role in cell proliferation, differentiation, and tissue homeostasis. Additionally, these mutations impair the formation of cell junctions, adversely affecting tissue architecture. Motor and speech deficits, cognitive impairment, cardiovascular and visual problems are just some of the key symptoms that occur in CTNNB1 syndrome patients. There is currently no effective treatment option available for patients with CTNNB1 syndrome, with support largely focused on the management of symptoms and physiotherapy, yet recently some therapeutic approaches are being developed. Animal testing is still crucial in the process of new drug development, and mouse models are particularly important. These models provide researchers with new understanding of the disease mechanisms and are invaluable for testing the efficacy and safety of potential treatments. The development of various mouse models with β-catenin loss- and gain-of-function mutations successfully replicates key features of intellectual disability, autism-like behaviors, motor deficits, and more. These models provide a valuable platform for studying disease mechanisms and offer a powerful tool for testing the therapeutic potential and effectiveness of new drug candidates, paving the way for future clinical trials.
Collapse
Affiliation(s)
- Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, 1000, Slovenia.
- Centre for Technologies of Gene and Cell Therapy, Ljubljana, 1000, Slovenia.
- EN-FIST Centre of Excellence, Ljubljana, 1000, Slovenia.
| | - Vida Forstnerič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, 1000, Slovenia.
| | - Špela Miroševič
- The Gene Therapy Research Institute, CTNNB1 Foundation, Ljubljana, 1000, Slovenia.
- Department of Family Medicine, Faculty of Medicine Ljubljana, University of Ljubljana, Ljubljana, 1000, Slovenia.
| |
Collapse
|
3
|
Gavazzi LM, Nair M, Suydam R, Usip S, Thewissen JGM, Cooper LN. Protein signaling and morphological development of the tail fluke in the embryonic beluga whale (Delphinapterus leucas). Dev Dyn 2024; 253:859-874. [PMID: 38494595 PMCID: PMC11656686 DOI: 10.1002/dvdy.704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND During the land-to-sea transition of cetaceans (whales, dolphins, and porpoises), the hindlimbs were lost and replaced by an elaborate tail fluke that evolved 32 Ma. All modern cetaceans utilize flukes for lift-based propulsion, and nothing is known of this organ's molecular origins during embryonic development. This study utilizes immunohistochemistry to identify the spatiotemporal location of protein signals known to drive appendage outgrowth in other vertebrates (e.g., Sonic Hedgehog [SHH], GREMLIN [GREM], wingless-type family member 7a [WNT], and fibroblast growth factors [FGFs]) and to test the hypothesis that signals associated with outgrowth and patterning of the tail fluke are similar to a tetrapod limb. Specifically, this study utilizes an embryo of a beluga whale (Delphinapterus leucas) as a case study. RESULTS Results showed epidermal signals of WNT and FGFs, and mesenchymal/epidermal signals of SHH and GREM. These patterns are most consistent with vertebrate limb development. Overall, these data are most consistent with the hypothesis that outgrowth of tail flukes in cetaceans employs a signaling pattern that suggests genes essential for limb outgrowth and patterning shape this evolutionarily novel appendage. CONCLUSIONS While these data add insights into the molecular signals potentially driving the evolution and development of tail flukes in cetaceans, further exploration of the molecular drivers of fluke development is required.
Collapse
Affiliation(s)
- L. M. Gavazzi
- School of Biomedical SciencesKent State UniversityKentOhioUSA
- Musculoskeletal Research Focus Area, Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - M. Nair
- Wright State UniversityDaytonOhioUSA
| | - R. Suydam
- Department of Wildlife ManagementNorth Slope BoroughUtqiaġvikAlaskaUSA
| | - S. Usip
- Musculoskeletal Research Focus Area, Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - J. G. M. Thewissen
- Musculoskeletal Research Focus Area, Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - L. N. Cooper
- Musculoskeletal Research Focus Area, Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
| |
Collapse
|
4
|
H’ng CH, Khaladkar A, Rosello-Diez A. Look who's TORking: mTOR-mediated integration of cell status and external signals during limb development and endochondral bone growth. Front Cell Dev Biol 2023; 11:1153473. [PMID: 37152288 PMCID: PMC10154674 DOI: 10.3389/fcell.2023.1153473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
The balance of cell proliferation and size is key for the control of organ development and repair. Moreover, this balance has to be coordinated within tissues and between tissues to achieve robustness in the organ's pattern and size. The tetrapod limb has been used to study these topics during development and repair, and several conserved pathways have emerged. Among them, mechanistic target of rapamycin (mTOR) signaling, despite being active in several cell types and developmental stages, is one of the least understood in limb development, perhaps because of its multiple potential roles and interactions with other pathways. In the body of this review, we have collated and integrated what is known about the role of mTOR signaling in three aspects of tetrapod limb development: 1) limb outgrowth; 2) chondrocyte differentiation after mesenchymal condensation and 3) endochondral ossification-driven longitudinal bone growth. We conclude that, given its ability to interact with the most common signaling pathways, its presence in multiple cell types, and its ability to influence cell proliferation, size and differentiation, the mTOR pathway is a critical integrator of external stimuli and internal status, coordinating developmental transitions as complex as those taking place during limb development. This suggests that the study of the signaling pathways and transcription factors involved in limb patterning, morphogenesis and growth could benefit from probing the interaction of these pathways with mTOR components.
Collapse
Affiliation(s)
- Chee Ho H’ng
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Ashwini Khaladkar
- Department of Biochemistry, Central University of Hyderabad, Hyderabad, India
| | - Alberto Rosello-Diez
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Alberto Rosello-Diez, ,
| |
Collapse
|
5
|
Hudson DT, Bromell JS, Day RC, McInnes T, Ward JM, Beck CW. Gene expression analysis of the Xenopus laevis early limb bud proximodistal axis. Dev Dyn 2022; 251:1880-1896. [PMID: 35809036 PMCID: PMC9796579 DOI: 10.1002/dvdy.517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Limb buds develop as bilateral outgrowths of the lateral plate mesoderm and are patterned along three axes. Current models of proximal to distal patterning of early amniote limb buds suggest that two signals, a distal organizing signal from the apical epithelial ridge (AER, Fgfs) and an opposing proximal (retinoic acid [RA]) act early on pattern this axis. RESULTS Transcriptional analysis of stage 51 Xenopus laevis hindlimb buds sectioned along the proximal-distal axis showed that the distal region is distinct from the rest of the limb. Expression of capn8.3, a novel calpain, was located in cells immediately flanking the AER. The Wnt antagonist Dkk1 was AER-specific in Xenopus limbs. Two transcription factors, sall1 and zic5, were expressed in distal mesenchyme. Zic5 has no described association with limb development. We also describe expression of two proximal genes, gata5 and tnn, not previously associated with limb development. Differentially expressed genes were associated with Fgf, Wnt, and RA signaling as well as differential cell adhesion and proliferation. CONCLUSIONS We identify new candidate genes for early proximodistal limb patterning. Our analysis of RA-regulated genes supports a role for transient RA gradients in early limb bud in proximal-to-distal patterning in this anamniote model organism.
Collapse
Affiliation(s)
- Daniel T. Hudson
- Department of ZoologyUniversity of OtagoDunedinNew Zealand,Oritain GlobalDunedinNew Zealand
| | - Jessica S. Bromell
- Department of ZoologyUniversity of OtagoDunedinNew Zealand,Dairy Goat Co‐operativeHamiltonNew Zealand
| | - Robert C. Day
- Department of BiochemistryUniversity of OtagoDunedinNew Zealand
| | - Tyler McInnes
- Department of ZoologyUniversity of OtagoDunedinNew Zealand
| | - Joanna M. Ward
- Department of ZoologyUniversity of OtagoDunedinNew Zealand
| | | |
Collapse
|
6
|
Anderson EB, Mao Q, Ho RK. Tbx5a and Tbx5b paralogues act in combination to control separate vectors of migration in the fin field of zebrafish. Dev Biol 2022; 481:201-214. [PMID: 34756968 PMCID: PMC8665139 DOI: 10.1016/j.ydbio.2021.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 01/03/2023]
Abstract
The T-box containing family member, TBX5, has been shown to play important functional roles in the pectoral appendages of a variety of vertebrate species. While a single TBX5 gene exists in all tetrapods studied to date, the zebrafish genome retains two paralogues, designated as tbx5a and tbx5b, resulting from a whole genome duplication in the teleost lineage. Zebrafish deficient in tbx5a lack pectoral fin buds, whereas zebrafish deficient in tbx5b exhibit misshapen pectoral fins, showing that both paralogues function in fin development. The mesenchymal cells of the limb/fin bud are derived from the Lateral Plate Mesoderm (LPM). Previous fate mapping work in zebrafish has shown that wildtype (wt) fin field cells are initially located adjacent to somites (s)1-4. The wt fin field cells migrate in opposing diagonal directions placing the limb bud between s2-3 and lateral to the main body. To better characterize tbx5 paralogue functions in zebrafish, time-lapse analyses of the migrations of fin bud precursors under conditions of tbx5a knock-down, tbx5b knock-down and double-knock-down were performed. Our data suggest that zebrafish tbx5a and tbx5b have functionally separated migration direction vectors, that when combined recapitulate the migration of the wt fin field. We and others have shown that loss of Tbx5a function abolishes an fgf24 signaling cue resulting in fin field cells failing to converge in an Antero-Posterior (AP) direction and migrating only in a mediolateral (ML) direction. We show here that loss of Tbx5b function affects initial ML directed movements so that fin field cells fail to migrate laterally but continue to converge along the AP axis. Furthermore, fin field cells in the double Tbx5a/Tbx5b knock-down zebrafish do not engage in directed migrations along either the ML or AP axis. Therefore, these two paralogues may be acting to instruct separate vectors of fin field migration in order to direct proper fin bud formation.
