1
|
Ferrena A, Zhang X, Shrestha R, Zheng D, Liu W. Six3 and Six6 jointly control diverse target genes in multiple cell populations over developmental trajectories of mouse embryonic retinal progenitor cells. PLoS One 2024; 19:e0308839. [PMID: 39446806 PMCID: PMC11500937 DOI: 10.1371/journal.pone.0308839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 08/01/2024] [Indexed: 10/26/2024] Open
Abstract
How tissue-specific progenitor cells generate adult tissues is a puzzle in organogenesis. Using single-cell RNA sequencing of control and Six3 and Six6 compound-mutant mouse embryonic eyecups, we demonstrated that these two closely related transcription factors jointly control diverse target genes in multiple cell populations over the developmental trajectories of mouse embryonic retinal progenitor cells. In the Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) graph of control retinas, naïve retinal progenitor cells had two major trajectories leading to ciliary margin cells and retinal neurons, respectively. The ciliary margin trajectory was from naïve retinal progenitor cells in the G1 phase directly to ciliary margin cells, whereas the neuronal trajectory went through an intermediate neurogenic state marked by Atoh7 expression. Neurogenic retinal progenitor cells (Atoh7+) were still proliferative; early retinal neurons branched out from Atoh7+ retina progenitor cells in the G1 phase. Upon Six3 and Six6 dual deficiency, both naïve and neurogenic retinal progenitor cells were defective, ciliary margin differentiation was enhanced, and multi-lineage neuronal differentiation was disrupted. An ectopic neuronal trajectory lacking the Atoh7+ state led to ectopic neurons. Additionally, Wnt signaling was upregulated, whereas FGF signaling was downregulated. Notably, Six3 and Six6 proteins occupied the loci of diverse genes that were differentially expressed in distinct cell populations, and expression of these genes was significantly altered upon Six3 and Six6 dual deficiency. Our findings provide deeper insight into the molecular mechanisms underlying early retinal differentiation in mammals.
Collapse
Affiliation(s)
- Alexander Ferrena
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Xusheng Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Rupendra Shrestha
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
2
|
Yin H, Staples SCR, Pickering JG. The fundamentals of fibroblast growth factor 9. Differentiation 2024; 139:100731. [PMID: 37783652 DOI: 10.1016/j.diff.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/07/2023] [Accepted: 09/17/2023] [Indexed: 10/04/2023]
Abstract
Fibroblast growth factor 9 (FGF9) was first identified during a screen for factors acting on cells of the central nervous system (CNS). Research over the subsequent two decades has revealed this protein to be a critically important and elegantly regulated growth factor. A hallmark control feature is reciprocal compartmentalization, particularly during development, with epithelium as a dominant source and mesenchyme a prime target. This mesenchyme selectivity is accomplished by the high affinity of FGF9 to the IIIc isoforms of FGFR1, 2, and 3. FGF9 is expressed widely in the embryo, including the developing heart and lungs, and more selectively in the adult, including the CNS and kidneys. Global Fgf9-null mice die shortly after birth due to respiratory failure from hypoplastic lungs. As well, their hearts are dilated and poorly vascularized, the skeleton is small, the intestine is shortened, and male-to-female sex reversal can be found. Conditional Fgf9-null mice have revealed CNS phenotypes, including ataxia and epilepsy. In humans, FGF9 variants have been found to underlie multiple synostoses syndrome 3, a syndrome characterized by multiple joint fusions. Aberrant FGF9 signaling has also been implicated in differences of sex development and cancer, whereas vascular stabilizing effects of FGF9 could benefit chronic diseases. This primer reviews the attributes of this vital growth factor.
Collapse
Affiliation(s)
- Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Sabrina C R Staples
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - J Geoffrey Pickering
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada; Department of Biochemistry, Western University, London, Canada; Department of Medicine, Western University, London, Canada; London Health Sciences Centre, London, Canada.
| |
Collapse
|
3
|
Zhang X, Leavey P, Appel H, Makrides N, Blackshaw S. Molecular mechanisms controlling vertebrate retinal patterning, neurogenesis, and cell fate specification. Trends Genet 2023; 39:736-757. [PMID: 37423870 PMCID: PMC10529299 DOI: 10.1016/j.tig.2023.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
This review covers recent advances in understanding the molecular mechanisms controlling neurogenesis and specification of the developing retina, with a focus on insights obtained from comparative single cell multiomic analysis. We discuss recent advances in understanding the mechanisms by which extrinsic factors trigger transcriptional changes that spatially pattern the optic cup (OC) and control the initiation and progression of retinal neurogenesis. We also discuss progress in unraveling the core evolutionarily conserved gene regulatory networks (GRNs) that specify early- and late-state retinal progenitor cells (RPCs) and neurogenic progenitors and that control the final steps in determining cell identity. Finally, we discuss findings that provide insight into regulation of species-specific aspects of retinal patterning and neurogenesis, including consideration of key outstanding questions in the field.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Ophthalmology, Columbia University School of Medicine, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University School of Medicine, New York, NY, USA.
| | - Patrick Leavey
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haley Appel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neoklis Makrides
- Department of Ophthalmology, Columbia University School of Medicine, New York, NY, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Casey MA, Lusk S, Kwan KM. Eye Morphogenesis in Vertebrates. Annu Rev Vis Sci 2023; 9:221-243. [PMID: 37040791 DOI: 10.1146/annurev-vision-100720-111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Proper eye structure is essential for visual function: Multiple essential eye tissues must take shape and assemble into a precise three-dimensional configuration. Accordingly, alterations to eye structure can lead to pathological conditions of visual impairment. Changes in eye shape can also be adaptive over evolutionary time. Eye structure is first established during development with the formation of the optic cup, which contains the neural retina, retinal pigment epithelium, and lens. This crucial yet deceptively simple hemispherical structure lays the foundation for all later elaborations of the eye. Building on descriptions of the embryonic eye that started with hand drawings and micrographs, the field is beginning to identify mechanisms driving dynamic changes in three-dimensional cell and tissue shape. A combination of molecular genetics, imaging, and pharmacological approaches is defining connections among transcription factors, signaling pathways, and the intracellular machinery governing the emergence of this crucial structure.
Collapse
Affiliation(s)
- Macaulie A Casey
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA; , ,
| | - Sarah Lusk
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA; , ,
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA; , ,
| |
Collapse
|
5
|
Ferrena A, Zhang X, Shrestha R, Zheng D, Liu W. Six3 and Six6 jointly regulate the identities and developmental trajectories of multipotent retinal progenitor cells in the mouse retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539288. [PMID: 37205402 PMCID: PMC10187238 DOI: 10.1101/2023.05.03.539288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Formation, maintenance, and differentiation of tissue-specific progenitor cells are fundamental tasks during organogenesis. Retinal development is an excellent model for dissecting these processes; mechanisms of retinal differentiation can be harnessed for retinal regeneration toward curing blindness. Using single-cell RNA sequencing of embryonic mouse eye cups in which transcription factor Six3 was conditionally inactivated in peripheral retinas on top of germline deletion of its close paralog Six6 ("DKO"), we identified cell clusters and then inferred developmental trajectories in the integrated dataset. In control retinas, naïve retinal progenitor cells had two major trajectories leading to ciliary margin cells and retinal neurons, respectively. The ciliary margin trajectory was directly from naïve retinal progenitor cells at G1 phase, and the retinal neuron trajectory was through a neurogenic state marked by Atoh7 expression. Upon Six3 and Six6 dual deficiency, both naïve and neurogenic retinal progenitor cells were defective. Ciliary margin differentiation was enhanced, and multi-lineage retinal differentiation was disrupted. An ectopic neuronal trajectory lacking the Atoh7+ state led to ectopic neurons. Differential expression analysis not only confirmed previous phenotype studies but also identified novel candidate genes regulated by Six3/Six6 . Six3 and Six6 were jointly required for balancing the opposing gradients of the Fgf and Wnt signaling in the central-peripheral patterning of the eye cups. Taken together, we identify transcriptomes and developmental trajectories jointly regulated by Six3 and Six6, providing deeper insight into molecular mechanisms underlying early retinal differentiation.
Collapse
|
6
|
Wang X, Hui Q, Jin Z, Rao F, Jin L, Yu B, Banda J, Li X. Roles of growth factors in eye development and ophthalmic diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:613-625. [PMID: 36581579 PMCID: PMC10264994 DOI: 10.3724/zdxbyxb-2022-0603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/30/2022] [Indexed: 12/02/2022]
Abstract
Growth factors are active substances secreted by a variety of cells, which act as messengers to regulate cell migration, proliferation and differentiation. Many growth factors are involved in the eye development or the pathophysiological processes of eye diseases. Growth factors such as vascular endothelial growth factor and basic fibroblast growth factor mediate the occurrence and development of diabetic retinopathy, choroidal neovascularization, cataract, diabetic macular edema, and other retinal diseases. On the other hand, growth factors like nerve growth factor, ciliary neurotrophic factor, glial cell line-derived neurotrophic factor, pigment epithelial-derived factor and granulocyte colony-stimulating factor are known to promote optic nerve injury repair. Growth factors are also related to the pathogenesis of myopia. Fibroblast growth factor, transforming growth factor-β, and insulin-like growth factor regulate scleral thickness and influence the occurrence and development of myopia. This article reviews growth factors involved in ocular development and ocular pathophysiology, discusses the relationship between growth factors and ocular diseases, to provide reference for the application of growth factors in ophthalmology.
