1
|
Compe E, Pangou E, Le May N, Elly C, Braun C, Hwang JH, Coin F, Sumara I, Choi KW, Egly JM. Phosphorylation of XPD drives its mitotic role independently of its DNA repair and transcription functions. SCIENCE ADVANCES 2022; 8:eabp9457. [PMID: 35977011 PMCID: PMC9385140 DOI: 10.1126/sciadv.abp9457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The helicase XPD is known as a key subunit of the DNA repair/transcription factor TFIIH. However, here, we report that XPD, independently to other TFIIH subunits, can localize with the motor kinesin Eg5 to mitotic spindles and the midbodies of human cells. The XPD/Eg5 partnership is promoted upon phosphorylation of Eg5/T926 by the kinase CDK1, and conversely, it is reduced once Eg5/S1033 is phosphorylated by NEK6, a mitotic kinase that also targets XPD at T425. The phosphorylation of XPD does not affect its DNA repair and transcription functions, but it is required for Eg5 localization, checkpoint activation, and chromosome segregation in mitosis. In XPD-mutated cells derived from a patient with xeroderma pigmentosum, the phosphomimetic form XPD/T425D or even the nonphosphorylatable form Eg5/S1033A specifically restores mitotic chromosome segregation errors. These results thus highlight the phospho-dependent mitotic function of XPD and reveal how mitotic defects might contribute to XPD-related disorders.
Collapse
Affiliation(s)
- Emmanuel Compe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Expression et Réparation du Génome, Equipe labellisée Ligue contre le Cancer, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404 Strasbourg, France
| | - Evanthia Pangou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Cycle Cellulaire et Signalisation de l’Ubiquitine, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404, Strasbourg, France
| | - Nicolas Le May
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Expression et Réparation du Génome, Equipe labellisée Ligue contre le Cancer, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404 Strasbourg, France
| | - Clémence Elly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Expression et Réparation du Génome, Equipe labellisée Ligue contre le Cancer, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404 Strasbourg, France
| | - Cathy Braun
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Expression et Réparation du Génome, Equipe labellisée Ligue contre le Cancer, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404 Strasbourg, France
| | - Ji-Hyun Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Frédéric Coin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Expression et Réparation du Génome, Equipe labellisée Ligue contre le Cancer, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404 Strasbourg, France
| | - Izabela Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Cycle Cellulaire et Signalisation de l’Ubiquitine, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404, Strasbourg, France
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Expression et Réparation du Génome, Equipe labellisée Ligue contre le Cancer, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404 Strasbourg, France
- College of Medicine, National Taiwan Institute, Taipei 10051, Taiwan
| |
Collapse
|
2
|
Vazquez-Pianzola P, Beuchle D, Saro G, Hernández G, Maldonado G, Brunßen D, Meister P, Suter B. Female meiosis II and pronuclear fusion require the microtubule transport factor Bicaudal D. Development 2022; 149:275749. [DOI: 10.1242/dev.199944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/25/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Bicaudal D (BicD) is a dynein adaptor that transports different cargoes along microtubules. Reducing the activity of BicD specifically in freshly laid Drosophila eggs by acute protein degradation revealed that BicD is needed to produce normal female meiosis II products, to prevent female meiotic products from re-entering the cell cycle, and for pronuclear fusion. Given that BicD is required to localize the spindle assembly checkpoint (SAC) components Mad2 and BubR1 to the female meiotic products, it appears that BicD functions to localize these components to control metaphase arrest of polar bodies. BicD interacts with Clathrin heavy chain (Chc), and both proteins localize to centrosomes, mitotic spindles and the tandem spindles during female meiosis II. Furthermore, BicD is required to localize clathrin and the microtubule-stabilizing factors transforming acidic coiled-coil protein (D-TACC/Tacc) and Mini spindles (Msps) correctly to the meiosis II spindles, suggesting that failure to localize these proteins may perturb SAC function. Furthermore, immediately after the establishment of the female pronucleus, D-TACC and Caenorhabditis elegans BicD, tacc and Chc are also needed for pronuclear fusion, suggesting that the underlying mechanism might be more widely used across species.