Collapse
Affiliation(s)
- Erin Boyle Anderson
- Committee on Development, Regeneration and Stem Cell Biology; University of Chicago, Chicago, IL
| | - Qiyan Mao
- Committee on Development, Regeneration and Stem Cell Biology; University of Chicago, Chicago, IL,present address: Universite de Aix-Marseille; Marseille, France
| | - Robert K. Ho
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
| |
Collapse
|
7
|
Aberle T, Piefke S, Hillgärtner S, Tamm ER, Wegner M, Küspert M. OUP accepted manuscript. Nucleic Acids Res 2022; 50:1951-1968. [PMID: 35137157 PMCID: PMC8887482 DOI: 10.1093/nar/gkac042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/21/2021] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
In oligodendrocytes of the vertebrate central nervous system a complex network of transcriptional regulators is required to ensure correct and timely myelination of neuronal axons. Here we identify Zfp276, the only mammalian ZAD-domain containing zinc finger protein, as a transcriptional regulator of oligodendrocyte differentiation and central myelination downstream of Sox10. In the central nervous system, Zfp276 is exclusively expressed in mature oligodendrocytes. Oligodendroglial deletion of Zfp276 led to strongly reduced expression of myelin genes in the early postnatal mouse spinal cord. Retroviral overexpression of Zfp276 in cultured oligodendrocyte precursor cells induced precocious expression of maturation markers and myelin genes, further supporting its role in oligodendroglial differentiation. On the molecular level, Zfp276 directly binds to and represses Sox10-dependent gene regulatory regions of immaturity factors and functionally interacts with the transcriptional repressor Zeb2 to enable fast transition of oligodendrocytes to the myelinating stage.
Collapse
Affiliation(s)
- Tim Aberle
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Sandra Piefke
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Simone Hillgärtner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Ernst R Tamm
- Institut für Humananatomie und Embryologie, Universität Regensburg, D-93053, Regensburg, Germany
| | - Michael Wegner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Melanie Küspert
- To whom correspondence should be addressed. Tel: +49 9131 85 24638; Fax: +49 9131 85 22484;
| |
Collapse
|
8
|
Gamart J, Barozzi I, Laurent F, Reinhardt R, Martins LR, Oberholzer T, Visel A, Zeller R, Zuniga A. SMAD4 target genes are part of a transcriptional network that integrates the response to BMP and SHH signaling during early limb bud patterning. Development 2021; 148:273522. [PMID: 34822715 PMCID: PMC8714076 DOI: 10.1242/dev.200182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022]
Abstract
SMAD4 regulates gene expression in response to BMP and TGFβ signal transduction, and is required for diverse morphogenetic processes, but its target genes have remained largely elusive. Here, we identify the SMAD4 target genes in mouse limb buds using an epitope-tagged Smad4 allele for ChIP-seq analysis in combination with transcription profiling. This analysis shows that SMAD4 predominantly mediates BMP signal transduction during early limb bud development. Unexpectedly, the expression of cholesterol biosynthesis enzymes is precociously downregulated and intracellular cholesterol levels are reduced in Smad4-deficient limb bud mesenchymal progenitors. Most importantly, our analysis reveals a predominant function of SMAD4 in upregulating target genes in the anterior limb bud mesenchyme. Analysis of differentially expressed genes shared between Smad4- and Shh-deficient limb buds corroborates this function of SMAD4 and also reveals the repressive effect of SMAD4 on posterior genes that are upregulated in response to SHH signaling. This analysis uncovers opposing trans-regulatory inputs from SHH- and SMAD4-mediated BMP signal transduction on anterior and posterior gene expression during the digit patterning and outgrowth in early limb buds. Summary: The transcriptional targets of SMAD4 in early limb buds are identified and the largely opposing impact of BMP and SHH signaling on early digit patterning and outgrowth is revealed.
Collapse
Affiliation(s)
- Julie Gamart
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Iros Barozzi
- Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Frédéric Laurent
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Robert Reinhardt
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Laurène Ramos Martins
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Thomas Oberholzer
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Axel Visel
- Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA.,School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| |
Collapse
|
9
|
Tomizawa RR, Tabin CJ, Atsuta Y. In ovo electroporation of chicken limb bud ectoderm: Electroporation to chick limb ectoderm. Dev Dyn 2021; 251:1628-1638. [PMID: 33899315 DOI: 10.1002/dvdy.352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Deciphering how ectodermal tissues form, and how they maintain their integrity, is crucial for understanding epidermal development and pathogenesis. However, lack of simple and rapid gene manipulation techniques limits genetic studies to elucidate mechanisms underlying these events. RESULTS Here we describe an easy method for electroporation of chick limb bud ectoderm enabling gene manipulation during ectoderm development and wound healing. Taking advantage of a small parafilm well that constrains DNA plasmids locally and the fact that the limb ectoderm arises from a defined site, we target the limb ectoderm forming region by in ovo electroporation. This approach results in focal and efficient transgenesis of the limb ectodermal cells. Further, using a previously described Msx2 promoter, gene manipulation can be specifically targeted to the apical ectodermal ridge (AER), a signaling center regulating limb development. Using the electroporation technique to deliver a fluorescent marker into the embryonic limb ectoderm, we show its utility in performing time-lapse imaging during wound healing. This analysis revealed previously unrecognized dynamic remodeling of the actin cytoskeleton and lamellipodia formation at the edges of the wound. We find that the lamellipodia formation requires activity of Rac1 GTPase, suggesting its necessity for wound closure. CONCLUSION Our method is simple and easy. Thus, it would permit high throughput tests for gene function during limb ectodermal development and wound healing.
Collapse
Affiliation(s)
| | | | - Yuji Atsuta
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Lorda-Diez CI, Duarte-Olivenza C, Hurle JM, Montero JA. Transforming growth factor beta signaling: The master sculptor of fingers. Dev Dyn 2021; 251:125-136. [PMID: 33871876 DOI: 10.1002/dvdy.349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022] Open
Abstract
Transforming growth factor beta (TGFβ) constitutes a large and evolutionarily conserved superfamily of secreted factors that play essential roles in embryonic development, cancer, tissue regeneration, and human degenerative pathology. Studies of this signaling cascade in the regulation of cellular and tissue changes in the three-dimensional context of a developing embryo have notably advanced in the understanding of the action mechanism of these growth factors. In this review, we address the role of TGFβ signaling in the developing limb, focusing on its essential function in the morphogenesis of the autopod. As we discuss in this work, modern mouse genetic experiments together with more classical embryological approaches in chick embryos, provided very valuable information concerning the role of TGFβ and Activin family members in the morphogenesis of the digits of tetrapods, including the formation of phalanxes, digital tendons, and interphalangeal joints. We emphasize the importance of the Activin and TGFβ proteins as digit inducing factors and their critical interaction with the BMP signaling to sculpt the hand and foot morphology.
Collapse
Affiliation(s)
- Carlos I Lorda-Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Cristina Duarte-Olivenza
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Juan M Hurle
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Juan A Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
11
|
Thirkannad SM, Patil R. The Story of the Hand. Indian J Plast Surg 2021; 54:106-113. [PMID: 34239230 PMCID: PMC8257305 DOI: 10.1055/s-0041-1729771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
This review describes the Story of the Human Hand. It traces the functional needs that led to evolution of the human hand as well as its embryological development. The various in utero stages of formation of the human hand are covered along with a description of the various molecular and genetic factors that control this process.
Collapse
Affiliation(s)
- Sunil M. Thirkannad
- Kleinert–Kutz Hand Care Center, Christine M. Kleinert Institute for Hand and Microsurgery, Louisville, Kentucky, United States
| | - Rahul Patil
- Kleinert–Kutz Hand Care Center, Christine M. Kleinert Institute for Hand and Microsurgery, Louisville, Kentucky, United States
| |
Collapse
|
12
|
Newton AH, Smith CA. Regulation of vertebrate forelimb development and wing reduction in the flightless emu. Dev Dyn 2021; 250:1248-1263. [PMID: 33368781 DOI: 10.1002/dvdy.288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
The vertebrate limb is a dynamic structure which has evolved into many diverse forms to facilitate complex behavioral adaptations. The principle molecular and cellular processes that underlie development of the vertebrate limb are well characterized. However, how these processes are altered to drive differential limb development between vertebrates is less well understood. Several vertebrate models are being utilized to determine the developmental basis of differential limb morphogenesis, though these typically focus on later patterning of the established limb bud and may not represent the complete developmental trajectory. Particularly, heterochronic limb development can occur prior to limb outgrowth and patterning but receives little attention. This review summarizes the genetic regulation of vertebrate forelimb diversity, with particular focus on wing reduction in the flightless emu as a model for examining limb heterochrony. These studies highlight that wing reduction is complex, with heterochronic cellular and genetic events influencing the major stages of limb development. Together, these studies provide a broader picture of how different limb morphologies may be established during development.
Collapse
Affiliation(s)
- Axel H Newton
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Craig A Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
13
|
Luria V, Laufer E. The Geometry of Limb Motor Innervation is Controlled by the Dorsal-Ventral Compartment Boundary in the Chick Limbless Mutant. Neuroscience 2020; 450:29-47. [PMID: 33038447 PMCID: PMC9922539 DOI: 10.1016/j.neuroscience.2020.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/29/2022]
Abstract
Precise control of limb muscles, and ultimately of limb movement, requires accurate motor innervation. Motor innervation of the vertebrate limb is established by sequential selection of trajectories at successive decision points. Motor axons of the lateral motor column (LMC) segregate at the base of the limb into two groups that execute a choice between dorsal and ventral tissue: medial LMC axons innervate the ventral limb, whereas lateral LMC axons innervate the dorsal limb. We investigated how LMC axons are targeted to the limb using the chick mutant limbless (ll), which has a dorsal transformation of the ventral limb mesenchyme. In ll the spatial pattern of motor projections to the limb is abnormal while their targeting is normal. While extensive, the dorsal transformation of the ll ventral limb mesenchyme is incomplete whereas the generation, specification and targeting of spinal motor neurons are apparently unaffected. Thus, the dorsal-ventral motor axon segregation is an active choice that is independent of the ratio between dorsal and ventral tissue but dependent on the presence of both tissues. Therefore, the fidelity of the motor projections to the limb depends on the presence of both dorsal and ventral compartments, while the geometry of motor projections is controlled by the position of limb dorsal-ventral compartment boundary.
