1
|
Kumar S, Umair Z, Kumar V, Goutam RS, Park S, Lee U, Kim J. Xbra modulates the activity of linker region phosphorylated Smad1 during Xenopus development. Sci Rep 2024; 14:8922. [PMID: 38637565 PMCID: PMC11026473 DOI: 10.1038/s41598-024-59299-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
The Bmp/Smad1 pathway plays a crucial role in developmental processes and tissue homeostasis. Mitogen-activated protein kinase (Mapk)/Erk mediated phosphorylation of Smad1 in the linker region leads to Smad1 degradation, cytoplasmic retention and inhibition of Bmp/Smad1 signaling. While Fgf/Erk pathway has been documented to inhibit Bmp/Smad1 signaling, several studies also suggests the cooperative interaction between these two pathways in different context. However, the precise role and molecular pathway of this collaborative interaction remain obscure. Here, we identified Xbra induced by Fgf/Erk signaling as a factor in a protective mechanism for Smad1. Xbra physically interacted with the linker region phosphorylated Smad1 to make Xbra/Smad1/Smad4 trimeric complex, leading to Smad1 nuclear localization and protecting it from ubiquitin-mediated proteasomal degradation. This interaction of Xbra/Smad1/Smad4 led to sustained nuclear localization of Smad1 and the upregulation of lateral mesoderm genes, while concurrently suppression of neural and blood forming genes. Taken together, the results suggests Xbra-dependent cooperative interplays between Fgf/Erk and Bmp/Smad1 signaling during lateral mesoderm specification in Xenopus embryos.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, B-6041, Belgium
| | - Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea
| | - Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea.
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea.
| |
Collapse
|
2
|
Lyadova I, Gerasimova T, Nenasheva T. Macrophages Derived From Human Induced Pluripotent Stem Cells: The Diversity of Protocols, Future Prospects, and Outstanding Questions. Front Cell Dev Biol 2021; 9:640703. [PMID: 34150747 PMCID: PMC8207294 DOI: 10.3389/fcell.2021.640703] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Macrophages (Mφ) derived from induced pluripotent stem cells (iMphs) represent a novel and promising model for studying human Mφ function and differentiation and developing new therapeutic strategies based on or oriented at Mφs. iMphs have several advantages over the traditionally used human Mφ models, such as immortalized cell lines and monocyte-derived Mφs. The advantages include the possibility of obtaining genetically identical and editable cells in a potentially scalable way. Various applications of iMphs are being developed, and their number is rapidly growing. However, the protocols of iMph differentiation that are currently used vary substantially, which may lead to differences in iMph differentiation trajectories and properties. Standardization of the protocols and identification of minimum required conditions that would allow obtaining iMphs in a large-scale, inexpensive, and clinically suitable mode are needed for future iMph applications. As a first step in this direction, the current review discusses the fundamental basis for the generation of human iMphs, performs a detailed analysis of the generalities and the differences between iMph differentiation protocols currently employed, and discusses the prospects of iMph applications.
Collapse
Affiliation(s)
- Irina Lyadova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
3
|
Sanchez-Ferras O, Pacis A, Sotiropoulou M, Zhang Y, Wang YC, Bourgey M, Bourque G, Ragoussis J, Bouchard M. A coordinated progression of progenitor cell states initiates urinary tract development. Nat Commun 2021; 12:2627. [PMID: 33976190 PMCID: PMC8113267 DOI: 10.1038/s41467-021-22931-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/05/2021] [Indexed: 02/08/2023] Open
Abstract
The kidney and upper urinary tract develop through reciprocal interactions between the ureteric bud and the surrounding mesenchyme. Ureteric bud branching forms the arborized collecting duct system of the kidney, while ureteric tips promote nephron formation from dedicated progenitor cells. While nephron progenitor cells are relatively well characterized, the origin of ureteric bud progenitors has received little attention so far. It is well established that the ureteric bud is induced from the nephric duct, an epithelial duct derived from the intermediate mesoderm of the embryo. However, the cell state transitions underlying the progression from intermediate mesoderm to nephric duct and ureteric bud remain unknown. Here we show that nephric duct morphogenesis results from the coordinated organization of four major progenitor cell populations. Using single cell RNA-seq and Cluster RNA-seq, we show that these progenitors emerge in time and space according to a stereotypical pattern. We identify the transcription factors Tfap2a/b and Gata3 as critical coordinators of this progenitor cell progression. This study provides a better understanding of the cellular origin of the renal collecting duct system and associated urinary tract developmental diseases, which may inform guided differentiation of functional kidney tissue.