Collapse
Affiliation(s)
| | - Dirk Beuchle
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Gabriella Saro
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Greco Hernández
- Instituto Nacional de Cancerología (INCan) 2 Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer , , 14080-Tlalpan, Mexico City , Mexico
| | - Giovanna Maldonado
- Instituto Nacional de Cancerología (INCan) 2 Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer , , 14080-Tlalpan, Mexico City , Mexico
| | - Dominique Brunßen
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Peter Meister
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Beat Suter
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| |
Collapse
|
3
|
Chippalkatti R, Egger B, Suter B. Mms19 promotes spindle microtubule assembly in Drosophila neural stem cells. PLoS Genet 2020; 16:e1008913. [PMID: 33211700 PMCID: PMC7714366 DOI: 10.1371/journal.pgen.1008913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/03/2020] [Accepted: 10/13/2020] [Indexed: 01/27/2023] Open
Abstract
Mitotic divisions depend on the timely assembly and proper orientation of the mitotic spindle. Malfunctioning of these processes can considerably delay mitosis, thereby compromising tissue growth and homeostasis, and leading to chromosomal instability. Loss of functional Mms19 drastically affects the growth and development of mitotic tissues in Drosophila larvae and we now demonstrate that Mms19 is an important factor that promotes spindle and astral microtubule (MT) growth, and MT stability and bundling. Mms19 function is needed for the coordination of mitotic events and for the rapid progression through mitosis that is characteristic of neural stem cells. Surprisingly, Mms19 performs its mitotic activities through two different pathways. By stimulating the mitotic kinase cascade, it triggers the localization of the MT regulatory complex TACC/Msps (Transforming Acidic Coiled Coil/Minispindles, the homolog of human ch-TOG) to the centrosome. This activity of Mms19 can be rescued by stimulating the mitotic kinase cascade. However, other aspects of the Mms19 phenotypes cannot be rescued in this way, pointing to an additional mechanism of Mms19 action. We provide evidence that Mms19 binds directly to MTs and that this stimulates MT stability and bundling.
Collapse
Affiliation(s)
- Rohan Chippalkatti
- Cell Biology, University of Bern, Berne, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Berne, Switzerland
| | - Boris Egger
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Beat Suter
- Cell Biology, University of Bern, Berne, Switzerland
| |
Collapse
|
4
|
Hwang JH, Vuong LT, Choi KW. Crumbs, Galla and Xpd are required for Kinesin-5 regulation in mitosis and organ growth in Drosophila. J Cell Sci 2020; 133:jcs246801. [PMID: 32501288 DOI: 10.1242/jcs.246801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Xeroderma Pigmentosum D (XPD, also known as ERCC2) is a multi-functional protein involved in transcription, DNA repair and chromosome segregation. In Drosophila, Xpd interacts with Crumbs (Crb) and Galla to regulate mitosis during embryogenesis. It is unknown how these proteins are linked to mitosis. Here, we show that Crb, Galla-2 and Xpd regulate nuclear division in the syncytial embryo by interacting with Klp61F, the Drosophila mitotic Kinesin-5 associated with bipolar spindles. Crb, Galla-2 and Xpd physically interact with Klp61F and colocalize to mitotic spindles. Knockdown of any of these proteins results in similar mitotic defects. These phenotypes are restored by overexpression of Klp61F, suggesting that Klp61F is a major effector. Mitotic defects of galla-2 RNAi are suppressed by Xpd overexpression but not vice versa. Depletion of Crb, Galla-2 or Xpd results in a reduction of Klp61F levels. Reducing proteasome function restores Klp61F levels and suppresses mitotic defects caused by knockdown of Crb, Galla-2 or Xpd. Furthermore, eye growth is regulated by Xpd and Klp61F. Hence, we propose that Crb, Galla-2 and Xpd interact to maintain the level of Klp61F during mitosis and organ growth.