Collapse
Affiliation(s)
- Victor Luria
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY 10032, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Ed Laufer
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY 10032, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
14
|
Towler OW, Peck SH, Kaplan FS, Shore EM. Dysregulated BMP signaling through ACVR1 impairs digit joint development in fibrodysplasia ossificans progressiva (FOP). Dev Biol 2020; 470:136-146. [PMID: 33217406 DOI: 10.1016/j.ydbio.2020.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022]
Abstract
The development of joints in the mammalian skeleton depends on the precise regulation of multiple interacting signaling pathways including the bone morphogenetic protein (BMP) pathway, a key regulator of joint development, digit patterning, skeletal growth, and chondrogenesis. Mutations in the BMP receptor ACVR1 cause the rare genetic disease fibrodysplasia ossificans progressiva (FOP) in which extensive and progressive extra-skeletal bone forms in soft connective tissues after birth. These mutations, which enhance BMP-pSmad1/5 pathway activity to induce ectopic bone, also affect skeletal development. FOP can be diagnosed at birth by symmetric, characteristic malformations of the great toes (first digits) that are associated with decreased joint mobility, shortened digit length, and absent, fused, and/or malformed phalanges. To elucidate the role of ACVR1-mediated BMP signaling in digit skeletal development, we used an Acvr1R206H/+;Prrx1-Cre knock-in mouse model that mimics the first digit phenotype of human FOP. We have determined that the effects of increased Acvr1-mediated signaling by the Acvr1R206H mutation are not limited to the first digit but alter BMP signaling, Gdf5+ joint progenitor cell localization, and joint development in a manner that differently affects individual digits during embryogenesis. The Acvr1R206H mutation leads to delayed and disrupted joint specification and cleavage in the digits and alters the development of cartilage and endochondral ossification at sites of joint morphogenesis. These findings demonstrate an important role for ACVR1-mediated BMP signaling in the regulation of joint and skeletal formation, show a direct link between failure to restrict BMP signaling in the digit joint interzone and failure of joint cleavage at the presumptive interzone, and implicate impaired, digit-specific joint development as the proximal cause of digit malformation in FOP.
Collapse
Affiliation(s)
- O Will Towler
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, 309A Stemmler Hall, Philadelphia, PA 19104, United States; Center for Research in FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, 309A Stemmler Hall, Philadelphia, PA 19104, United States
| | - Sun H Peck
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, 309A Stemmler Hall, Philadelphia, PA 19104, United States; Center for Research in FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, 309A Stemmler Hall, Philadelphia, PA 19104, United States
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, 309A Stemmler Hall, Philadelphia, PA 19104, United States; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, Philadelphia, PA 19104, United States; Center for Research in FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, 309A Stemmler Hall, Philadelphia, PA 19104, United States
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, 309A Stemmler Hall, Philadelphia, PA 19104, United States; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Clinical Research Building, Philadelphia, PA 19104, United States; Center for Research in FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, 309A Stemmler Hall, Philadelphia, PA 19104, United States.
| |
Collapse
|
15
|
Kajioka D, Suzuki K, Nakada S, Matsushita S, Miyagawa S, Takeo T, Nakagata N, Yamada G. Bmp4 is an essential growth factor for the initiation of genital tubercle (GT) outgrowth. Congenit Anom (Kyoto) 2020; 60:15-21. [PMID: 30714224 DOI: 10.1111/cga.12326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/31/2022]
Abstract
The external genitalia are appendage organs outgrowing from the posterior body trunk. Murine genital tubercle (GT), anlage of external genitalia, initiates its outgrowth from embryonic day (E) 10.5 as a bud structure. Several growth factors such as fibroblast growth factor (FGF), Wnt and Sonic hedgehog (Shh) are essential for the GT outgrowth. However, the mechanisms of initiation of GT outgrowth are poorly understood. We previously identified bone morphogenetic protein (Bmp) signaling as a negative regulator for GT outgrowth. We show here novel aspects of Bmp4 functions for GT outgrowth. We identified the Bmp4 was already expressed in cloaca region at E9.5, before GT outgrowth. To analyze the function of Bmp4 at early stage for the initiation of GT outgrowth, we utilized the Hoxa3-Cre driver and Bmp4 flox/flox mouse lines. Hoxa3 Cre/+ ; Bmp4 flox/flox mutant mice showed the hypoplasia of GT with reduced expression of outgrowth promoting genes such as Wnt5a, Hoxd13 and p63, whereas Shh expression was not affected. Formation of distal urethral epithelium (DUE) marked by the Fgf8 expression is essential for controlling mesenchymal genes expression in GT and subsequent its outgrowth. Furthermore, Fgf8 expression was dramatically reduced in such mutant mice indicating the defective DUE formation. Hence, current results indicate that Bmp4 is an essential growth factor for the initiation of GT outgrowth independent of Shh signaling. Thus, Bmp4 positively regulates for the formation of DUE. The current study provides new insights into the function of Bmp signaling at early stage for the initiation of GT outgrowth.
Collapse
Affiliation(s)
- Daiki Kajioka
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shoko Nakada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shoko Matsushita
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Miyagawa
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
16
|
Dynamic and self-regulatory interactions among gene regulatory networks control vertebrate limb bud morphogenesis. Curr Top Dev Biol 2020; 139:61-88. [DOI: 10.1016/bs.ctdb.2020.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Mori S, Sakakura E, Tsunekawa Y, Hagiwara M, Suzuki T, Eiraku M. Self-organized formation of developing appendages from murine pluripotent stem cells. Nat Commun 2019; 10:3802. [PMID: 31444329 PMCID: PMC6707191 DOI: 10.1038/s41467-019-11702-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/29/2019] [Indexed: 01/28/2023] Open
Abstract
Limb development starts with the formation of limb buds (LBs), which consist of tissues from two different germ layers; the lateral plate mesoderm-derived mesenchyme and ectoderm-derived surface epithelium. Here, we report means for induction of an LB-like mesenchymal/epithelial complex tissues from murine pluripotent stem cells (PSCs) in vitro. The LB-like tissues selectively differentiate into forelimb- or hindlimb-type mesenchymes, depending on a concentration of retinoic acid. Comparative transcriptome analysis reveals that the LB-like tissues show similar gene expression pattern to that seen in LBs. We also show that manipulating BMP signaling enables us to induce a thickened epithelial structure similar to the apical ectodermal ridge. Finally, we demonstrate that the induced tissues can contribute to endogenous digit tissue after transplantation. This PSC technology offers a first step for creating an artificial limb bud in culture and might open the door to inducing other mesenchymal/epithelial complex tissues from PSCs.
Collapse
Affiliation(s)
- Shunsuke Mori
- Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan. .,Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan. .,Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| | - Eriko Sakakura
- Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuji Tsunekawa
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | - Masaya Hagiwara
- NanoSqure Research Institute, Osaka Prefecture University, Osaka, 599-8570, Japan
| | - Takayuki Suzuki
- Laboratory of Avian Bioscience, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8602, Japan
| | - Mototsugu Eiraku
- Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan. .,Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan. .,Institute for Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
18
|
Jacob A, Wüst HM, Thalhammer JM, Fröb F, Küspert M, Reiprich S, Balta EA, Lie DC, Wegner M, Sock E. The transcription factor prospero homeobox protein 1 is a direct target of SoxC proteins during developmental vertebrate neurogenesis. J Neurochem 2019; 146:251-268. [PMID: 29749639 DOI: 10.1111/jnc.14456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/20/2018] [Accepted: 04/16/2018] [Indexed: 11/29/2022]
Abstract
The high-mobility-group domain containing SoxC transcription factors Sox4 and Sox11 are expressed and required in the vertebrate central nervous system in neuronal precursors and neuroblasts. To identify genes that are widely regulated by SoxC proteins during vertebrate neurogenesis we generated expression profiles from developing mouse brain and chicken neural tube with reduced SoxC expression and found the transcription factor prospero homeobox protein 1 (Prox1) strongly down-regulated under both conditions. This led us to hypothesize that Prox1 expression depends on SoxC proteins in the developing central nervous system of mouse and chicken. By combining luciferase reporter assays and over-expression in the chicken neural tube with in vivo and in vitro binding studies, we identify the Prox1 gene promoter and two upstream enhancers at -44 kb and -40 kb relative to the transcription start as regulatory regions that are bound and activated by SoxC proteins. This argues that Prox1 is a direct target gene of SoxC proteins during neurogenesis. Electroporations in the chicken neural tube furthermore show that Prox1 activates a subset of SoxC target genes, whereas it has no effects on others. We propose that the transcriptional control of Prox1 by SoxC proteins may ensure coupling of two types of transcription factors that are both required during early neurogenesis, but have at least in part distinct functions. Open Data: Materials are available on https://cos.io/our-services/open-science-badges/ https://osf.io/93n6m/.