Collapse
|
7
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
8
|
Moazeny M, Salari A, Hojati Z, Esmaeili F. Comparative analysis of protein-protein interaction networks in neural differentiation mechanisms. Differentiation 2022; 126:1-9. [DOI: 10.1016/j.diff.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/03/2022]
|
9
|
Tangeman JA, Pérez-Estrada JR, Van Zeeland E, Liu L, Danciutiu A, Grajales-Esquivel E, Smucker B, Liang C, Del Rio-Tsonis K. A Stage-Specific OTX2 Regulatory Network and Maturation-Associated Gene Programs Are Inherent Barriers to RPE Neural Competency. Front Cell Dev Biol 2022; 10:875155. [PMID: 35517508 PMCID: PMC9062105 DOI: 10.3389/fcell.2022.875155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/28/2022] [Indexed: 12/30/2022] Open
Abstract
The retinal pigment epithelium (RPE) exhibits a diverse range of plasticity across vertebrates and is a potential source of cells for the regeneration of retinal neurons. Embryonic amniotes possess a transitory ability to regenerate neural retina through the reprogramming of RPE cells in an FGF-dependent manner. Chicken RPE can regenerate neural retina at embryonic day 4 (E4), but RPE neural competence is lost by embryonic day 5 (E5). To identify mechanisms that underlie loss of regenerative competence, we performed RNA and ATAC sequencing using E4 and E5 chicken RPE, as well as at both stages following retinectomy and FGF2 treatment. We find that genes associated with neural retina fate remain FGF2-inducible in the non-regenerative E5 RPE. Coinciding with fate restriction, RPE cells stably exit the cell cycle and dampen the expression of cell cycle progression genes normally expressed during regeneration, including E2F1. E5 RPE exhibits progressive activation of gene pathways associated with mature function independently of retinectomy or FGF2 treatment, including retinal metabolism, pigmentation synthesis, and ion transport. Moreover, the E5 RPE fails to efficiently repress OTX2 expression in response to FGF2. Predicted OTX2 binding motifs undergo robust accessibility increases in E5 RPE, many of which coincide with putative regulatory elements for genes known to facilitate RPE differentiation and maturation. Together, these results uncover widespread alterations in gene regulation that culminate in the loss of RPE neural competence and implicate OTX2 as a key determinant in solidifying the RPE fate. These results yield valuable insight to the basis of RPE lineage restriction during early development and will be of importance in understanding the varying capacities for RPE-derived retinal regeneration observed among vertebrates.
Collapse
Affiliation(s)
- Jared A. Tangeman
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
| | - J. Raúl Pérez-Estrada
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
| | - Emily Van Zeeland
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
| | - Lin Liu
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
| | - Alexandra Danciutiu
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
| | - Erika Grajales-Esquivel
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
| | - Byran Smucker
- Department of Statistics, Miami University, Oxford, OH, United States
| | - Chun Liang
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
- Department of Computer Science and Software Engineering, Miami University, Oxford, OH, United States
| | - Katia Del Rio-Tsonis
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
| |
Collapse
|
10
|
Balasubramanian R, Min X, Quinn PMJ, Giudice QL, Tao C, Polanco K, Makrides N, Peregrin J, Bouaziz M, Mao Y, Wang Q, da Costa BL, Buenaventura D, Wang F, Ma L, Tsang SH, Fabre PJ, Zhang X. Phase transition specified by a binary code patterns the vertebrate eye cup. SCIENCE ADVANCES 2021; 7:eabj9846. [PMID: 34757798 PMCID: PMC8580326 DOI: 10.1126/sciadv.abj9846] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/21/2021] [Indexed: 05/27/2023]
Abstract
The developing vertebrate eye cup is partitioned into the neural retina (NR), the retinal pigmented epithelium (RPE), and the ciliary margin (CM). By single-cell analysis, we showed that fibroblast growth factor (FGF) signaling regulates the CM in its stem cell–like property of self-renewal, differentiation, and survival, which is balanced by an evolutionarily conserved Wnt signaling gradient. FGF promotes Wnt signaling in the CM by stabilizing β-catenin in a GSK3β-independent manner. While Wnt signaling converts the NR to either the CM or the RPE depending on FGF signaling, FGF transforms the RPE to the NR or CM dependent on Wnt activity. The default fate of the eye cup is the NR, but synergistic FGF and Wnt signaling promotes CM formation both in vivo and in human retinal organoid. Our study reveals that the vertebrate eye develops through phase transition determined by a combinatorial code of FGF and Wnt signaling.
Collapse
Affiliation(s)
| | - Xuanyu Min
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | | | - Quentin Lo Giudice
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Chenqi Tao
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Karina Polanco
- Department of Psychology, Columbia University, New York, NY, USA
| | - Neoklis Makrides
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - John Peregrin
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Michael Bouaziz
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Yingyu Mao
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Qian Wang
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | | | | | - Fen Wang
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M, Houston, TX, USA
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen H. Tsang
- Department of Ophthalmology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
- Jonas Children’s Vision Care, and Bernard and Shirley Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Edward S. Harkness Eye Institute, New York Presbyterian Hospital, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Pierre J. Fabre
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Xin Zhang
- Department of Ophthalmology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
11
|
Summers JA, Schaeffel F, Marcos S, Wu H, Tkatchenko AV. Functional integration of eye tissues and refractive eye development: Mechanisms and pathways. Exp Eye Res 2021; 209:108693. [PMID: 34228967 PMCID: PMC11697408 DOI: 10.1016/j.exer.2021.108693] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022]
Abstract
Refractive eye development is a tightly coordinated developmental process. The general layout of the eye and its various components are established during embryonic development, which involves a complex cross-tissue signaling. The eye then undergoes a refinement process during the postnatal emmetropization process, which relies heavily on the integration of environmental and genetic factors and is controlled by an elaborate genetic network. This genetic network encodes a multilayered signaling cascade, which converts visual stimuli into molecular signals that guide the postnatal growth of the eye. The signaling cascade underlying refractive eye development spans across all ocular tissues and comprises multiple signaling pathways. Notably, tissue-tissue interaction plays a key role in both embryonic eye development and postnatal eye emmetropization. Recent advances in eye biometry, physiological optics and systems genetics of refractive error have significantly advanced our understanding of the biological processes involved in refractive eye development and provided a framework for the development of new treatment options for myopia. In this review, we summarize the recent data on the mechanisms and signaling pathways underlying refractive eye development and discuss new evidence suggesting a wide-spread signal integration across different tissues and ocular components involved in visually guided eye growth.
Collapse
Affiliation(s)
- Jody A Summers
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Frank Schaeffel
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany; Myopia Research Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Susana Marcos
- Instituto de Óptica "Daza de Valdés", Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Hao Wu
- Department of Ophthalmology, Columbia University, New York, USA
| | - Andrei V Tkatchenko
- Department of Ophthalmology, Columbia University, New York, USA; Department of Pathology and Cell Biology, Columbia University, New York, USA.
| |
Collapse
|
12
|
Singh RK, Winkler PA, Binette F, Petersen-Jones SM, Nasonkin IO. Comparison of Developmental Dynamics in Human Fetal Retina and Human Pluripotent Stem Cell-Derived Retinal Tissue. Stem Cells Dev 2021; 30:399-417. [PMID: 33677999 DOI: 10.1089/scd.2020.0085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Progressive vision loss, caused by retinal degenerative (RD) diseases such as age-related macular degeneration, retinitis pigmentosa, and Leber congenital amaurosis, severely impacts quality of life and affects millions of people. Finding efficient treatment for blinding diseases is among the greatest unmet clinical needs. The evagination of optic vesicles from developing pluripotent stem cell-derived neuroepithelium and self-organization, lamination, and differentiation of retinal tissue in a dish generated considerable optimism for developing innovative approaches for treating RD diseases, which previously were not feasible. Retinal organoids may be a limitless source of multipotential retinal progenitors, photoreceptors (PRs), and the whole retinal tissue, which are productive approaches for developing RD disease therapies. In this study we compared the distribution and expression level of molecular markers (genetic and epigenetic) in human fetal retina (age 8-16 weeks) and human embryonic stem cell (hESC)-derived retinal tissue (organoids) by immunohistochemistry, RNA-seq, flow cytometry, and mass-spectrometry (to measure methylated and hydroxymethylated cytosine level), with a focus on PRs to evaluate the clinical application of hESC-retinal tissue for vision restoration. Our results revealed high correlation in gene expression profiles and histological profiles between human fetal retina (age 8-13 weeks) and hESC-derived retinal tissue (10-12 weeks). The transcriptome signature of hESC-derived retinal tissue from retinal organoids maintained for 24 weeks in culture resembled the transcriptome of human fetal retina of more advanced developmental stages. The histological profiles of 24 week-old hESC-derived retinal tissue displayed mature PR immunophenotypes and presence of developing inner and outer segments. Collectively, our work highlights the similarity of hESC-derived retinal tissue at early stages of development (10 weeks), and human fetal retina (age 8-13 weeks) and it supports the development of regenerative medicine therapies aimed at using tissue from hESC-derived retinal organoids (hESC-retinal implants) for mitigating vision loss.