Collapse
Affiliation(s)
- Oraly Sanchez-Ferras
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Alain Pacis
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, QC, Canada
- Canadian Centre for Computational Genomics, McGill University, Montréal, QC, Canada
| | - Maria Sotiropoulou
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
| | - Yuhong Zhang
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Yu Chang Wang
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
| | - Mathieu Bourgey
- Canadian Centre for Computational Genomics, McGill University, Montréal, QC, Canada
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
| | - Guillaume Bourque
- Canadian Centre for Computational Genomics, McGill University, Montréal, QC, Canada
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
| | - Jiannis Ragoussis
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Maxime Bouchard
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Wymeersch FJ, Wilson V, Tsakiridis A. Understanding axial progenitor biology in vivo and in vitro. Development 2021; 148:148/4/dev180612. [PMID: 33593754 DOI: 10.1242/dev.180612] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of the components that make up the embryonic body axis, such as the spinal cord and vertebral column, takes place in an anterior-to-posterior (head-to-tail) direction. This process is driven by the coordinated production of various cell types from a pool of posteriorly-located axial progenitors. Here, we review the key features of this process and the biology of axial progenitors, including neuromesodermal progenitors, the common precursors of the spinal cord and trunk musculature. We discuss recent developments in the in vitro production of axial progenitors and their potential implications in disease modelling and regenerative medicine.
Collapse
Affiliation(s)
- Filip J Wymeersch
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Valerie Wilson
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield S10 2TN UK .,Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| |
Collapse
|
5
|
Park DE, Cheng J, McGrath JP, Lim MY, Cushman C, Swanson SK, Tillgren ML, Paulo JA, Gokhale PC, Florens L, Washburn MP, Trojer P, DeCaprio JA. Merkel cell polyomavirus activates LSD1-mediated blockade of non-canonical BAF to regulate transformation and tumorigenesis. Nat Cell Biol 2020; 22:603-615. [PMID: 32284543 PMCID: PMC7336275 DOI: 10.1038/s41556-020-0503-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
Merkel cell carcinoma (MCC), a neuroendocrine cancer of the skin, is caused by integration of Merkel cell polyomavirus (MCV) and persistent expression of Large T antigen (LT) and Small T antigen (ST). We report that ST in complex with MYCL and the EP400 complex activates expression of LSD1 (KDM1A), RCOR2, and INSM1 to repress gene expression by the lineage transcription factor ATOH1. LSD1 inhibition reduces growth of MCC in vitro and in vivo. Through a forward-genetics CRISPR-Cas9 screen, we identified an antagonistic relationship between LSD1 and the non-canonical BAF (ncBAF) chromatin remodeling complex. Changes in gene expression and chromatin accessibility caused by LSD1 inhibition could be partially rescued by BRD9 inhibition, revealing that LSD1 and ncBAF antagonistically regulate an overlapping set of genes. Our work provides mechanistic insight into the dependence of MCC on LSD1 and a tumor suppressor role for ncBAF in cancer.