Collapse
Affiliation(s)
- Anne Jacob
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hannah M Wüst
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes M Thalhammer
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Fröb
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Küspert
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Reiprich
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elli-Anna Balta
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - D Chichung Lie
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Sock
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
19
|
Tarazona OA, Lopez DH, Slota LA, Cohn MJ. Evolution of limb development in cephalopod mollusks. eLife 2019; 8:43828. [PMID: 31210127 PMCID: PMC6581508 DOI: 10.7554/elife.43828] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/08/2019] [Indexed: 11/13/2022] Open
Abstract
Cephalopod mollusks evolved numerous anatomical novelties, including arms and tentacles, but little is known about the developmental mechanisms underlying cephalopod limb evolution. Here we show that all three axes of cuttlefish limbs are patterned by the same signaling networks that act in vertebrates and arthropods, although they evolved limbs independently. In cuttlefish limb buds, Hedgehog is expressed anteriorly. Posterior transplantation of Hedgehog-expressing cells induced mirror-image limb duplications. Bmp and Wnt signals, which establish dorsoventral polarity in vertebrate and arthropod limbs, are similarly polarized in cuttlefish. Inhibition of Bmp2/4 dorsally caused ectopic expression of Notum, which marks the ventral sucker field, and ectopic sucker development. Cuttlefish also show proximodistal regionalization of Hth, Exd, Dll, Dac, Sp8/9, and Wnt expression, which delineates arm and tentacle sucker fields. These results suggest that cephalopod limbs evolved by parallel activation of a genetic program for appendage development that was present in the bilaterian common ancestor.
Collapse
Affiliation(s)
- Oscar A Tarazona
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, United States.,Department of Biology, UF Genetics Institute, University of Florida, Gainesville, United States
| | - Davys H Lopez
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, United States
| | - Leslie A Slota
- Department of Biology, UF Genetics Institute, University of Florida, Gainesville, United States
| | - Martin J Cohn
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, United States.,Department of Biology, UF Genetics Institute, University of Florida, Gainesville, United States
| |
Collapse
|
20
|
Andrews MG, Kong J, Novitch BG, Butler SJ. New perspectives on the mechanisms establishing the dorsal-ventral axis of the spinal cord. Curr Top Dev Biol 2018; 132:417-450. [PMID: 30797516 DOI: 10.1016/bs.ctdb.2018.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Distinct classes of neurons arise at different positions along the dorsal-ventral axis of the spinal cord leading to spinal neurons being segregated along this axis according to their physiological properties and functions. Thus, the neurons associated with motor control are generally located in, or adjacent to, the ventral horn whereas the interneurons (INs) that mediate sensory activities are present within the dorsal horn. Here, we review classic and recent studies examining the developmental mechanisms that establish the dorsal-ventral axis in the embryonic spinal cord. Intriguingly, while the cellular organization of the dorsal and ventral halves of the spinal cord looks superficially similar during early development, the underlying molecular mechanisms that establish dorsal vs ventral patterning are markedly distinct. For example, the ventral spinal cord is patterned by the actions of a single growth factor, sonic hedgehog (Shh) acting as a morphogen, i.e., concentration-dependent signal. Recent studies have shed light on the mechanisms by which the spatial and temporal gradient of Shh is transduced by cells to elicit the generation of different classes of ventral INs, and motor neurons (MNs). In contrast, the dorsal spinal cord is patterned by the action of multiple factors, most notably by members of the bone morphogenetic protein (BMP) and Wnt families. While less is known about dorsal patterning, recent studies have suggested that the BMPs do not act as morphogens to specify dorsal IN identities as previously proposed, rather each BMP has signal-specific activities. Finally, we consider the promise that elucidation of these mechanisms holds for neural repair.
Collapse
Affiliation(s)
- Madeline G Andrews
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Neuroscience Graduate Program, University of California, Los Angeles, CA, United States
| | - Jennifer Kong
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Neuroscience Graduate Program, University of California, Los Angeles, CA, United States
| | - Bennett G Novitch
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, United States
| | - Samantha J Butler
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, United States.
| |
Collapse
|
21
|
Spatial and Quantitative Detection of BMP Activity in Mouse Embryonic Limb Buds. Methods Mol Biol 2018. [PMID: 30414135 DOI: 10.1007/978-1-4939-8904-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Modulation of bone morphogenetic protein (BMP) activity is essential to the progression of limb development in the mouse embryo. Genetic disruption of BMP signaling at various stages of limb development causes defects ranging from complete limb agenesis to oligodactyly, polydactyly, webbing, and chondrodysplasia. To probe the state of BMP signaling in early limb buds, we designed two sets of primers to measure both spatially and quantitatively the transcription of nine key genes indicative of canonical BMP activity. One set is used to generate digoxigenin (DIG)-labeled antisense RNA probes for whole-mount mRNA in situ hybridization, while the second set is used for SYBR® Green-based quantitative PCR on limb bud cDNA. Here we describe step-by-step protocols for both methods around this specific set of genes.
Collapse
|
22
|
Weider M, Starost LJ, Groll K, Küspert M, Sock E, Wedel M, Fröb F, Schmitt C, Baroti T, Hartwig AC, Hillgärtner S, Piefke S, Fadler T, Ehrlich M, Ehlert C, Stehling M, Albrecht S, Jabali A, Schöler HR, Winkler J, Kuhlmann T, Wegner M. Nfat/calcineurin signaling promotes oligodendrocyte differentiation and myelination by transcription factor network tuning. Nat Commun 2018; 9:899. [PMID: 29500351 PMCID: PMC5834605 DOI: 10.1038/s41467-018-03336-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/05/2018] [Indexed: 02/06/2023] Open
Abstract
Oligodendrocytes produce myelin for rapid transmission and saltatory conduction of action potentials in the vertebrate central nervous system. Activation of the myelination program requires several transcription factors including Sox10, Olig2, and Nkx2.2. Functional interactions among them are poorly understood and important components of the regulatory network are still unknown. Here, we identify Nfat proteins as Sox10 targets and regulators of oligodendroglial differentiation in rodents and humans. Overall levels and nuclear fraction increase during differentiation. Inhibition of Nfat activity impedes oligodendrocyte differentiation in vitro and in vivo. On a molecular level, Nfat proteins cooperate with Sox10 to relieve reciprocal repression of Olig2 and Nkx2.2 as precondition for oligodendroglial differentiation and myelination. As Nfat activity depends on calcium-dependent activation of calcineurin signaling, regulatory network and oligodendroglial differentiation become sensitive to calcium signals. NFAT proteins are also detected in human oligodendrocytes, downregulated in active multiple sclerosis lesions and thus likely relevant in demyelinating disease.
Collapse
Affiliation(s)
- Matthias Weider
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Laura Julia Starost
- Institute of Neuropathology, University Hospital Münster, D-48149, Münster, Germany.,Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Katharina Groll
- Institute of Neuropathology, University Hospital Münster, D-48149, Münster, Germany
| | - Melanie Küspert
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Elisabeth Sock
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Miriam Wedel
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Franziska Fröb
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Christian Schmitt
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Tina Baroti
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Anna C Hartwig
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Simone Hillgärtner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Sandra Piefke
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Tanja Fadler
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Marc Ehrlich
- Institute of Neuropathology, University Hospital Münster, D-48149, Münster, Germany.,Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Corinna Ehlert
- Institute of Neuropathology, University Hospital Münster, D-48149, Münster, Germany
| | - Martin Stehling
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Stefanie Albrecht
- Institute of Neuropathology, University Hospital Münster, D-48149, Münster, Germany
| | - Ammar Jabali
- Institute of Neuropathology, University Hospital Münster, D-48149, Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, D-48149, Münster, Germany.
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany.
| |
Collapse
|
23
|
Jiang FX, Harrison LC. Transient Impairment of Islet Architectural Development in Pancreas-Specific Bmpr1a-Deleted Prenatal Mice Involves Reduced Expression of E-Cadherin. Stem Cells Dev 2017; 26:1706-1714. [PMID: 28922976 DOI: 10.1089/scd.2017.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling plays critical roles on the development of a large array of embryonic organs and promotes the in vitro formation of pancreatic cystoid colonies containing insulin-producing cells. However, this signaling and its underlying mechanism on in vivo development of prenatal pancreas have not been clearly understood. To address these questions, we analyzed, with a variety of techniques, the prenatal mouse pancreas after Pdx1 (the pancreas and duodenum homeobox factor 1 gene)-driving deletion of the BMP receptor type 1a gene (Bmpr1a). In this study, we report that the Pdx1-driving deletion of Bmpr1a transiently disrupted only the assembly of architectural structure of prenatal islets. The differentiation of endocrine lineage cells and the development of pancreatic acinar tissue were comparable between Bmpr1a-deleted fetuses and -undeleted Controls throughout the period examined. Molecular studies revealed that among many proteins surveyed, the key cell-cell interaction molecule E-cadherin (E-cad) only was expressed significantly less at both messenger RNA (mRNA) and protein levels in Bmpr1a-deleted than Control fetal endocrine cells. We thus conclude that BMP signaling transiently regulates the expression of E-cad and the establishment of prenatal islet architecture.
Collapse
Affiliation(s)
- Fang-Xu Jiang
- 1 Islet Cell Development Program, Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia , Nedlands, Australia .,2 The Walter & Eliza Hall Institute of Medical Research , Parkville, Australia
| | - Leonard C Harrison
- 2 The Walter & Eliza Hall Institute of Medical Research , Parkville, Australia
| |
Collapse
|
24
|
MacFarlane EG, Haupt J, Dietz HC, Shore EM. TGF-β Family Signaling in Connective Tissue and Skeletal Diseases. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022269. [PMID: 28246187 DOI: 10.1101/cshperspect.a022269] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transforming growth factor β (TGF-β) family of signaling molecules, which includes TGF-βs, activins, inhibins, and numerous bone morphogenetic proteins (BMPs) and growth and differentiation factors (GDFs), has important functions in all cells and tissues, including soft connective tissues and the skeleton. Specific TGF-β family members play different roles in these tissues, and their activities are often balanced with those of other TGF-β family members and by interactions with other signaling pathways. Perturbations in TGF-β family pathways are associated with numerous human diseases with prominent involvement of the skeletal and cardiovascular systems. This review focuses on the role of this family of signaling molecules in the pathologies of connective tissues that manifest in rare genetic syndromes (e.g., syndromic presentations of thoracic aortic aneurysm), as well as in more common disorders (e.g., osteoarthritis and osteoporosis). Many of these diseases are caused by or result in pathological alterations of the complex relationship between the TGF-β family of signaling mediators and the extracellular matrix in connective tissues.