Collapse
Affiliation(s)
| | - Paige A Winkler
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | | |
Collapse
|
13
|
Ito A, Ye K, Onda M, Morimoto N, Osakada F. Efficient and robust induction of retinal pigment epithelium cells by tankyrase inhibition regardless of the differentiation propensity of human induced pluripotent stem cells. Biochem Biophys Res Commun 2021; 552:66-72. [PMID: 33743349 DOI: 10.1016/j.bbrc.2021.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/29/2022]
Abstract
Transplantation of retinal pigment epithelium (RPE) cells derived from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs) hold great promise as a new therapeutic modality for age-related macular degeneration and Stargardt disease. The development of hESC/hiPSC-derived RPE cells as cell-based therapeutic products requires a robust, scalable production for every hiPSC line congruent for patients. However, individual hESC/hiPSC lines show bias in differentiation. Here we report an efficient, robust method that induces RPE cells regardless of the differentiation propensity of the hiPSC lines. Application of the tankyrase inhibitor IWR-1-endo, which potentially inhibits Wnt signaling, promoted retinal differentiation in dissociated hiPSCs under feeder-free, two-dimensional culture conditions. The other tankyrase inhibitor, XAV939, also promoted retinal differentiation. However, Wnt signaling inhibitors, IWP-2 and iCRT3, that target porcupine and β-catenin/TCF, respectively, did not. Further treatment with the GSK3β inhibitor CHIR99021 and FGF receptor inhibitor SU5402 induced hexagonal pigmented cells with phagocytotic ability. Notably, the IWR-1-endo-based differentiation method induced RPE cells even in an hiPSC line that expresses a lower level of the differentiation propensity marker SALL3, which is indicative of resistance to ectoderm differentiation. The present study demonstrated that tankyrase inhibitors cause efficient and robust RPE differentiation, irrespective of the SALL3 expression levels in hiPSC lines. This differentiation method will resolve line-to-line variations of hiPSCs in RPE production and facilitate clinical application and industrialization of RPE cell products for regenerative medicine.
Collapse
Affiliation(s)
- Arisa Ito
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Ke Ye
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Masanari Onda
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Nao Morimoto
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan; Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Fumitaka Osakada
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan; Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| |
Collapse
|
14
|
Gamm DM, Clark E, Capowski EE, Singh R. The Role of FGF9 in the Production of Neural Retina and RPE in a Pluripotent Stem Cell Model of Early Human Retinal Development. Am J Ophthalmol 2019; 206:113-131. [PMID: 31078532 DOI: 10.1016/j.ajo.2019.04.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE To investigate the role of fibroblast growth factors (FGFs) in the production of neural retina (NR) and retinal pigmented epithelium (RPE) in a human pluripotent stem cell model of early retinal development. METHODS Human induced pluripotent stem cell (hiPSC) lines from an individual with microphthalmia caused by a functional null mutation (R200Q) in visual system homeobox 2 (VSX2), a transcription factor involved in early NR progenitor cell (NRPC) production, and a normal sibling were differentiated along the retinal and forebrain lineages using an established protocol. Quantitative and global gene expression analyses (microarray and RNAseq) were used to investigate endogenous FGF expression profiles in these cultures over time. Based on these results, mutant and control hiPSC cultures were treated exogenously with selected FGFs and subjected to gene and protein expression analyses to determine their effects on RPE and NR production. RESULTS We found that FGF9 and FGF19 were selectively increased in early hiPSC-derived optic vesicles (OVs) when compared to isogenic cultures of hiPSC-derived forebrain neurospheres. Furthermore, these same FGFs were downregulated over time in (R200Q)VSX2 hiPSC-OVs relative to sibling control hiPSC-OVs. Interestingly, long-term supplementation with FGF9, but not FGF19, partially rescued the mutant retinal phenotype of the (R200Q)VSX2 hiPSC-OV model. However, antagonizing FGF9 in wild-type control hiPSCs did not alter OV development. CONCLUSIONS Our results show that FGF9 acts in concert with VSX2 to promote NR differentiation in hiPSC-OVs and has potential to be used to manipulate early retinogenesis and mitigate ocular defects caused by functional loss of VSX2 activity. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
Affiliation(s)
- David M Gamm
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA; Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | - Eric Clark
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Ruchira Singh
- Department of Ophthalmology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
15
|
Llonch S, Carido M, Ader M. Organoid technology for retinal repair. Dev Biol 2017; 433:132-143. [PMID: 29291970 DOI: 10.1016/j.ydbio.2017.09.028] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/05/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023]
Abstract
A major cause for vision impairment and blindness in industrialized countries is the loss of the light-sensing retinal tissue in the eye. Photoreceptor damage is one of the main characteristics found in retinal degeneration diseases, such as Retinitis Pigmentosa or age-related macular degeneration. The lack of effective therapies to stop photoreceptor loss together with the absence of significant intrinsic regeneration in the human retina converts such degenerative diseases into permanent conditions that are currently irreversible. Cell replacement by means of photoreceptor transplantation has been proposed as a potential approach to tackle cell loss in the retina. Since the first attempt of photoreceptor transplantation in humans, about twenty years ago, several research groups have focused in the development and improvement of technologies necessary to bring cell transplantation for retinal degeneration diseases to reality. Progress in recent years in the generation of human tissue derived from pluripotent stem cells (PSCs) has significantly improved our tools to study human development and disease in the dish. Particularly the availability of 3D culture systems for the generation of PSC-derived organoids, including the human retina, has dramatically increased access to human material for basic and medical research. In this review, we focus on important milestones towards the generation of transplantable photoreceptor precursors from PSC-derived retinal organoids and discuss recent pre-clinical transplantation studies using organoid-derived photoreceptors in context to related in vivo work using primary photoreceptors as donor material. Additionally, we summarize remaining challenges for developing photoreceptor transplantation towards clinical application.
Collapse
Affiliation(s)
- Sílvia Llonch
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Madalena Carido
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases Dresden (DZNE), Arnoldstraße 18, 01307 Dresden, Germany
| | - Marius Ader
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany.
| |
Collapse
|
16
|
Zhao C, Wang Q, Temple S. Stem cell therapies for retinal diseases: recapitulating development to replace degenerated cells. Development 2017; 144:1368-1381. [PMID: 28400433 PMCID: PMC5399657 DOI: 10.1242/dev.133108] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Retinal degenerative diseases are the leading causes of blindness worldwide. Replacing lost retinal cells via stem cell-based therapies is an exciting, rapidly advancing area of translational research that has already entered the clinic. Here, we review the status of these clinical efforts for several significant retinal diseases, describe the challenges involved and discuss how basic developmental studies have contributed to and are needed to advance clinical goals.
Collapse
Affiliation(s)
- Cuiping Zhao
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | - Qingjie Wang
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | - Sally Temple
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA
| |
Collapse
|
17
|
Yap is essential for retinal progenitor cell cycle progression and RPE cell fate acquisition in the developing mouse eye. Dev Biol 2016; 419:336-347. [PMID: 27616714 DOI: 10.1016/j.ydbio.2016.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 12/30/2022]
Abstract
Yap functions as a transcriptional regulator by acting together with sequence-specific DNA binding factors and transcription cofactors to mediate cell proliferation in developing epithelial tissues and tumors. An upstream kinase cascade controls nuclear localization and function in response to partially identified exogenous signals, including cell-to-cell contact. Nevertheless, its role in CNS development is poorly understood. In order to investigate Yap function in developing CNS, we characterized the cellular outcomes after selective Yap gene ablation in developing ocular tissues. When Yap was lost, presumptive retinal pigment epithelium acquired anatomical and molecular characteristics resembling those of the retinal epithelium rather than of RPE, including loss of pigmentation, pseudostratified epithelial morphology and ectopic induction of markers for retinal progenitor cells, like Chx10, and neurons, like β-Tubulin III. In addition, developing retina showed signs of progressive degeneration, including laminar folding, thinning and cell loss, which resulted from multiple defects in cell proliferation and survival, and in junction integrity. Furthermore, Yap-deficient retinal progenitors displayed decreased S-phase cells and altered cell cycle progression. Altogether, our studies not only illustrate the canonical function of Yap in promoting the proliferation of progenitors, but also shed new light on its evolutionarily conserved, instructive role in regional specification, maintenance of junctional integrity and precise regulation of cell proliferation during neuroepithelial development.