Collapse
Affiliation(s)
- Ji-Hyun Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Linh Thuong Vuong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
5
|
Ciao1 interacts with Crumbs and Xpd to regulate organ growth in Drosophila. Cell Death Dis 2020; 11:365. [PMID: 32404863 PMCID: PMC7220951 DOI: 10.1038/s41419-020-2564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 11/09/2022]
Abstract
Ciao1 is a component of the cytosolic iron-sulfur cluster assembly (CIA) complex along with MMS19 and MIP18. Xeroderma pigmentosum group D (XPD), a DNA helicase involved in regulation of cell cycle and transcription, is a CIA target for iron-sulfur (Fe/S) modification. In vivo function of Ciao1 and Xpd in developing animals has been rarely studied. Here, we reveal that Ciao1 interacts with Crumbs (Crb), Galla, and Xpd to regulate organ growth in Drosophila. Abnormal growth of eye by overexpressing Crb intracellular domain (Crbintra) is suppressed by reducing the Ciao1 level. Loss of Ciao1 or Xpd causes similar impairment in organ growth. RNAi knockdown of both Ciao1 and Xpd show similar phenotypes as Ciao1 or Xpd RNAi alone, suggesting their function in a pathway. Growth defects caused by Ciao1 RNAi are suppressed by overexpression of Xpd. Ciao1 physically interacts with Crbintra, Galla, and Xpd, supporting their genetic interactions. Remarkably, Xpd RNAi defects can also be suppressed by Ciao1 overexpression, implying a mutual regulation between the two genes. Ciao1 mutant clones in imaginal discs show decreased levels of Cyclin E (CycE) and death-associated inhibitor of apoptosis 1 (Diap1). Xpd mutant clones share the similar reduction of CycE and Diap1. Consequently, knockdown of Ciao1 and Xpd by RNAi show increased apoptotic cell death. Further, CycE overexpression is sufficient to restore the growth defects from Ciao1 RNAi or Xpd RNAi. Interestingly, Diap1 overexpression in Ciao1 mutant clones induces CycE expression, suggesting that reduced CycE in Ciao1 mutant cells is secondary to loss of Diap1. Taken together, this study reveals new roles of Ciao1 and Xpd in cell survival and growth through regulating Diap1 level during organ development.
Collapse
|
6
|
Zurita M, Murillo-Maldonado JM. Drosophila as a Model Organism to Understand the Effects during Development of TFIIH-Related Human Diseases. Int J Mol Sci 2020; 21:ijms21020630. [PMID: 31963603 PMCID: PMC7013941 DOI: 10.3390/ijms21020630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Human mutations in the transcription and nucleotide excision repair (NER) factor TFIIH are linked with three human syndromes: xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS). In particular, different mutations in the XPB, XPD and p8 subunits of TFIIH may cause one or a combination of these syndromes, and some of these mutations are also related to cancer. The participation of TFIIH in NER and transcription makes it difficult to interpret the different manifestations observed in patients, particularly since some of these phenotypes may be related to problems during development. TFIIH is present in all eukaryotic cells, and its functions in transcription and DNA repair are conserved. Therefore, Drosophila has been a useful model organism for the interpretation of different phenotypes during development as well as the understanding of the dynamics of this complex. Interestingly, phenotypes similar to those observed in humans caused by mutations in the TFIIH subunits are present in mutant flies, allowing the study of TFIIH in different developmental processes. Furthermore, studies performed in Drosophila of mutations in different subunits of TFIIH that have not been linked to any human diseases, probably because they are more deleterious, have revealed its roles in differentiation and cell death. In this review, different achievements made through studies in the fly to understand the functions of TFIIH during development and its relationship with human diseases are analysed and discussed.
Collapse
|
7
|
Hu Z, Ghosh A, Stolze SC, Horváth M, Bai B, Schaefer S, Zündorf S, Liu S, Harzen A, Hajheidari M, Sarnowski TJ, Nakagami H, Koncz Z, Koncz C. Gene modification by fast-track recombineering for cellular localization and isolation of components of plant protein complexes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:411-429. [PMID: 31276249 PMCID: PMC6852550 DOI: 10.1111/tpj.14450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/14/2019] [Accepted: 06/26/2019] [Indexed: 05/04/2023]
Abstract
To accelerate the isolation of plant protein complexes and study cellular localization and interaction of their components, an improved recombineering protocol is described for simple and fast site-directed modification of plant genes in bacterial artificial chromosomes (BACs). Coding sequences of fluorescent and affinity tags were inserted into genes and transferred together with flanking genomic sequences of desired size by recombination into Agrobacterium plant transformation vectors using three steps of E. coli transformation with PCR-amplified DNA fragments. Application of fast-track recombineering is illustrated by the simultaneous labelling of CYCLIN-DEPENDENT KINASE D (CDKD) and CYCLIN H (CYCH) subunits of kinase module of TFIIH general transcription factor and the CDKD-activating CDKF;1 kinase with green fluorescent protein (GFP) and mCherry (green and red fluorescent protein) tags, and a PIPL (His18 -StrepII-HA) epitope. Functionality of modified CDKF;1 gene constructs is verified by complementation of corresponding T-DNA insertion mutation. Interaction of CYCH with all three known CDKD homologues is confirmed by their co-localization and co-immunoprecipitation. Affinity purification and mass spectrometry analyses of CDKD;2, CYCH, and DNA-replication-coupled HISTONE H3.1 validate their association with conserved TFIIH subunits and components of CHROMATIN ASSEMBLY FACTOR 1, respectively. The results document that simple modification of plant gene products with suitable tags by fast-track recombineering is well suited to promote a wide range of protein interaction and proteomics studies.