Collapse
Affiliation(s)
- Elena Gallo MacFarlane
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Julia Haupt
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,Howard Hughes Medical Institute, Bethesda, Maryland 21205
| | - Eileen M Shore
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
25
|
Monsivais D, Matzuk MM, Pangas SA. The TGF-β Family in the Reproductive Tract. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022251. [PMID: 28193725 DOI: 10.1101/cshperspect.a022251] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The transforming growth factor β (TGF-β) family has a profound impact on the reproductive function of various organisms. In this review, we discuss how highly conserved members of the TGF-β family influence the reproductive function across several species. We briefly discuss how TGF-β-related proteins balance germ-cell proliferation and differentiation as well as dauer entry and exit in Caenorhabditis elegans. In Drosophila melanogaster, TGF-β-related proteins maintain germ stem-cell identity and eggshell patterning. We then provide an in-depth analysis of landmark studies performed using transgenic mouse models and discuss how these data have uncovered basic developmental aspects of male and female reproductive development. In particular, we discuss the roles of the various TGF-β family ligands and receptors in primordial germ-cell development, sexual differentiation, and gonadal cell development. We also discuss how mutant mouse studies showed the contribution of TGF-β family signaling to embryonic and postnatal testis and ovarian development. We conclude the review by describing data obtained from human studies, which highlight the importance of the TGF-β family in normal female reproductive function during pregnancy and in various gynecologic pathologies.
Collapse
Affiliation(s)
- Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, Texas 77030.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030.,Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030
| | - Stephanie A Pangas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, Texas 77030
| |
Collapse
|
26
|
Delgado I, Torres M. Coordination of limb development by crosstalk among axial patterning pathways. Dev Biol 2017; 429:382-386. [DOI: 10.1016/j.ydbio.2017.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/28/2017] [Accepted: 03/05/2017] [Indexed: 10/20/2022]
|
27
|
Abe G, Ota KG. Evolutionary developmental transition from median to paired morphology of vertebrate fins: Perspectives from twin-tail goldfish. Dev Biol 2017; 427:251-257. [DOI: 10.1016/j.ydbio.2016.11.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/26/2016] [Accepted: 11/30/2016] [Indexed: 01/18/2023]
|
28
|
Sung Hsieh HH, Chung MT, Allen RM, Ranganathan K, Habbouche J, Cholok D, Butts J, Kaura A, Tiruvannamalai-Annamalai R, Breuler C, Priest C, Loder SJ, Li J, Li S, Stegemann J, Kunkel SL, Levi B. Evaluation of Salivary Cytokines for Diagnosis of both Trauma-Induced and Genetic Heterotopic Ossification. Front Endocrinol (Lausanne) 2017; 8:74. [PMID: 28484423 PMCID: PMC5401868 DOI: 10.3389/fendo.2017.00074] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/27/2017] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Heterotopic ossification (HO) occurs in the setting of persistent systemic inflammation. The identification of reliable biomarkers can serve as an early diagnostic tool for HO, especially given the current lack of effective treatment strategies. Although serum biomarkers have great utility, they can be inappropriate or ineffective in traumatic acute injuries and in patients with fibrodysplasia ossificans progressiva (FOP). Therefore, the goal of this study is to profile the cytokines associated with HO using a different non-invasive source of biomarkers. METHODS Serum and saliva were collected from a model of trauma-induced HO (tHO) with hind limb Achilles' tenotomy and dorsal burn injury at indicated time points (pre-injury, 48 h, 1 week, and 3 weeks post-injury) and a genetic non-trauma HO model (Nfatc1-Cre/caAcvr1fl/wt ). Samples were analyzed for 27 cytokines using the Bio-Plex assay. Histologic evaluation was performed in Nfatc1-Cre/caAcvr1fl/wt mice and at 48 h and 1 week post-injury in burn tenotomy mice. The mRNA expression levels of these cytokines at the tenotomy site were also quantified with quantitative real-time PCR. Pearson correlation coefficient was assessed between saliva and serum. RESULTS Levels of TNF-α and IL-1β peaked at 48 h and 1 week post-injury in the burn/tenotomy cohort, and these values were significantly higher when compared with both uninjured (p < 0.01, p < 0.03) and burn-only mice (p < 0.01, p < 0.01). Immunofluorescence staining confirmed enhanced expression of IL-1β, TNF-α, and MCP-1 at the tenotomy site 48 h after injury. Monocyte chemoattractant protein-1 (MCP-1) and VEGF was detected in saliva showing elevated levels at 1 week post-injury in our tHO model when compared with both uninjured (p < 0.001, p < 0.01) and burn-only mice (p < 0.005, p < 0.01). The Pearson correlation between serum MCP-1 and salivary MCP-1 was statistically significant (r = 0.9686, p < 0.001) Similarly, the Pearson correlation between serum VEGF and salivary VEGF was statistically significant (r = 0.9709, p < 0.05). CONCLUSION In this preliminary study, we characterized the diagnostic potential of specific salivary cytokines that may serve as biomarkers for an early-stage diagnosis of HO. This study identified two candidate biomarkers for further study and suggests a novel method for diagnosis in the context of current difficult diagnosis and risks of current diagnostic methods in certain patients.
Collapse
Affiliation(s)
- Hsiao Hsin Sung Hsieh
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Michael T. Chung
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ronald M. Allen
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Kavitha Ranganathan
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Joe Habbouche
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - David Cholok
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Butts
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Arminder Kaura
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Chris Breuler
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Caitlin Priest
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Shawn J. Loder
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - John Li
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Shuli Li
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jan Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Steven L. Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin Levi
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
29
|
Mariani FV, Fernandez-Teran M, Ros MA. Ectoderm-mesoderm crosstalk in the embryonic limb: The role of fibroblast growth factor signaling. Dev Dyn 2017; 246:208-216. [PMID: 28002626 PMCID: PMC8262604 DOI: 10.1002/dvdy.24480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 01/27/2023] Open
Abstract
In this commentary we focus on the function of FGFs during limb development and morphogenesis. Our goal is to understand, interpret and, when possible, reconcile the interesting findings and conflicting results that remain unexplained. For example, the cell death pattern observed after surgical removal of the AER versus genetic removal of the AER-Fgfs is strikingly different and the field is at an impasse with regard to an explanation. We also discuss the idea that AER function may involve signaling components in addition to the AER-FGFs and that signaling from the non-AER ectoderm may also have a significant contribution. We hope that a re-evaluation of current studies and a discussion of outstanding questions will motivate new experiments, especially considering the availability of new technologies, that will fuel further progress toward understanding the intricate ectoderm-to-mesoderm crosstalk during limb development. Developmental Dynamics 246:208-216, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Francesca V Mariani
- Department of Cell and Neurobiology, Broad CIRM Center for Regenerative Medicine & Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Marian Fernandez-Teran
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, 39011, Santander, Spain
| | - Maria A Ros
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, 39011, Santander, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria, CSIC-SODERCAN-Universidad de Cantabria, 39011, Santander, Spain
| |
Collapse
|
30
|
Suzuki K, Matsumaru D, Matsushita S, Murashima A, Ludwig M, Reutter H, Yamada G. Epispadias and the associated embryopathies: genetic and developmental basis. Clin Genet 2016; 91:247-253. [PMID: 27649475 DOI: 10.1111/cge.12871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 12/25/2022]
Abstract
The abnormalities in the urogenital organs are frequently observed as human developmental diseases. Among such diseases, the defects in the upper part of external genitalia are rather rare named epispadias. The cleft in the dorsal part of external genitalia often reaches to the urethra. In general, the urogenital abnormalities accompany defects in the adjacent tissues and organs. The ventral body wall and bladder can also be affected in the patients with dorsal defects of the external genitalia. Therefore, such multiple malformations are often classified as bladder exstrophy and epispadias complex (BEEC). Because of the lower frequency of such birth defects and their early embryonic development, animal models are required to analyze the pathogenic mechanisms and the functions of responsible genes. Mutant mouse analyses on various signal cascades for external genitalia and body wall development are increasingly performed. The genetic interactions between growth factors such as bone morphogenetic proteins (Bmp) and transcription factors such as Msx1/2 and Isl1 have been suggested to play roles for such organogenesis. The significance of epithelial-mesenchymal interaction (EMI) is suggested during development. In this review, we describe on such local interactions and developmental regulators. We also introduce some mutant mouse models displaying external genitalia-body wall abnormalities.
Collapse
Affiliation(s)
- K Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - D Matsumaru
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - S Matsushita
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - A Murashima
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan.,Division of Human Embryology, Department of Anatomy, Iwate Medical University, Yahaba, Japan
| | - M Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital of Bonn, Bonn, Germany
| | - H Reutter
- Institute of Human Genetics, University Hospital of Bonn, Bonn, Germany.,Department of Neonatology and Pediatric Intensive Care, University Hospital of Bonn, Bonn, Germany
| | - G Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| |
Collapse
|
31
|
Muth KN, Piefke S, Weider M, Sock E, Hermans-Borgmeyer I, Wegner M, Küspert M. The Dual-specificity phosphatase Dusp15 is regulated by Sox10 and Myrf in Myelinating Oligodendrocytes. Glia 2016; 64:2120-2132. [PMID: 27532821 DOI: 10.1002/glia.23044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 11/10/2022]
Abstract
Differentiation of oligodendrocytes and myelin production in the vertebrate central nervous system require highly concerted changes in gene expression. The transcription factors Sox10 and Myrf are both central to this process and jointly regulate expression of myelin genes. Here we show that Sox10 and Myrf also cooperate in the activation of the gene coding for the dual specificity protein phosphatase Dusp15 (also known as VHY) during this process. Activation is mediated by the Dusp15 promoter, which is also sufficient to drive oligodendroglial gene expression in vivo. It contains both a functional Sox10 and a functional Myrf binding site. Whereas Sox10 binds as a monomer, Myrf binds as a trimer. Available data furthermore indicate that cooperative activation is not a function of facilitated binding, but occurs at a later step of the activation process. shRNA-mediated knockdown of Dusp15 reduced expression of early and late differentiation markers in CG4 and primary oligodendroglial cells, whereas Dusp15 overexpression increased it transiently. This argues that Dusp15 is not only a joint target of Sox10 and Myrf in oligodendrocytes but may also mediate some of their effects during oligodendrocyte differentiation and myelin formation. GLIA 2016;64:2120-2132.