Collapse
|
18
|
Stem Cell Therapy for Treatment of Ocular Disorders. Stem Cells Int 2016; 2016:8304879. [PMID: 27293447 PMCID: PMC4884591 DOI: 10.1155/2016/8304879] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/10/2016] [Indexed: 12/30/2022] Open
Abstract
Sustenance of visual function is the ultimate focus of ophthalmologists. Failure of complete recovery of visual function and complications that follow conventional treatments have shifted search to a new form of therapy using stem cells. Stem cell progenitors play a major role in replenishing degenerated cells despite being present in low quantity and quiescence in our body. Unlike other tissues and cells, regeneration of new optic cells responsible for visual function is rarely observed. Understanding the transcription factors and genes responsible for optic cells development will assist scientists in formulating a strategy to activate and direct stem cells renewal and differentiation. We review the processes of human eye development and address the strategies that have been exploited in an effort to regain visual function in the preclinical and clinical state. The update of clinical findings of patients receiving stem cell treatment is also presented.
Collapse
|
19
|
Wang Z, Yasugi S, Ishii Y. Chx10 functions as a regulator of molecular pathways controlling the regional identity in the primordial retina. Dev Biol 2016; 413:104-11. [PMID: 27001188 DOI: 10.1016/j.ydbio.2016.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/01/2016] [Accepted: 03/17/2016] [Indexed: 11/29/2022]
Abstract
The light-sensitive neural retina (NR) and the retinal pigmented epithelium (RPE) develop from a common primordium, the optic vesicle, raising the question of how they acquire and maintain distinct identities. Here, we demonstrate that sustained misexpression of the Chx10 homeobox gene in the presumptive RPE in chick suppresses accumulation of melanin pigments and promotes ectopic NR-like neural differentiation. This phenotypic change involved ectopic expression of NR transcription factor genes, Sox2, Six3, Rx1 and Optx2, which, when misexpressed, counteracted RPE development without upregulating Chx10. These results suggest that Chx10 can function as a cell autonomous regulator of the regional identity in the primordial retina, presumably through a downstream transcriptional cascade.
Collapse
Affiliation(s)
- Zi Wang
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Sadao Yasugi
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Yasuo Ishii
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| |
Collapse
|
20
|
Jayakody SA, Gonzalez-Cordero A, Ali RR, Pearson RA. Cellular strategies for retinal repair by photoreceptor replacement. Prog Retin Eye Res 2015; 46:31-66. [PMID: 25660226 DOI: 10.1016/j.preteyeres.2015.01.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 02/08/2023]
Abstract
Loss of photoreceptors due to retinal degeneration is a major cause of blindness in the developed world. While no effective treatment is currently available, cell replacement therapy, using pluripotent stem cell-derived photoreceptor precursor cells, may be a feasible future treatment. Recent reports have demonstrated rescue of visual function following the transplantation of immature photoreceptors and we have seen major advances in our ability to generate transplantation-competent donor cells from stem cell sources. Moreover, we are beginning to realise the possibilities of using endogenous populations of cells from within the retina itself to mediate retinal repair. Here, we present a review of our current understanding of endogenous repair mechanisms together with recent progress in the use of both ocular and pluripotent stem cells for the treatment of photoreceptor loss. We consider how our understanding of retinal development has underpinned many of the recent major advances in translation and moved us closer to the goal of restoring vision by cellular means.
Collapse
Affiliation(s)
- Sujatha A Jayakody
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Anai Gonzalez-Cordero
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Robin R Ali
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK
| | - Rachael A Pearson
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK.
| |
Collapse
|
21
|
Phillips MJ, Perez ET, Martin JM, Reshel ST, Wallace KA, Capowski EE, Singh R, Wright LS, Clark EM, Barney PM, Stewart R, Dickerson SJ, Miller MJ, Percin EF, Thomson JA, Gamm DM. Modeling human retinal development with patient-specific induced pluripotent stem cells reveals multiple roles for visual system homeobox 2. Stem Cells 2015; 32:1480-92. [PMID: 24532057 DOI: 10.1002/stem.1667] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/07/2014] [Accepted: 01/12/2014] [Indexed: 12/14/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) have been shown to differentiate along the retinal lineage in a manner that mimics normal mammalian development. Under certain culture conditions, hiPSCs form optic vesicle-like structures (OVs), which contain proliferating progenitors capable of yielding all neural retina (NR) cell types over time. Such observations imply conserved roles for regulators of retinogenesis in hiPSC-derived cultures and the developing embryo. However, whether and to what extent this assumption holds true has remained largely uninvestigated. We examined the role of a key NR transcription factor, visual system homeobox 2 (VSX2), using hiPSCs derived from a patient with microphthalmia caused by an R200Q mutation in the VSX2 homeodomain region. No differences were noted between (R200Q)VSX2 and sibling control hiPSCs prior to OV generation. Thereafter, (R200Q)VSX2 hiPSC-OVs displayed a significant growth deficit compared to control hiPSC-OVs, as well as increased production of retinal pigmented epithelium at the expense of NR cell derivatives. Furthermore, (R200Q)VSX2 hiPSC-OVs failed to produce bipolar cells, a distinctive feature previously observed in Vsx2 mutant mice. (R200Q)VSX2 hiPSC-OVs also demonstrated delayed photoreceptor maturation, which could be overcome via exogenous expression of wild-type VSX2 at early stages of retinal differentiation. Finally, RNAseq analysis on isolated hiPSC-OVs implicated key transcription factors and extracellular signaling pathways as potential downstream effectors of VSX2-mediated gene regulation. Our results establish hiPSC-OVs as versatile model systems to study retinal development at stages not previously accessible in humans and support the bona fide nature of hiPSC-OV-derived retinal progeny.
Collapse
Affiliation(s)
- M Joseph Phillips
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Venters SJ, Mikawa T, Hyer J. Early divergence of central and peripheral neural retina precursors during vertebrate eye development. Dev Dyn 2014; 244:266-76. [PMID: 25329498 DOI: 10.1002/dvdy.24218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/07/2014] [Accepted: 10/12/2014] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND During development of the vertebrate eye, optic tissue is progressively compartmentalized into functionally distinct tissues. From the central to the peripheral optic cup, the original optic neuroepithelial tissue compartmentalizes, forming retina, ciliary body, and iris. The retina can be further sub-divided into peripheral and central compartments, where the central domain is specialized for higher visual acuity, having a higher ratio and density of cone photoreceptors in most species. RESULTS Classically, models depict a segregation of the early optic cup into only two domains, neural and non-neural. Recent studies, however, uncovered discrete precursors for central and peripheral retina in the optic vesicle, indicating that the neural retina cannot be considered as a single unit with homogeneous specification and development. Instead, central and peripheral retina may be subject to distinct developmental pathways that underlie their specialization. CONCLUSIONS This review focuses on lineage relationships in the retina and revisits the historical context for segregation of central and peripheral retina precursors before overt eye morphogenesis.
Collapse
Affiliation(s)
- Sara J Venters
- Cardiovascular Research Institute, University of California, San Francisco, California; Department of Neurosurgery, University of California, San Francisco San Francisco, California
| | | | | |
Collapse
|
23
|
Chiba C. The retinal pigment epithelium: An important player of retinal disorders and regeneration. Exp Eye Res 2014; 123:107-14. [DOI: 10.1016/j.exer.2013.07.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/06/2013] [Accepted: 07/08/2013] [Indexed: 12/28/2022]
|
24
|
Abstract
Blindness represents an increasing global problem with significant social and economic impact upon affected patients and society as a whole. In Europe, approximately one in 30 individuals experience sight loss and 75% of those are unemployed, a social burden which is very likely to increase as the population of Europe ages. Diseases affecting the retina account for approximately 26% of blindness globally and 70% of blindness in the United Kingdom. To date, there are no treatments to restore lost retinal cells and improve visual function, highlighting an urgent need for new therapeutic approaches. A pioneering breakthrough has demonstrated the ability to generate synthetic retina from pluripotent stem cells under laboratory conditions, a finding with immense relevance for basic research, in vitro disease modeling, drug discovery, and cell replacement therapies. This review summarizes the current achievements in pluripotent stem cell differentiation toward retinal cells and highlights the steps that need to be completed in order to generate human synthetic retinae with high efficiency and reproducibly from patient-specific pluripotent stem cells.