Collapse
Affiliation(s)
- Zhoubo Hu
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Ajit Ghosh
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
- Department of Biochemistry and Molecular BiologyShahjalal University of Science and TechnologySylhet3114, Bangladesh
| | - Sara C. Stolze
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Mihály Horváth
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Bing Bai
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Sabine Schaefer
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Simone Zündorf
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Shanda Liu
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Anne Harzen
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Mohsen Hajheidari
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
- Botanical InstituteCologne Biocenter, Cluster of Excellence on Plant Sciences, University of CologneD‐50674CologneGermany
| | - Tomasz J. Sarnowski
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5A02‐106WarsawPoland
| | - Hirofumi Nakagami
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Zsuzsa Koncz
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Csaba Koncz
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
- Institute of Plant BiologyBiological Research Center of Hungarian Academy of SciencesTemesvári krt. 62H‐6726SzegedHungary
| |
Collapse
|
8
|
Marelja Z, Leimkühler S, Missirlis F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Front Physiol 2018; 9:50. [PMID: 29491838 PMCID: PMC5817353 DOI: 10.3389/fphys.2018.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.
Collapse
Affiliation(s)
- Zvonimir Marelja
- Imagine Institute, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
9
|
Ben-Shimon L, Paul VD, David-Kadoch G, Volpe M, Stümpfig M, Bill E, Mühlenhoff U, Lill R, Ben-Aroya S. Fe-S cluster coordination of the chromokinesin KIF4A alters its sub-cellular localization during mitosis. J Cell Sci 2018; 131:jcs.211433. [DOI: 10.1242/jcs.211433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 05/11/2018] [Indexed: 11/20/2022] Open
Abstract
Fe-S clusters act as co-factors of proteins with diverse functions, e.g. in DNA repair. Down-regulation of the cytosolic iron-sulfur protein assembly (CIA) machinery promotes genomic instability by the inactivation of multiple DNA repair pathways. Furthermore, CIA deficiencies are associated with so far unexplained mitotic defects. Here, we show that CIA2B and MMS19, constituents of the CIA targeting complex involved in facilitating Fe-S cluster insertion into cytosolic and nuclear target proteins, co-localize with components of the mitotic machinery. Down-regulation of CIA2B and MMS19 impairs the mitotic cycle. We identify the chromokinesin KIF4A as a mitotic component involved in these effects. KIF4A binds a Fe-S cluster in vitro through its conserved cysteine-rich domain. We demonstrate in vivo that this domain is required for the mitosis-related KIF4A localization and for the mitotic defects associated with KIF4A knockout. KIF4A is the first identified mitotic component carrying such a post-translational modification. These findings suggest that the lack of Fe-S clusters in KIF4A upon down-regulation of the CIA targeting complex contributes to the mitotic defects.
Collapse
Affiliation(s)
- Lilach Ben-Shimon
- The Nano Center, Building 206 room B-840, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | - Viktoria D. Paul
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany
- LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Strasse, 35043 Marburg, Germany
| | - Galit David-Kadoch
- The Nano Center, Building 206 room B-840, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | - Marina Volpe
- The Nano Center, Building 206 room B-840, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | - Martin Stümpfig
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim-Ruhr, Germany
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany
- LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Strasse, 35043 Marburg, Germany
| | - Shay Ben-Aroya
- The Nano Center, Building 206 room B-840, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| |
Collapse
|