Collapse
Affiliation(s)
- Donglim Esther Park
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jingwei Cheng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Matthew Y Lim
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Camille Cushman
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Michelle L Tillgren
- Experimental Therapeutics Core, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Prafulla C Gokhale
- Experimental Therapeutics Core, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - James A DeCaprio
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA. .,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Edri S, Hayward P, Baillie-Johnson P, Steventon BJ, Martinez Arias A. An epiblast stem cell-derived multipotent progenitor population for axial extension. Development 2019; 146:dev.168187. [PMID: 31023877 DOI: 10.1242/dev.168187] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 04/10/2019] [Indexed: 12/21/2022]
Abstract
The caudal lateral epiblast of mammalian embryos harbours bipotent progenitors that contribute to the spinal cord and the paraxial mesoderm in concert with the body axis elongation. These progenitors, called neural mesodermal progenitors (NMPs), are identified as cells that co-express Sox2 and T/brachyury, a criterion used to derive NMP-like cells from embryonic stem cells in vitro However, unlike embryonic NMPs, these progenitors do not self-renew. Here, we find that the protocols that yield NMP-like cells in vitro initially produce a multipotent population that, in addition to NMPs, generates progenitors for the lateral plate and intermediate mesoderm. We show that epiblast stem cells (EpiSCs) are an effective source of these multipotent progenitors, which are further differentiated by a balance between BMP and Nodal signalling. Importantly, we show that NMP-like cells derived from EpiSCs exhibit limited self-renewal in vitro and a gene expression signature like their embryonic counterparts.
Collapse
Affiliation(s)
- Shlomit Edri
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EH, UK
| | - Penny Hayward
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EH, UK
| | - Peter Baillie-Johnson
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EH, UK
| | - Benjamin J Steventon
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
7
|
Frith TJ, Granata I, Wind M, Stout E, Thompson O, Neumann K, Stavish D, Heath PR, Ortmann D, Hackland JO, Anastassiadis K, Gouti M, Briscoe J, Wilson V, Johnson SL, Placzek M, Guarracino MR, Andrews PW, Tsakiridis A. Human axial progenitors generate trunk neural crest cells in vitro. eLife 2018; 7:35786. [PMID: 30095409 PMCID: PMC6101942 DOI: 10.7554/elife.35786] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Abstract
The neural crest (NC) is a multipotent embryonic cell population that generates distinct cell types in an axial position-dependent manner. The production of NC cells from human pluripotent stem cells (hPSCs) is a valuable approach to study human NC biology. However, the origin of human trunk NC remains undefined and current in vitro differentiation strategies induce only a modest yield of trunk NC cells. Here we show that hPSC-derived axial progenitors, the posteriorly-located drivers of embryonic axis elongation, give rise to trunk NC cells and their derivatives. Moreover, we define the molecular signatures associated with the emergence of human NC cells of distinct axial identities in vitro. Collectively, our findings indicate that there are two routes toward a human post-cranial NC state: the birth of cardiac and vagal NC is facilitated by retinoic acid-induced posteriorisation of an anterior precursor whereas trunk NC arises within a pool of posterior axial progenitors.
Collapse
Affiliation(s)
- Thomas Jr Frith
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Ilaria Granata
- Computational and Data Science Laboratory, High Performance Computing and Networking Institute, National Research Council of Italy, Napoli, Italy
| | - Matthew Wind
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Erin Stout
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Oliver Thompson
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Katrin Neumann
- Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Dylan Stavish
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Daniel Ortmann
- Anne McLaren Laboratory, Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - James Os Hackland
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | | | - Mina Gouti
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Valerie Wilson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Marysia Placzek
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.,The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Mario R Guarracino
- Computational and Data Science Laboratory, High Performance Computing and Networking Institute, National Research Council of Italy, Napoli, Italy
| | - Peter W Andrews
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom.,The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
8
|
Sharma R, Shafer MER, Bareke E, Tremblay M, Majewski J, Bouchard M. Bmp signaling maintains a mesoderm progenitor cell state in the mouse tailbud. J Cell Sci 2017. [DOI: 10.1242/jcs.209577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|