Collapse
|
25
|
Garita-Hernández M, Diaz-Corrales F, Lukovic D, González-Guede I, Diez-Lloret A, Valdés-Sánchez ML, Massalini S, Erceg S, Bhattacharya SS. Hypoxia increases the yield of photoreceptors differentiating from mouse embryonic stem cells and improves the modeling of retinogenesis in vitro. Stem Cells 2014; 31:966-78. [PMID: 23362204 DOI: 10.1002/stem.1339] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/23/2012] [Indexed: 12/19/2022]
Abstract
Retinitis pigmentosa (RP), a genetically heterogeneous group of diseases together with age-related macular degeneration (AMD), are the leading causes of permanent blindness and are characterized by the progressive dysfunction and death of the light sensing photoreceptors of the retina. Due to the limited regeneration capacity of the mammalian retina, the scientific community has invested significantly in trying to obtain retinal progenitor cells from embryonic stem cells (ESC). These represent an unlimited source of retinal cells, but it has not yet been possible to achieve specific populations, such as photoreceptors, efficiently enough to allow them to be used safely in the future as cell therapy of RP or AMD. In this study, we generated a high yield of photoreceptors from directed differentiation of mouse ESC (mESC) by recapitulating crucial phases of retinal development. We present a new protocol of differentiation, involving hypoxia and taking into account extrinsic and intrinsic cues. These include niche-specific conditions as well as the manipulation of the signaling pathways involved in retinal development. Our results show that hypoxia promotes and improves the differentiation of mESC toward photoreceptors. Different populations of retinal cells are increased in number under the hypoxic conditions applied, such as Crx-positive cells, S-Opsin-positive cells, and double positive cells for Rhodopsin and Recoverin, as shown by immunofluorescence analysis. For the first time, this manuscript reports the high efficiency of differentiation in vivo and the expression of mature rod photoreceptor markers in a large number of differentiated cells, transplanted in the subretinal space of wild-type mice.
Collapse
Affiliation(s)
- Marcela Garita-Hernández
- CABIMER (Centro Andaluz de Biología Molecular y Medicina Regenerativa), Avda. Americo Vespucio s/n, Parque Científico y Tecnológico Cartuja, Sevilla, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Layer PG, Araki M, Vogel-Höpker A. New concepts for reconstruction of retinal and pigment epithelial tissues. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.10.42] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Yip HK. Retinal stem cells and regeneration of vision system. Anat Rec (Hoboken) 2013; 297:137-60. [PMID: 24293400 DOI: 10.1002/ar.22800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/14/2022]
Abstract
The vertebrate retina is a well-characterized model for studying neurogenesis. Retinal neurons and glia are generated in a conserved order from a pool of mutlipotent progenitor cells. During retinal development, retinal stem/progenitor cells (RPC) change their competency over time under the influence of intrinsic (such as transcriptional factors) and extrinsic factors (such as growth factors). In this review, we summarize the roles of these factors, together with the understanding of the signaling pathways that regulate eye development. The information about the interactions between intrinsic and extrinsic factors for retinal cell fate specification is useful to regenerate specific retinal neurons from RPCs. Recent studies have identified RPCs in the retina, which may have important implications in health and disease. Despite the recent advances in stem cell biology, our understanding of many aspects of RPCs in the eye remains limited. PRCs are present in the developing eye of all vertebrates and remain active in lower vertebrates throughout life. In mammals, however, PRCs are quiescent and exhibit very little activity and thus have low capacity for retinal regeneration. A number of different cellular sources of RPCs have been identified in the vertebrate retina. These include PRCs at the retinal margin, pigmented cells in the ciliary body, iris, and retinal pigment epithelium, and Müller cells within the retina. Because PRCs can be isolated and expanded from immature and mature eyes, it is possible now to study these cells in culture and after transplantation in the degenerated retinal tissue. We also examine current knowledge of intrinsic RPCs, and human embryonic stems and induced pluripotent stem cells as potential sources for cell transplant therapy to regenerate the diseased retina.
Collapse
Affiliation(s)
- Henry K Yip
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China; Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China
| |
Collapse
|
28
|
Willardsen M, Hutcheson DA, Moore KB, Vetter ML. The ETS transcription factor Etv1 mediates FGF signaling to initiate proneural gene expression during Xenopus laevis retinal development. Mech Dev 2013; 131:57-67. [PMID: 24219979 DOI: 10.1016/j.mod.2013.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/27/2013] [Accepted: 10/25/2013] [Indexed: 11/28/2022]
Abstract
Fibroblast growth factor signaling plays a significant role in the developing eye, regulating both patterning and neurogenesis. Members of the Pea3/Etv4-subfamily of ETS-domain transcription factors (Etv1, Etv4, and Etv5) are transcriptional activators that are downstream targets of FGF/MAPK signaling, but whether they are required for eye development is unknown. We show that in the developing Xenopus laevis retina, etv1 is transiently expressed at the onset of retinal neurogenesis. We found that etv1 is not required for eye specification, but is required for the expression of atonal-related proneural bHLH transcription factors, and is also required for retinal neuron differentiation. Using transgenic reporters we show that the distal atoh7 enhancer, which is required for the initiation of atoh7 expression in the Xenopus retina, is responsive to both FGF signaling and etv1 expression. Thus, we conclude that Etv1 acts downstream of FGF signaling to regulate the initiation of neurogenesis in the Xenopus retina.
Collapse
Affiliation(s)
- Minde Willardsen
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - David A Hutcheson
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Kathryn B Moore
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Monica L Vetter
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| |
Collapse
|
29
|
Inoue J, Ueda Y, Bando T, Mito T, Noji S, Ohuchi H. The expression of LIM-homeobox genes,Lhx1andLhx5,in the forebrain is essential for neural retina differentiation. Dev Growth Differ 2013; 55:668-75. [DOI: 10.1111/dgd.12074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Junji Inoue
- Department of Cytology and Histology; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; 2-5-1 Shikata-cho; Okayama; 700-8558; Japan
| | - Yuuki Ueda
- Department of Life Systems; Institute of Technology and Science; The University of Tokushima Graduate School; 2-1 Minami-Josanjima-cho; Tokushima; 770-8506; Japan
| | - Tetsuya Bando
- Department of Cytology and Histology; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; 2-5-1 Shikata-cho; Okayama; 700-8558; Japan
| | - Taro Mito
- Department of Life Systems; Institute of Technology and Science; The University of Tokushima Graduate School; 2-1 Minami-Josanjima-cho; Tokushima; 770-8506; Japan
| | - Sumihare Noji
- Department of Life Systems; Institute of Technology and Science; The University of Tokushima Graduate School; 2-1 Minami-Josanjima-cho; Tokushima; 770-8506; Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; 2-5-1 Shikata-cho; Okayama; 700-8558; Japan
| |
Collapse
|
30
|
Sasai Y. Cytosystems dynamics in self-organization of tissue architecture. Nature 2013; 493:318-26. [DOI: 10.1038/nature11859] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/08/2012] [Indexed: 02/08/2023]
|
31
|
Sasai Y, Eiraku M, Suga H. In vitro organogenesis in three dimensions: self-organising stem cells. Development 2013; 139:4111-21. [PMID: 23093423 DOI: 10.1242/dev.079590] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Organ formation during embryogenesis is a complex process that involves various local cell-cell interactions at the molecular and mechanical levels. Despite this complexity, organogenesis can be modelled in vitro. In this article, we focus on two recent examples in which embryonic stem cells can self-organise into three-dimensional structures - the optic cup and the pituitary epithelium; and one case of self-organising adult stem cells - the gut epithelium. We summarise how these approaches have revealed intrinsic programs that drive locally autonomous modes of organogenesis and homeostasis. We also attempt to interpret the results of previous in vivo studies of retinal development in light of the self-organising nature of the retina.
Collapse
Affiliation(s)
- Yoshiki Sasai
- Neurogenesis and Organogenesis Group, RIKEN Center for Developmental Biology, Kobe, Japan.
| | | | | |
Collapse
|
32
|
Defective FGF signaling causes coloboma formation and disrupts retinal neurogenesis. Cell Res 2012; 23:254-73. [PMID: 23147794 DOI: 10.1038/cr.2012.150] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The optic fissure (OF) is a transient opening on the ventral side of the developing vertebrate eye that closes before nearly all retinal progenitor cell differentiation has occurred. Failure to close the OF results in coloboma, a congenital disease that is a major cause of childhood blindness. Although human genetic studies and animal models have linked a number of genes to coloboma, the cellular and molecular mechanisms driving the closure of the OF are still largely unclear. In this study, we used Cre-LoxP-mediated conditional removal of fibroblast growth factor (FGF) receptors, Fgfr1 and Fgfr2, from the developing optic cup (OC) to show that FGF signaling regulates the closing of the OF. Our molecular, cellular and transcriptome analyses of Fgfr1 and Fgfr2 double conditional knockout OCs suggest that FGF signaling controls the OF closure through modulation of retinal progenitor cell proliferation, fate specification and morphological changes. Furthermore, Fgfr1 and Fgfr2 double conditional mutant retinal progenitor cells fail to initiate retinal ganglion cell (RGC) genesis. Taken together, our mouse genetic studies reveal that FGF signaling is essential for OF morphogenesis and RGC development.