Collapse
Affiliation(s)
- Katharina N Muth
- Institut Für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sandra Piefke
- Institut Für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Weider
- Institut Für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Sock
- Institut Für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Michael Wegner
- Institut Für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Küspert
- Institut Für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
32
|
Agarwal S, Drake J, Qureshi AT, Loder S, Li S, Shigemori K, Peterson J, Cholok D, Forsberg JA, Mishina Y, Davis TA, Levi B. Characterization of Cells Isolated from Genetic and Trauma-Induced Heterotopic Ossification. PLoS One 2016; 11:e0156253. [PMID: 27494521 PMCID: PMC4975503 DOI: 10.1371/journal.pone.0156253] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/11/2016] [Indexed: 12/13/2022] Open
Abstract
Heterotopic ossification (HO) is the pathologic formation of bone separate from the normal skeleton. Although several models exist for studying HO, an understanding of the common in vitro properties of cells isolated from these models is lacking. We studied three separate animal models of HO including two models of trauma-induced HO and one model of genetic HO, and human HO specimens, to characterize the properties of cells derived from tissue containing pre-and mature ectopic bone in relation to analogous mesenchymal cell populations or osteoblasts obtained from normal muscle tissue. We found that when cultured in vitro, cells isolated from the trauma sites in two distinct models exhibited increased osteogenic differentiation when compared to cells isolated from uninjured controls. Furthermore, osteoblasts isolated from heterotopic bone in a genetic model of HO also exhibited increased osteogenic differentiation when compared with normal osteoblasts. Finally, osteoblasts derived from mature heterotopic bone obtained from human patients exhibited increased osteogenic differentiation when compared with normal bone from the same patients. These findings demonstrate that across models, cells derived from tissues forming heterotopic ossification exhibit increased osteogenic differentiation when compared with either normal tissues or osteoblasts. These cell types can be used in the future for in vitro investigations for drug screening purposes.
Collapse
Affiliation(s)
- Shailesh Agarwal
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - James Drake
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Ammar T Qureshi
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Shawn Loder
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Shuli Li
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Kay Shigemori
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Jonathan Peterson
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - David Cholok
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Jonathan A Forsberg
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Yuji Mishina
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Thomas A Davis
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Benjamin Levi
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| |
Collapse
|
33
|
Moreira TS, Takakura AC, Czeisler C, Otero JJ. Respiratory and autonomic dysfunction in congenital central hypoventilation syndrome. J Neurophysiol 2016; 116:742-52. [PMID: 27226447 PMCID: PMC6208311 DOI: 10.1152/jn.00026.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/25/2016] [Indexed: 12/22/2022] Open
Abstract
The developmental lineage of the PHOX2B-expressing neurons in the retrotrapezoid nucleus (RTN) has been extensively studied. These cells are thought to function as central respiratory chemoreceptors, i.e., the mechanism by which brain Pco2 regulates breathing. The molecular and cellular basis of central respiratory chemoreception is based on the detection of CO2 via intrinsic proton receptors (TASK-2, GPR4) as well as synaptic input from peripheral chemoreceptors and other brain regions. Murine models of congenital central hypoventilation syndrome designed with PHOX2B mutations have suggested RTN neuron agenesis. In this review, we examine, through human and experimental animal models, how a restricted number of neurons that express the transcription factor PHOX2B play a crucial role in the control of breathing and autonomic regulation.
Collapse
Affiliation(s)
- Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil;
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil; and
| | - Catherine Czeisler
- The Ohio State University, College of Medicine, Department of Pathology, Division of Neuropathology, Columbus, Ohio
| | - Jose J Otero
- The Ohio State University, College of Medicine, Department of Pathology, Division of Neuropathology, Columbus, Ohio
| |
Collapse
|
34
|
Agarwal S, Loder SJ, Sorkin M, Li S, Shrestha S, Zhao B, Mishina Y, James AW, Levi B. Analysis of Bone-Cartilage-Stromal Progenitor Populations in Trauma Induced and Genetic Models of Heterotopic Ossification. Stem Cells 2016; 34:1692-701. [PMID: 27068890 DOI: 10.1002/stem.2376] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 03/14/2016] [Indexed: 11/09/2022]
Abstract
Heterotopic ossification (HO), the formation of extra-skeletal bone in soft tissues, is a pathologic process occurring after substantial burns or trauma, or in patients with type I bone morphogenetic protein (BMP) receptor hyperactivating mutations. Identifying the cells responsible for de novo bone formation during adulthood is of critical importance for therapeutic and regenerative purposes. Using a model of trauma-induced HO with hind limb Achilles' tenotomy and dorsal burn injury and a genetic nontrauma HO model (Nfatc1-Cre/caAcvr1(fl/wt) ), we demonstrate enrichment of previously defined bone-cartilage-stromal progenitor cells (BCSP: AlphaV+/CD105+/Tie2-/CD45-/Thy1-/6C3-) at the site of HO formation when compared with marrow isolated from the ipsilateral hind limb, or from tissue of the contralateral, uninjured hind limb. Upon transplantation into tenotomy sites soon after injury, BCSPs isolated from neonatal mice or developing HO incorporate into the developing lesion in cartilage and bone and express chondrogenic and osteogenic transcription factors. Additionally, BCSPs isolated from developing HO similarly incorporate into new HO lesions upon transplantation. Finally, adventitial cells, but not pericytes, appear to play a supportive role in HO formation. Our findings indicate that BCSPs contribute to de novo bone formation during adulthood and may hold substantial regenerative potential. Stem Cells 2016;34:1692-1701.
Collapse
Affiliation(s)
- Shailesh Agarwal
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Shawn J Loder
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael Sorkin
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Shuli Li
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Swati Shrestha
- Department of Pathology & Laboratory Medicine and Orthopaedic Hospital Research Center, University of California, Los Angeles
| | - Bin Zhao
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yuji Mishina
- School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron W James
- Department of Pathology & Laboratory Medicine and Orthopaedic Hospital Research Center, University of California, Los Angeles
| | - Benjamin Levi
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
35
|
Getting a handle on embryo limb development: Molecular interactions driving limb outgrowth and patterning. Semin Cell Dev Biol 2016; 49:92-101. [DOI: 10.1016/j.semcdb.2015.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 11/21/2022]
|
36
|
Zuniga A. Next generation limb development and evolution: old questions, new perspectives. Development 2015; 142:3810-20. [DOI: 10.1242/dev.125757] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The molecular analysis of limb bud development in vertebrates continues to fuel our understanding of the gene regulatory networks that orchestrate the patterning, proliferation and differentiation of embryonic progenitor cells. In recent years, systems biology approaches have moved our understanding of the molecular control of limb organogenesis to the next level by incorporating next generation ‘omics’ approaches, analyses of chromatin architecture, enhancer-promoter interactions and gene network simulations based on quantitative datasets into experimental analyses. This Review focuses on the insights these studies have given into the gene regulatory networks that govern limb development and into the fin-to-limb transition and digit reductions that occurred during the evolutionary diversification of tetrapod limbs.
Collapse
Affiliation(s)
- Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel CH-4058, Switzerland
| |
Collapse
|
37
|
Baroti T, Zimmermann Y, Schillinger A, Liu L, Lommes P, Wegner M, Stolt CC. Transcription factors Sox5 and Sox6 exert direct and indirect influences on oligodendroglial migration in spinal cord and forebrain. Glia 2015; 64:122-38. [DOI: 10.1002/glia.22919] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 08/14/2015] [Accepted: 08/24/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Tina Baroti
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Yvonne Zimmermann
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Anja Schillinger
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Lina Liu
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Petra Lommes
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - C. Claus Stolt
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| |
Collapse
|
38
|
Tickle C. How the embryo makes a limb: determination, polarity and identity. J Anat 2015; 227:418-30. [PMID: 26249743 DOI: 10.1111/joa.12361] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 12/11/2022] Open
Abstract
The vertebrate limb with its complex anatomy develops from a small bud of undifferentiated mesoderm cells encased in ectoderm. The bud has its own intrinsic polarity and can develop autonomously into a limb without reference to the rest of the embryo. In this review, recent advances are integrated with classical embryology, carried out mainly in chick embryos, to present an overview of how the embryo makes a limb bud. We will focus on how mesoderm cells in precise locations in the embryo become determined to form a limb and express the key transcription factors Tbx4 (leg/hindlimb) or Tbx5 (wing/forelimb). These Tbx transcription factors have equivalent functions in the control of bud formation by initiating a signalling cascade involving Wnts and fibroblast growth factors (FGFs) and by regulating recruitment of mesenchymal cells from the coelomic epithelium into the bud. The mesoderm that will form limb buds and the polarity of the buds is determined with respect to both antero-posterior and dorso-ventral axes of the body. The position in which a bud develops along the antero-posterior axis of the body will also determine its identity - wing/forelimb or leg/hindlimb. Hox gene activity, under the influence of retinoic acid signalling, is directly linked with the initiation of Tbx5 gene expression in the region along the antero-posterior axis of the body that will form wings/forelimbs and determines antero-posterior polarity of the buds. In contrast, Tbx4 expression in the regions that will form legs/hindlimbs is regulated by the homeoprotein Pitx1 and there is no evidence that Hox genes determine antero-posterior polarity of the buds. Bone morphogenetic protein (BMP) signalling determines the region along the dorso-ventral axis of the body in which both wings/forelimbs and legs/hindlimbs develop and dorso-ventral polarity of the buds. The polarity of the buds leads to the establishment of signalling regions - the dorsal and ventral ectoderm, producing Wnts and BMPs, respectively, the apical ectodermal ridge producing fibroblast growth factors and the polarizing region, Sonic hedgehog (Shh). These signals are the same in both wings/forelimbs and legs/hindlimbs and control growth and pattern formation by providing the mesoderm cells of the limb bud as it develops with positional information. The precise anatomy of the limb depends on the mesoderm cells in the developing bud interpreting positional information according to their identity - determined by Pitx1 in hindlimbs - and genotype. The competence to form a limb extends along the entire antero-posterior axis of the trunk - with Hox gene activity inhibiting the formation of forelimbs in the interlimb region - and also along the dorso-ventral axis.
Collapse
Affiliation(s)
- Cheryll Tickle
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
39
|
Jiang FX, Mishina Y, Baten A, Morahan G, Harrison LC. Transcriptome of pancreas-specific Bmpr1a-deleted islets links to TPH1-5-HT axis. Biol Open 2015; 4:1016-23. [PMID: 26187948 PMCID: PMC4542282 DOI: 10.1242/bio.011858] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling is crucial for the development and function of numerous organs, but its role on the function of pancreatic islets is not completely clear. To explore this question, we applied the high throughput transcriptomic analyses on the islets isolated from mice with a pancreas-specific deletion of the gene, Bmpr1a, encoding the type 1a BMP receptor. Consistently, these pBmpr1aKO mice had impaired glucose homeostasis at 3 months, and were more severely affected at 12 months of age. These had lower fasting blood insulin concentrations, with reduced expression of several key regulators of β-cell function. Importantly, transcriptomic profiling of 3-month pBmpr1aKO islets and bioinformatic analyses revealed abnormal expression of 203 metabolic genes. Critically among these, the tryptophan hydroxylase 1 gene (Tph1), encoding the rate-limiting enzyme for the production of 5-hydroxytryptamine (5-HT) was the highest over-expressed one. 5-HT is an important regulator of insulin secretion from β cells. Treatment with excess 5-HT inhibited this secretion. Thus our transcriptomic analysis links two highly conserved molecular pathways the BMP signaling and the TPH1–5-HT axis on glucose homeostasis.
Collapse
Affiliation(s)
- Fang-Xu Jiang
- The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Akma Baten
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Grant Morahan
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Leonard C Harrison
- The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| |
Collapse
|
40
|
Strategies of Manipulating BMP Signaling in Microgravity to Prevent Bone Loss. VITAMINS AND HORMONES 2015; 99:249-72. [PMID: 26279379 DOI: 10.1016/bs.vh.2015.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bone structure and function is shaped by gravity. Prolonged exposure to microgravity leads to 1-2% bone loss per month in crew members compared to 1% bone loss per year in postmenopausal women. Exercise countermeasures developed to date are ineffective in combating bone loss in microgravity. The search is on for alternate therapies to prevent bone loss in space. Microgravity is an ideal stimulus to understand bone interactions at different levels of organizations. Spaceflight experiments are limited by high costs and lack of opportunity. Ground-based microgravity analogs have proven to simulate biological responses in space. Mice experiments have given important signaling clues in microgravity-associated bone loss, but are restricted by numbers and human application. Cell-based systems provide initial clues to signaling changes; however, the information is simplistic and limited to the cell type. There is a need to integrate information at different levels and provide a complete picture which will help develop a unique strategy to prevent bone weakening. Limited exposure to simulated microgravity using random positioning machine induces proliferation and differentiation of bipotential murine oval liver stem cells. Bone morphogenetic proteins (BMPs) are the prototypal osteogenic signaling molecule with multitude of bone protective functions. In this chapter, we discuss the basic BMP structure, its significance in bone repair, and stem cell differentiation in microgravity. Based on the current information, we propose a model for BMP signaling in space. Development of new technologies may help osteoporosis patients, bedridden people, spinal injuries, or paralytic patients.
Collapse
|
41
|
Weider M, Wegener A, Schmitt C, Küspert M, Hillgärtner S, Bösl MR, Hermans-Borgmeyer I, Nait-Oumesmar B, Wegner M. Elevated in vivo levels of a single transcription factor directly convert satellite glia into oligodendrocyte-like cells. PLoS Genet 2015; 11:e1005008. [PMID: 25680202 PMCID: PMC4334169 DOI: 10.1371/journal.pgen.1005008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/15/2015] [Indexed: 11/18/2022] Open
Abstract
Oligodendrocytes are the myelinating glia of the central nervous system and ensure rapid saltatory conduction. Shortage or loss of these cells leads to severe malfunctions as observed in human leukodystrophies and multiple sclerosis, and their replenishment by reprogramming or cell conversion strategies is an important research aim. Using a transgenic approach we increased levels of the transcription factor Sox10 throughout the mouse embryo and thereby prompted Fabp7-positive glial cells in dorsal root ganglia of the peripheral nervous system to convert into cells with oligodendrocyte characteristics including myelin gene expression. These rarely studied and poorly characterized satellite glia did not go through a classic oligodendrocyte precursor cell stage. Instead, Sox10 directly induced key elements of the regulatory network of differentiating oligodendrocytes, including Olig2, Olig1, Nkx2.2 and Myrf. An upstream enhancer mediated the direct induction of the Olig2 gene. Unlike Sox10, Olig2 was not capable of generating oligodendrocyte-like cells in dorsal root ganglia. Our findings provide proof-of-concept that Sox10 can convert conducive cells into oligodendrocyte-like cells in vivo and delineates options for future therapeutic strategies. Developmental or acquired defects of oligodendrocytes or their myelin sheaths impairs saltatory nerve conduction in the central nervous system and thus leads to severe neurological diseases. Strategies to regenerate or replace these cells require a deeper understanding of the regulatory processes that underlie their generation during development. Here we show in a Sox10 overexpressing mouse model that increase of the levels of a single transcription factor during embryogenesis efficiently converts the already Sox10 expressing satellite glial cells of the peripheral nervous system into oligodendrocyte-like cells by a mechanism that does not simply recapitulate developmental oligodendrogenesis but involves direct Sox10-dependent induction of the oligodendroglial differentiation network. Our study identifies mechanisms that may help to convert other cell types into oligodendrocytes and thus prove eventually useful for therapies of myelin diseases.
Collapse
Affiliation(s)
- Matthias Weider
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Amélie Wegener
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Schmitt
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Küspert
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Hillgärtner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael R. Bösl
- Experimentelle Biomedizin, Rudolf-Virchow-Zentrum, Universitätsklinikum Würzburg, Würzburg, Germany
| | | | - Brahim Nait-Oumesmar
- Institut du Cerveau et de la Moelle Epinière, ICM, Inserm U1127, Université Pierre et Marie Curie, Sorbonne Paris Cité, UMR-S1127, CNRS UMR 7225, Paris, France
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
42
|
|
43
|
Sp6 and Sp8 transcription factors control AER formation and dorsal-ventral patterning in limb development. PLoS Genet 2014; 10:e1004468. [PMID: 25166858 PMCID: PMC4148220 DOI: 10.1371/journal.pgen.1004468] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/14/2014] [Indexed: 12/27/2022] Open
Abstract
The formation and maintenance of the apical ectodermal ridge (AER) is critical for the outgrowth and patterning of the vertebrate limb. The induction of the AER is a complex process that relies on integrated interactions among the Fgf, Wnt, and Bmp signaling pathways that operate within the ectoderm and between the ectoderm and the mesoderm of the early limb bud. The transcription factors Sp6 and Sp8 are expressed in the limb ectoderm and AER during limb development. Sp6 mutant mice display a mild syndactyly phenotype while Sp8 mutants exhibit severe limb truncations. Both mutants show defects in AER maturation and in dorsal-ventral patterning. To gain further insights into the role Sp6 and Sp8 play in limb development, we have produced mice lacking both Sp6 and Sp8 activity in the limb ectoderm. Remarkably, the elimination or significant reduction in Sp6;Sp8 gene dosage leads to tetra-amelia; initial budding occurs, but neither Fgf8 nor En1 are activated. Mutants bearing a single functional allele of Sp8 (Sp6−/−;Sp8+/−) exhibit a split-hand/foot malformation phenotype with double dorsal digit tips probably due to an irregular and immature AER that is not maintained in the center of the bud and on the abnormal expansion of Wnt7a expression to the ventral ectoderm. Our data are compatible with Sp6 and Sp8 working together and in a dose-dependent manner as indispensable mediators of Wnt/βcatenin and Bmp signaling in the limb ectoderm. We suggest that the function of these factors links proximal-distal and dorsal-ventral patterning. In this report we examined the functional roles of Sp6 and Sp8 during limb development using compound loss-of-function mutants. Sp6 and Sp8, two members of the Sp gene family, are expressed in the limb bud ectoderm and function downstream of WNT/βcatenin signaling for Fgf8 induction. The analysis of the allelic series shows that the progressive reduction in the dose of Sp6 and Sp8 gene products leads to predictable morphology, from syndactyly, to split hand/foot malformation, oligodactyly, truncation and finally amelia, indicating that these two factors act in a complementary manner. The molecular characterization of the mutant limbs reveal that Sp6/Sp8 are required in a dose-dependent manner for Fgf8 and En1 induction, thereby placing them as an important link between the induction of the AER and the establishment of dorsal-ventral patterning during limb development.