Collapse
|
33
|
Kawaue T, Okamoto M, Matsuyo A, Inoue J, Ueda Y, Tomonari S, Noji S, Ohuchi H. Lhx1 in the proximal region of the optic vesicle permits neural retina development in the chicken. Biol Open 2012; 1:1083-93. [PMID: 23213388 PMCID: PMC3507191 DOI: 10.1242/bio.20121396] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/17/2012] [Indexed: 11/25/2022] Open
Abstract
How the eye forms has been one of the fundamental issues in developmental biology. The retinal anlage first appears as the optic vesicle (OV) evaginating from the forebrain. Subsequently, its distal portion invaginates to form the two-walled optic cup, which develops into the outer pigmented and inner neurosensory layers of the retina. Recent work has shown that this optic-cup morphogenesis proceeds as a self-organizing activity without any extrinsic molecules. However, intrinsic factors that regulate this process have not been elucidated. Here we show that a LIM-homeobox gene, Lhx1, normally expressed in the proximal region of the nascent OV, induces a second neurosensory retina formation from the outer pigmented retina when overexpressed in the chicken OV. Lhx2, another LIM-homeobox gene supposed to be involved in early OV formation, could not substitute this function of Lhx1, while Lhx5, closely related to Lhx1, could replace it. Conversely, knockdown of Lhx1 expression by RNA interference resulted in the formation of a small or pigmented vesicle. These results suggest that the proximal region demarcated by Lhx1 expression permits OV development, eventually dividing the two retinal domains.
Collapse
Affiliation(s)
- Takumi Kawaue
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School , 2-1 Minami-Josanjima-cho, Tokushima 770-8506 , Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Shaham O, Menuchin Y, Farhy C, Ashery-Padan R. Pax6: a multi-level regulator of ocular development. Prog Retin Eye Res 2012; 31:351-76. [PMID: 22561546 DOI: 10.1016/j.preteyeres.2012.04.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 04/19/2012] [Accepted: 04/24/2012] [Indexed: 02/08/2023]
Abstract
Eye development has been a paradigm for the study of organogenesis, from the demonstration of lens induction through epithelial tissue morphogenesis, to neuronal specification and differentiation. The transcription factor Pax6 has been shown to play a key role in each of these processes. Pax6 is required for initiation of developmental pathways, patterning of epithelial tissues, activation of tissue-specific genes and interaction with other regulatory pathways. Herein we examine the data accumulated over the last few decades from extensive analyses of biochemical modules and genetic manipulation of the Pax6 gene. Specifically, we describe the regulation of Pax6's expression pattern, the protein's DNA-binding properties, and its specific roles and mechanisms of action at all stages of lens and retinal development. Pax6 functions at multiple levels to integrate extracellular information and execute cell-intrinsic differentiation programs that culminate in the specification and differentiation of a distinct ocular lineage.
Collapse
Affiliation(s)
- Ohad Shaham
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
35
|
Kim HT, Kim JW. Compartmentalization of vertebrate optic neuroephithelium: external cues and transcription factors. Mol Cells 2012; 33:317-24. [PMID: 22450691 PMCID: PMC3887801 DOI: 10.1007/s10059-012-0030-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/21/2012] [Accepted: 02/24/2012] [Indexed: 02/02/2023] Open
Abstract
The vertebrate eye is a laterally extended structure of the forebrain. It develops through a series of events, including specification and regionalization of the anterior neural plate, evagination of the optic vesicle (OV), and development of three distinct optic structures: the neural retina (NR), optic stalk (OS), and retinal pigment epithelium (RPE). Various external signals that act on the optic neuroepithelium in a spatial- and temporal-specific manner control the fates of OV subdomains by inducing localized expression of key transcription factors. Investigating the mechanisms underlying compartmentalization of these distinct optic neuroepithelium-derived tissues is therefore not only important from the standpoint of accounting for vertebrate eye morphogenesis, it is also helpful for understanding the fundamental basis of fate determination of other neuroectoderm- derived tissues. This review focuses on the molecular signatures of OV subdomains and the external factors that direct the development of tissues originating from the OV.
Collapse
Affiliation(s)
- Hyoung-Tai Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| |
Collapse
|
36
|
Zaghloul NA, Yan B, Moody SA. Step-wise specification of retinal stem cells during normal embryogenesis. Biol Cell 2012; 97:321-37. [PMID: 15836431 DOI: 10.1042/bc20040521] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The specification of embryonic cells to produce the retina begins at early embryonic stages as a multi-step process that gradually restricts fate potentials. First, a subset of embryonic cells becomes competent to form retina by their lack of expression of endo-mesoderm-specifying genes. From these cells, a more restricted subset is biased to form retina by virtue of their close proximity to sources of bone morphogenetic protein antagonists during neural induction. During gastrulation, the definitive RSCs (retinal stem cells) are specified as the eye field by interactions with underlying mesoderm and the expression of a network of retina-specifying genes. As the eye field is transformed into the optic vesicle and optic cup, a heterogeneous population of RPCs (retinal progenitor cells) forms to give rise to the different domains of the retina: the optic stalk, retinal pigmented epithelium and neural retina. Further diversity of RPCs appears to occur under the influences of cell-cell interactions, cytokines and combinations of regulatory genes, leading to the differentiation of a multitude of different retinal cell types. This review examines what is known about each sequential step in retinal specification during normal vertebrate development, and how that knowledge will be important to understand how RSCs might be manipulated for regenerative therapies to treat retinal diseases.
Collapse
Affiliation(s)
- Norann A Zaghloul
- Department of Anatomy and Cell Biology, The George Washington University, 2300 Eye Street, NW, Washington, DC 20037, USA
| | | | | |
Collapse
|
37
|
FGF signaling regulates rod photoreceptor cell maintenance and regeneration in zebrafish. Exp Eye Res 2011; 93:726-34. [PMID: 21945172 DOI: 10.1016/j.exer.2011.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/06/2011] [Accepted: 09/09/2011] [Indexed: 11/22/2022]
Abstract
Fgf signaling is required for many biological processes involving the regulation of cell proliferation and maintenance, including embryonic patterning, tissue homeostasis, wound healing, and cancer progression. Although the function of Fgf signaling is suggested in several different regeneration models, including appendage regeneration in amphibians and fin and heart regeneration in zebrafish, it has not yet been studied during zebrafish photoreceptor cell regeneration. Here we demonstrate that intravitreal injections of FGF-2 induced rod precursor cell proliferation and photoreceptor cell neuroprotection during intense light damage. Using the dominant-negative Tg(hsp70:dn-fgfr1) transgenic line, we found that Fgf signaling was required for homeostasis of rod, but not cone, photoreceptors. Even though fgfr1 is expressed in both rod and cone photoreceptors, we found that Fgf signaling differentially affected the regeneration of cone and rod photoreceptors in the light-damaged retina, with the dominant-negative hsp70:dn-fgfr1 transgene significantly repressing rod photoreceptor regeneration without affecting cone photoreceptors. These data suggest that rod photoreceptor homeostasis and regeneration is Fgf-dependent and that rod and cone photoreceptors in adult zebrafish are regulated by different signaling pathways.
Collapse
|
38
|
Puk O, Möller G, Geerlof A, Krowiorz K, Ahmad N, Wagner S, Adamski J, de Angelis MH, Graw J. The pathologic effect of a novel neomorphic Fgf9(Y162C) allele is restricted to decreased vision and retarded lens growth. PLoS One 2011; 6:e23678. [PMID: 21858205 PMCID: PMC3157460 DOI: 10.1371/journal.pone.0023678] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 07/25/2011] [Indexed: 11/18/2022] Open
Abstract
Fibroblast growth factor (Fgf) signalling plays a crucial role in many developmental processes. Among the Fgf pathway ligands, Fgf9 (UniProt: P54130) has been demonstrated to participate in maturation of various organs and tissues including skeleton, testes, lung, heart, and eye. Here we establish a novel Fgf9 allele, discovered in a dominant N-ethyl-N-nitrosourea (ENU) screen for eye-size abnormalities using the optical low coherence interferometry technique. The underlying mouse mutant line Aca12 was originally identified because of its significantly reduced lens thickness. Linkage studies located Aca12 to chromosome 14 within a 3.6 Mb spanning interval containing the positional candidate genes Fgf9 (MGI: 104723), Gja3 (MGI: 95714), and Ift88 (MGI: 98715). While no sequence differences were found in Gja3 and Ift88, we identified an A→G missense mutation at cDNA position 770 of the Fgf9 gene leading to an Y162C amino acid exchange. In contrast to previously described Fgf9 mutants, Fgf9Y162C carriers were fully viable and did not reveal reduced body-size, male-to-female sexual reversal or skeletal malformations. The histological analysis of the retina as well as its basic functional characterization by electroretinography (ERG) did not show any abnormality. However, the analysis of head-tracking response of the Fgf9Y162C mutants in a virtual drum indicated a gene-dosage dependent vision loss of almost 50%. The smaller lenses in Fgf9Y162C suggested a role of Fgf9 during lens development. Histological investigations showed that lens growth retardation starts during embryogenesis and continues after birth. Young Fgf9Y162C lenses remained transparent but developed age-related cataracts. Taken together, Fgf9Y162C is a novel neomorphic allele that initiates microphakia and reduced vision without effects on organs and tissues outside the eye. Our data point to a role of Fgf9 signalling in primary and secondary lens fiber cell growth. The results underline the importance of allelic series to fully understand multiple functions of a gene.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding, Competitive
- Cataract/genetics
- Female
- Fibroblast Growth Factor 9/chemistry
- Fibroblast Growth Factor 9/genetics
- Fibroblast Growth Factor 9/metabolism
- Genotype
- Haplotypes
- Heparin/metabolism
- Lens, Crystalline/embryology
- Lens, Crystalline/growth & development
- Lens, Crystalline/metabolism
- Male
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Models, Molecular
- Molecular Sequence Data
- Mutation, Missense
- Protein Binding
- Protein Structure, Tertiary
- Sequence Homology, Amino Acid
- Vision, Ocular/genetics
- Visual Acuity/genetics
Collapse
Affiliation(s)
- Oliver Puk
- German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Burgess D, Zhang Y, Siefker E, Vaca R, Kuracha MR, Reneker L, Overbeek PA, Govindarajan V. Activated Ras alters lens and corneal development through induction of distinct downstream targets. BMC DEVELOPMENTAL BIOLOGY 2010; 10:13. [PMID: 20105280 PMCID: PMC2828409 DOI: 10.1186/1471-213x-10-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 01/27/2010] [Indexed: 01/04/2023]
Abstract
Background Mammalian Ras genes regulate diverse cellular processes including proliferation and differentiation and are frequently mutated in human cancers. Tumor development in response to Ras activation varies between different tissues and the molecular basis for these variations are poorly understood. The murine lens and cornea have a common embryonic origin and arise from adjacent regions of the surface ectoderm. Activation of the fibroblast growth factor (FGF) signaling pathway induces the corneal epithelial cells to proliferate and the lens epithelial cells to exit the cell cycle. The molecular mechanisms that regulate the differential responses of these two related tissues have not been defined. We have generated transgenic mice that express a constitutively active version of human H-Ras in their lenses and corneas. Results Ras transgenic lenses and corneal epithelial cells showed increased proliferation with concomitant increases in cyclin D1 and D2 expression. This initial increase in proliferation is sustained in the cornea but not in the lens epithelial cells. Coincidentally, cdk inhibitors p27Kip1 and p57Kip2 were upregulated in the Ras transgenic lenses but not in the corneas. Phospho-Erk1 and Erk2 levels were elevated in the lens but not in the cornea and Spry 1 and Spry 2, negative regulators of Ras-Raf-Erk signaling, were upregulated more in the corneal than in the lens epithelial cells. Both lens and corneal differentiation programs were sensitive to Ras activation. Ras transgenic embryos showed a distinctive alteration in the architecture of the lens pit. Ras activation, though sufficient for upregulation of Prox1, a transcription factor critical for cell cycle exit and initiation of fiber differentiation, is not sufficient for induction of terminal fiber differentiation. Expression of Keratin 12, a marker of corneal epithelial differentiation, was reduced in the Ras transgenic corneas. Conclusions Collectively, these results suggest that Ras activation a) induces distinct sets of downstream targets in the lens and cornea resulting in distinct cellular responses and b) is sufficient for initiation but not completion of lens fiber differentiation.
Collapse
Affiliation(s)
- Daniel Burgess
- Department of Surgery, 2500 California Plaza, Creighton University, Omaha, NE 68178, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Organogenesis of the eye is a multistep process that starts with the formation of optic vesicles followed by invagination of the distal domain of the vesicles and the overlying lens placode resulting in morphogenesis of the optic cup. The late optic vesicle becomes patterned into distinct ocular tissues: the neural retina, retinal pigment epithelium (RPE), and optic stalk. Multiple congenital eye disorders, including anophthalmia or microphthalmia, aniridia, coloboma, and retinal dysplasia, stem from disruptions in embryonic eye development. Thus, it is critical to understand the mechanisms that lead to initial specification and differentiation of ocular tissues. An accumulating number of studies demonstrate that a complex interplay between inductive signals provided by tissue-tissue interactions and cell-intrinsic factors is critical to ensuring proper specification of ocular tissues as well as maintenance of RPE cell fate. While several of the extrinsic and intrinsic determinants have been identified, we are just at the beginning in understanding how these signals are integrated. In addition, we know very little about the actual output of these interactions. In this chapter, we provide an update of the mechanisms controlling the early steps of eye development in vertebrates, with emphasis on optic vesicle evagination, specification of neural retina and RPE at the optic vesicle stage, the process of invagination during morphogenesis of the optic cup, and maintenance of the RPE cell fate.
Collapse
Affiliation(s)
- Sabine Fuhrmann
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
41
|
Smith AN, Radice G, Lang RA. Which FGF ligands are involved in lens induction? Dev Biol 2009; 337:195-8. [PMID: 19913010 DOI: 10.1016/j.ydbio.2009.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/05/2009] [Accepted: 11/05/2009] [Indexed: 11/17/2022]
Affiliation(s)
- April N Smith
- The Visual Systems Group, Division of Pediatric Ophthalmology, University of Cincinnati, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
42
|
Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors. Nat Neurosci 2009; 12:1373-80. [PMID: 19838179 DOI: 10.1038/nn.2409] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 08/25/2009] [Indexed: 12/12/2022]
Abstract
The fate of cortical progenitors, which progressively generate neurons and glial cells during development, is determined by temporally and spatially regulated signaling mechanisms. We found that the transcription factor Sip1 (Zfhx1b), which is produced at high levels in postmitotic neocortical neurons, regulates progenitor fate non-cell autonomously. Conditional deletion of Sip1 in young neurons induced premature production of upper-layer neurons at the expense of deep layers, precocious and increased generation of glial precursors, and enhanced postnatal astrocytogenesis. The premature upper-layer generation coincided with overexpression of the neurotrophin-3 (Ntf3) gene and upregulation of fibroblast growth factor 9 (Fgf9) gene expression preceded precocious gliogenesis. Exogenous application of Fgf9 to mouse cortical slices induced excessive generation of glial precursors in the germinal zone. Our data suggest that Sip1 restrains the production of signaling factors in postmitotic neurons that feed back to progenitors to regulate the timing of cell fate switch and the number of neurons and glial cells throughout corticogenesis.
Collapse
|
43
|
Sehgal R, Sheibani N, Rhodes SJ, Belecky Adams TL. BMP7 and SHH regulate Pax2 in mouse retinal astrocytes by relieving TLX repression. Dev Biol 2009; 332:429-43. [PMID: 19505455 DOI: 10.1016/j.ydbio.2009.05.579] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 05/22/2009] [Accepted: 05/27/2009] [Indexed: 11/30/2022]
Abstract
Pax2 is essential for development of the neural tube, urogenital system, optic vesicle, optic cup and optic tract. In the eye, Pax2 deficiency is associated with coloboma, a loss of astrocytes in the optic nerve and retina, and abnormal axonal pathfinding of the ganglion cell axons at the optic chiasm. Thus, appropriate expression of Pax2 is essential for astrocyte determination and differentiation. Although BMP7 and SHH have been shown to regulate Pax2 expression, the molecular mechanism by which this regulation occurs is not well understood. In this study, we determined that BMP7 and SHH activate Pax2 expression in mouse retinal astrocyte precursors in vitro. SHH appeared to play a dual role in Pax2 regulation; 1) SHH may regulate BMP7 expression, and 2) the SHH pathway cooperates with the BMP pathway to regulate Pax2 expression. BMP and SHH pathway members can interact separately or together with TLX, a repressor protein in the tailless transcription factor family. Here we show that the interaction of both pathways with TLX relieves the repression of Pax2 expression in mouse retinal astrocytes. Together these data reveal a new mechanism for the cooperative actions of signaling pathways in astrocyte determination and differentiation and suggest interactions of regulatory pathways that are applicable to other developmental programs.
Collapse
Affiliation(s)
- Rachna Sehgal
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN-46202, USA
| | | | | | | |
Collapse
|
44
|
Fernández-Medarde A, Barhoum R, Riquelme R, Porteros A, Núñez A, de Luis A, de Las Rivas J, de la Villa P, Varela-Nieto I, Santos E. RasGRF1 disruption causes retinal photoreception defects and associated transcriptomic alterations. J Neurochem 2009; 110:641-52. [PMID: 19457086 DOI: 10.1111/j.1471-4159.2009.06162.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RasGRF1 null mutant mice display impaired memory/learning and their hippocampus transcriptomic pattern includes a number of differentially expressed genes playing significant roles in sensory development and function. Odour avoidance and auditory brainstem response tests yielded normal results but electroretinographic analysis showed severe light perception impairment in the RasGRF1 knockouts. Whereas no structural alterations distinguished the retinas of wild-type and knockout mice, microarray transcriptional analysis identified at least 44 differentially expressed genes in the retinas of these Knockout animals. Among these, Crb1, Pttg1, Folh1 and Myo7a have been previously related to syndromes involving retina degeneration. Interestingly, over-expression of Folh1 would be expected to result in accumulation of its enzymatic product N-acetyl-aspartate, an event known to be linked to Canavan disease, a human cerebral degenerative syndrome often involving blindness and hearing loss. Consistently, in vivo brain nuclear magnetic resonance spectroscopy identified higher levels of N-acetyl-aspartate in our RasGRF1-/- mice and immunohistochemical analysis detected reduced levels of aspartoacylase, the enzyme which degrades N-acetyl-aspartate. These studies demonstrate for the first time the functional relevance of Ras signalling in mammalian photoreception and warrant further analysis of RasGRF1 Knockout mice as potential models to analyse molecular mechanisms underlying defective photoreception human diseases.