Collapse
|
44
|
Norrie JL, Lewandowski JP, Bouldin CM, Amarnath S, Li Q, Vokes MS, Ehrlich LIR, Harfe BD, Vokes SA. Dynamics of BMP signaling in limb bud mesenchyme and polydactyly. Dev Biol 2014; 393:270-281. [PMID: 25034710 DOI: 10.1016/j.ydbio.2014.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/03/2014] [Accepted: 07/05/2014] [Indexed: 01/20/2023]
Abstract
Mutations in the Bone Morphogenetic Protein (BMP) pathway are associated with a range of defects in skeletal formation. Genetic analysis of BMP signaling requirements is complicated by the presence of three partially redundant BMPs that are required for multiple stages of limb development. We generated an inducible allele of a BMP inhibitor, Gremlin, which reduces BMP signaling. We show that BMPs act in a dose and time dependent manner in which early reduction of BMPs result in digit loss, while inhibiting overall BMP signaling between E10.5 and E11.5 allows polydactylous digit formation. During this period, inhibiting BMPs extends the duration of FGF signaling. Sox9 is initially expressed in normal digit ray domains but at reduced levels that correlate with the reduction in BMP signaling. The persistence of elevated FGF signaling likely promotes cell proliferation and survival, inhibiting the activation of Sox9 and secondarily, inhibiting the differentiation of Sox9-expressing chondrocytes. Our results provide new insights into the timing and clarify the mechanisms underlying BMP signaling during digit morphogenesis.
Collapse
Affiliation(s)
- Jacqueline L Norrie
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Jordan P Lewandowski
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Cortney M Bouldin
- Department of Molecular Genetics and Microbiology, College of Medicine, UF Genetics Institute, 2033 Mowry Road, Gainesville, Florida 32610, USA
| | - Smita Amarnath
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Qiang Li
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Martha S Vokes
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Brian D Harfe
- Department of Molecular Genetics and Microbiology, College of Medicine, UF Genetics Institute, 2033 Mowry Road, Gainesville, Florida 32610, USA
| | - Steven A Vokes
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA.
| |
Collapse
|
45
|
Pignatti E, Zeller R, Zuniga A. To BMP or not to BMP during vertebrate limb bud development. Semin Cell Dev Biol 2014; 32:119-27. [PMID: 24718318 DOI: 10.1016/j.semcdb.2014.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/01/2014] [Indexed: 12/01/2022]
Abstract
The analysis of vertebrate limb bud development provides insight of general relevance into the signaling networks that underlie the controlled proliferative expansion of large populations of mesenchymal progenitors, cell fate determination and initiation of differentiation. In particular, extensive genetic analysis of mouse and experimental manipulation of chicken limb bud development has revealed the self-regulatory feedback signaling systems that interlink the main morphoregulatory signaling pathways including BMPs and their antagonists. It this review, we showcase the key role of BMPs and their antagonists during limb bud development. This review provides an understanding of the key morphoregulatory interactions that underlie the highly dynamic changes in BMP activity and signal transduction as limb bud development progresses from initiation and setting-up the signaling centers to determination and formation of the chondrogenic primordia for the limb skeletal elements.
Collapse
Affiliation(s)
- Emanuele Pignatti
- Developmental Genetics, Department Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Rolf Zeller
- Developmental Genetics, Department Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Aimée Zuniga
- Developmental Genetics, Department Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland.
| |
Collapse
|
46
|
AcvR1-mediated BMP signaling in second heart field is required for arterial pole development: implications for myocardial differentiation and regional identity. Dev Biol 2014; 390:191-207. [PMID: 24680892 DOI: 10.1016/j.ydbio.2014.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/23/2022]
Abstract
BMP signaling plays an essential role in second heart field-derived heart and arterial trunk development, including myocardial differentiation, right ventricular growth, and interventricular, outflow tract and aortico-pulmonary septation. It is mediated by a number of different BMP ligands, and receptors, many of which are present simultaneously. The mechanisms by which they regulate morphogenetic events and degree of redundancy amongst them have still to be elucidated. We therefore assessed the role of BMP Type I receptor AcvR1 in anterior second heart field-derived cell development, and compared it with that of BmpR1a. By removing Acvr1 using the driver Mef2c[AHF]-Cre, we show that AcvR1 plays an essential role in arterial pole morphogenesis, identifying defects in outflow tract wall and cushion morphology that preceded a spectrum of septation defects from double outlet right ventricle to common arterial trunk in mutants. Its absence caused dysregulation in gene expression important for myocardial differentiation (Isl1, Fgf8) and regional identity (Tbx2, Tbx3, Tbx20, Tgfb2). Although these defects resemble to some degree those in the equivalent Bmpr1a mutant, a novel gene knock-in model in which Bmpr1a was expressed in the Acvr1 locus only partially restored septation in Acvr1 mutants. These data show that both BmpR1a and AcvR1 are needed for normal heart development, in which they play some non-redundant roles, and refine our understanding of the genetic and morphogenetic processes underlying Bmp-mediated heart development important in human congenital heart disease.
Collapse
|
47
|
Johansson JA, Headon DJ. Regionalisation of the skin. Semin Cell Dev Biol 2013; 25-26:3-10. [PMID: 24361971 DOI: 10.1016/j.semcdb.2013.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 01/23/2023]
Abstract
The skin displays marked anatomical variation in thickness, colour and in the appendages that it carries. These regional distinctions arise in the embryo, likely founded on a combinatorial positional code of transcription factor expression. Throughout adult life, the skin's distinct anatomy is maintained through both cell autonomous epigenetic processes and by mesenchymal-epithelial induction. Despite the readily apparent anatomical differences in skin characteristics across the body, several fundamental questions regarding how such regional differences first arise and then persist are unresolved. However, it is clear that the skin's positional code is at the molecular level far more detailed than that discernible at the phenotypic level. This provides a latent reservoir of anatomical complexity ready to surface if perturbed by mutation, hormonal changes, ageing or experiment.
Collapse
Affiliation(s)
- Jeanette A Johansson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, United Kingdom
| | - Denis J Headon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, United Kingdom.
| |
Collapse
|
48
|
Abstract
Dorsal dimelia (appearance of dorsal structures on the palmar aspect of the hand) and ventral dimelia (appearance of palmar structures on the dorsal aspect of the hand) are rare congenital hand malformations that occur due to errors of the dorso-ventral axis of development of the limb. The current literature includes numerous cases and there is now sufficient basic science/genetics research on the topic so that a classification of dorsal/ventral dimelia could be proposed. Dorsal dimelia is subclassified into two types: distal (dorsalization of the digits ± distal palm) and proximal (dorsalization of the proximal palm only) types. Ventral dimelia is classified into three types (mild, moderate, and severe) according to the degree of ventralization. The classification is supported by the genetic basis of each subtype.
Collapse
Affiliation(s)
- M M Al-Qattan
- Division of Plastic Surgery, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
49
|
Hornig J, Fröb F, Vogl MR, Hermans-Borgmeyer I, Tamm ER, Wegner M. The transcription factors Sox10 and Myrf define an essential regulatory network module in differentiating oligodendrocytes. PLoS Genet 2013; 9:e1003907. [PMID: 24204311 PMCID: PMC3814293 DOI: 10.1371/journal.pgen.1003907] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 09/03/2013] [Indexed: 01/31/2023] Open
Abstract
Myelin is essential for rapid saltatory conduction and is produced by Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system. In both cell types the transcription factor Sox10 is an essential component of the myelin-specific regulatory network. Here we identify Myrf as an oligodendrocyte-specific target of Sox10 and map a Sox10 responsive enhancer to an evolutionarily conserved element in intron 1 of the Myrf gene. Once induced, Myrf cooperates with Sox10 to implement the myelination program as evident from the physical interaction between both proteins and the synergistic activation of several myelin-specific genes. This is strongly reminiscent of the situation in Schwann cells where Sox10 first induces and then cooperates with Krox20 during myelination. Our analyses indicate that the regulatory network for myelination in oligodendrocytes is organized along similar general principles as the one in Schwann cells, but is differentially implemented.
Collapse
Affiliation(s)
- Julia Hornig
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Fröb
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael R. Vogl
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Ernst R. Tamm
- Institut für Humananatomie und Embryologie, Universität Regensburg, Regensburg, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
50
|
Osório C, Chacón PJ, Kisiswa L, White M, Wyatt S, Rodríguez-Tébar A, Davies AM. Growth differentiation factor 5 is a key physiological regulator of dendrite growth during development. Development 2013; 140:4751-62. [PMID: 24173804 PMCID: PMC3833432 DOI: 10.1242/dev.101378] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dendrite size and morphology are key determinants of the functional properties of neurons. Here, we show that growth differentiation factor 5 (GDF5), a member of the bone morphogenetic protein (BMP) subclass of the transforming growth factor β superfamily with a well-characterised role in limb morphogenesis, is a key regulator of the growth and elaboration of pyramidal cell dendrites in the developing hippocampus. Pyramidal cells co-express GDF5 and its preferred receptors, BMP receptor 1B and BMP receptor 2, during development. In culture, GDF5 substantially increased dendrite, but not axon, elongation from these neurons by a mechanism that depends on activation of SMADs 1/5/8 and upregulation of the transcription factor HES5. In vivo, the apical and basal dendritic arbours of pyramidal cells throughout the hippocampus were markedly stunted in both homozygous and heterozygous Gdf5 null mutants, indicating that dendrite size and complexity are exquisitely sensitive to the level of endogenous GDF5 synthesis.
Collapse
Affiliation(s)
- Catarina Osório
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | | | | | | | | | | | | |
Collapse
|