Collapse
|
45
|
Avdonin PP, Markitantova YV, Zinovieva RD, Mitashov VI. Expression of regulatory genes Px6, Otx2, Six3, and FGF2 during newt retina regeneration. BIOL BULL+ 2008. [DOI: 10.1134/s1062359008040043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Susaki K, Chiba C. MEK mediates in vitro neural transdifferentiation of the adult newt retinal pigment epithelium cells: Is FGF2 an induction factor? ACTA ACUST UNITED AC 2007; 20:364-79. [PMID: 17850510 DOI: 10.1111/j.1600-0749.2007.00407.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adult newts can regenerate their entire retinas through transdifferentiation of the retinal pigment epithelium (RPE) cells. As yet, however, underlying molecular mechanisms remain virtually unknown. On the other hand, in embryonic/larval vertebrates, an MEK [mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase] pathway activated by fibroblast growth factor-2 (FGF2) is suggested to be involved in the induction of transdifferentiation of the RPE into a neural retina. Therefore, we examined using culture systems whether the FGF2/MEK pathway is also involved in the adult newt RPE transdifferentiation. Here we show that the adult newt RPE cells can switch to neural cells expressing pan-retinal-neuron (PRN) markers such as acetylated tubulin, and that an MEK pathway is essential for the induction of this process, whereas FGF2 seems an unlikely primary induction factor. In addition, we show by immunohistochemistry that the PRN markers are not expressed until the 1-3 cells thick regenerating retina, which contains retinal progenitor cells, appears. Our current results suggest that the activation of an MEK pathway in RPE cells might be involved in the induction process of retinal regeneration in the adult newt, however if this is the case, we must assume complementary mechanisms that repress the MEK-mediated misexpression of PRN markers in the initial process of transdifferentiation.
Collapse
Affiliation(s)
- Kanako Susaki
- Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | | |
Collapse
|
47
|
Vugler A, Lawrence J, Walsh J, Carr A, Gias C, Semo M, Ahmado A, da Cruz L, Andrews P, Coffey P. Embryonic stem cells and retinal repair. Mech Dev 2007; 124:807-29. [PMID: 17881192 DOI: 10.1016/j.mod.2007.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 08/07/2007] [Accepted: 08/07/2007] [Indexed: 12/11/2022]
Abstract
In this review we examine the potential of embryonic stem cells (ESCs) for use in the treatment of retinal diseases involving photoreceptors and retinal pigment epithelium (RPE). We outline the ontogenesis of target retinal cell types (RPE, rods and cones) and discuss how an understanding of developmental processes can inform our manipulation of ESCs in vitro. Due to their potential for cellular therapy, special emphasis is placed upon the derivation and culture of human embryonic stem cells (HESCs) and their differentiation towards a retinal phenotype. In terms of achieving this goal, we suggest that much of the success to date reflects permissive in vitro environments provided by established protocols for HESC derivation, propagation and neural differentiation. In addition, we summarise key factors that may be important for enhancing efficiency of retinal cell-type derivation from HESCs. The retina is an amenable component of the central nervous system (CNS) and as such, diseases of this structure provide a realistic target for the application of HESC-derived cellular therapy to the CNS. In order to further this goal, the second component of our review focuses on the cellular and molecular cues within retinal environments that may influence the survival and behaviour of transplanted cells. Our analysis considers both the potential barriers to transplant integration in the retina itself together with the remodelling in host visual centres that is known to accompany retinal dystrophy.
Collapse
Affiliation(s)
- Anthony Vugler
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V9EL, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Araki M. Regeneration of the amphibian retina: role of tissue interaction and related signaling molecules on RPE transdifferentiation. Dev Growth Differ 2007; 49:109-20. [PMID: 17335432 DOI: 10.1111/j.1440-169x.2007.00911.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Regeneration of eye tissue is one of the classic subjects in developmental biology and it is now being vigorously studied to reveal the cellular and molecular mechanisms involved. Although many experimental animal models have been studied, there may be a common basic mechanism that governs retinal regeneration. This can also control ocular development, suggesting the existence of a common principle between the development and regeneration of eye tissues. This notion is now becoming more widely accepted by recent studies on the genetic regulation of ocular development. Retinal regeneration can take place in a variety of vertebrates including fish, amphibians and birds. The newt, however, has been considered to be the sole animal that can regenerate the whole retina after the complete removal of the retina. We recently discovered that the anuran amphibian also retains a similar ability in the mature stage, suggesting the possibility that such a potential could be found in other animal species. In the present review article, retinal regeneration of amphibians (the newt and Xenopus laevis) and avian embryos are described, with a particular focus on transdifferentiation of retinal pigmented epithelium. One of the recent progresses in this field is the availability of tissue culture methods to analyze the initial process of transdifferentiation, and this enables us to compare the proliferation and neural differentiation of retinal pigmented epithelial cells from various animal species under the same conditions. It was revealed that tissue interactions between the retinal pigmented epithelium and underlying connective tissues (the choroid) play a substantial role in transdifferentiation and that this is mediated by a diffusible signal such as fibroblast growth factor 2. We propose that tissue interaction, particularly mesenchyme-neuroepithelial interaction, is considered to play a fundamental role both in retinal development and regeneration.
Collapse
Affiliation(s)
- Masasuke Araki
- Developmental Neurobiology Laboratory, Department of Biological Sciences, Nara Women's University, Nara 630-8506, Japan.
| |
Collapse
|
49
|
Dias da Silva MR, Tiffin N, Mima T, Mikawa T, Hyer J. FGF-mediated induction of ciliary body tissue in the chick eye. Dev Biol 2007; 304:272-85. [PMID: 17275804 PMCID: PMC1863121 DOI: 10.1016/j.ydbio.2006.12.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 12/13/2006] [Accepted: 12/14/2006] [Indexed: 11/26/2022]
Abstract
Upon morphogenesis, the simple neuroepithelium of the optic vesicle gives rise to four basic tissues in the vertebrate optic cup: pigmented epithelium, sensory neural retina, secretory ciliary body and muscular iris. Pigmented epithelium and neural retina are established through interactions with specific environments and signals: periocular mesenchyme/BMP specifies pigmented epithelium and surface ectoderm/FGF specifies neural retina. The anterior portions (iris and ciliary body) are specified through interactions with lens although the molecular mechanisms of induction have not been deciphered. As lens is a source of FGF, we examined whether this factor was involved in inducing ciliary body. We forced the pigmented epithelium of the embryonic chick eye to express FGF4. Infected cells and their immediate neighbors were transformed into neural retina. At a distance from the FGF signal, the tissue transitioned back into pigmented epithelium. Ciliary body tissue was found in the transitioning zone. The ectopic ciliary body was never in contact with the lens tissue. In order to assess the contribution of the lens on the specification of normal ciliary body, we created optic cups in which the lens had been removed while still pre-lens ectoderm. Ciliary body tissue was identified in the anterior portion of lens-less optic cups. We propose that the ciliary body may be specified at optic vesicle stages, at the same developmental stage when the neural retina and pigmented epithelium are specified and we present a model as to how this could be accomplished through overlapping BMP and FGF signals.
Collapse
Affiliation(s)
- Magnus R Dias da Silva
- Department of Neurosurgery, Box 0520, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
50
|
Adler R, Canto-Soler MV. Molecular mechanisms of optic vesicle development: complexities, ambiguities and controversies. Dev Biol 2007; 305:1-13. [PMID: 17335797 PMCID: PMC1927083 DOI: 10.1016/j.ydbio.2007.01.045] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 01/26/2007] [Accepted: 01/30/2007] [Indexed: 12/31/2022]
Abstract
Optic vesicle formation, transformation into an optic cup and integration with neighboring tissues are essential for normal eye formation, and involve the coordinated occurrence of complex cellular and molecular events. Perhaps not surprisingly, these complex phenomena have provided fertile ground for controversial and even contradictory results and conclusions. After presenting an overview of current knowledge of optic vesicle development, we will address conceptual and methodological issues that complicate research in this field. This will be done through a review of the pertinent literature, as well as by drawing on our own experience, gathered through recent studies of both intra- and extra-cellular regulation of optic vesicle development and patterning. Finally, and without attempting to be exhaustive, we will point out some important aspects of optic vesicle development that have not yet received enough attention.
Collapse
Affiliation(s)
- Ruben Adler
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287-9257, USA.
| | | |
Collapse
|