1
|
Werck-Reichhart D, Nelson DR, Renault H. Cytochromes P450 evolution in the plant terrestrialization context. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230363. [PMID: 39343021 PMCID: PMC11449215 DOI: 10.1098/rstb.2023.0363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 10/01/2024] Open
Abstract
Plants started to colonize land around 500 million years ago. It meant dealing with new challenges like absence of buoyancy, water and nutrients shortage, increased light radiation, reproduction on land, and interaction with new microorganisms. This obviously required the acquisition of novel functions and metabolic capacities. Cytochrome P450 (CYP) monooxygenases form the largest superfamily of enzymes and are present to catalyse critical and rate-limiting steps in most plant-specific pathways. The different families of CYP enzymes are typically associated with specific functions. CYP family emergence and evolution in the green lineage thus offer the opportunity to obtain a glimpse into the timing of the evolution of the critical functions that were required (or became dispensable) for the plant transition to land. Based on the analysis of currently available genomic data, this review provides an evolutionary history of plant CYPs in the context of plant terrestrialization and describes the associated functions in the different lineages. Without surprise it highlights the relevance of the biosynthesis of antioxidants and UV screens, biopolymers, and critical signalling pathways. It also points to important unsolved questions that would deserve to be answered to improve our understanding of plant adaptation to challenging environments and the management of agricultural traits. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Danièle Werck-Reichhart
- Institut de biologie moléculaire des plantes (IBMP), CNRS, University of Strasbourg, 12 rue du général Zimmer, Strasbourg67084, France
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hugues Renault
- Institut de biologie moléculaire des plantes (IBMP), CNRS, University of Strasbourg, 12 rue du général Zimmer, Strasbourg67084, France
| |
Collapse
|
2
|
Xue Y, Wang S, Zhang Q, Wu F, Huang L, Qin S, Zhang M, Yang X, Deng Z, Jiang H, Li L, Chai Y. Brassica napus cytochrome P450 superfamily: Origin from parental species and involvement in diseases resistance, abiotic stresses tolerance, and seed quality traits. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116792. [PMID: 39096688 DOI: 10.1016/j.ecoenv.2024.116792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Cytochromes P450 monooxygenases (CYP450s) constitute the largest enzymic protein family that is widely present in plants, animals, and microorganisms, participate in numerous metabolic pathways, and play diverse roles in development, metabolism, and defense. Rapeseed (Brassica napus) is an important oil crop worldwide and have many versions of reference genome. However, there is no systemically comparative genome-wide analysis of CYP450 family genes in rapeseed and its parental species B. rapa and B. oleracea. In this study, we identified 765, 293 and 437 CYP450 genes in B. napus, B. rapa and B. oleracea, respectively, which were unevenly located in A01-A10 and/or C01-C09 chromosomes in corresponding species. Phylogenetic relationship analysis indicated that 1745 CYP450 proteins from three Brassica species and Arabidopsis were divided into 4 groups. Whole genome duplication (WGD) or segmental duplication resulted in gene expansion of CYP450 family in three Brassica species. There were 33-83 SSR loci in CYP450 genes of three Brassica species, and numerous transcription factor binding sites were identified in their promoters. A total of 459-777 miRNAs were predicted to target 174-426 CYP450 genes in three Brassica species. Based on transcriptome data, BnCYP450s, BrCYP450s and BoCYP450s were differentially expressed in various tissues. There existed numerous BnCYP450 DEGs in response to pathogens and abiotic stresses. Besides, many BnCYP450 DEGs were involved in the regulation of important traits, such as seed germination, seed ALA content, and yellow-seed. The qRT-PCR experiment confirmed the transcriptome analysis results by validating two representative Sclerotinia-responsive BnCYP450 DEGs as an example. Three BnCYP450s genes (CYP707A1, CYP81F1, CYP81H1) might be regulated by seed-specific transcription factors BnTT1 and BnbZIP67 to participate in the development and metabolism of seed coat and embryo by undertaking related metabolic reactions.
Collapse
Affiliation(s)
- Yufei Xue
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Shanshan Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Qiheng Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Fangzhou Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Li Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Shujun Qin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Min Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Xiao Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Zihan Deng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Huanhuan Jiang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Lejing Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Yourong Chai
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China.
| |
Collapse
|
3
|
Kusumi A, Nishiyama S, Tao R. Three-dimensional fruit growth analysis clarifies developmental mechanisms underlying complex shape diversity in persimmon fruit. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1919-1933. [PMID: 37988572 DOI: 10.1093/jxb/erad472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
The determination of fruit size and shape are of considerable interest in horticulture and developmental biology. Fruit typically exhibits three-dimensional structures characterized by geometric features that are dependent on the genotype. Although minor developmental variations have been recognized, few studies have fully visualized and measured these variations throughout fruit growth. Here, a high-resolution 3D scanner was used to investigate the fruit development of 51 persimmon (Diospyros kaki) cultivars with various complex shapes. We obtained 2380 3D models that fully represented fruit appearance, and enabled precise and automated measurements of shape features throughout fruit development, including horizontal and vertical grooves, length-to-width ratio, and roundness. The 3D fruit model analysis identified key stages that determined the shape attributes at maturity. Typically, genetic diversity was found in vertical groove development, and these grooves could be filled by tissue expansion in the carpel fusion zone during fruit development. In addition, transcriptome analysis of fruit tissues from groove and non-groove tissues revealed gene co-expression networks that were highly associated with groove depth variation. The presence of YABBY homologs was most closely associated with groove depth and indicated the possibility that this pathway is a key molecular contributor to vertical groove depth variation. Overall, our results revealed deterministic patterns of complex shape traits in persimmon fruit and showed that different growth patterns among tissues are the main factor contributing to the shape of both vertical and horizontal grooves.
Collapse
Affiliation(s)
- Akane Kusumi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Soichiro Nishiyama
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Lin X, Tang B, Li Z, Shi L, Zhu H. Genome-wide identification and expression analyses of CYP450 genes in sweet potato (Ipomoea batatas L.). BMC Genomics 2024; 25:58. [PMID: 38218763 PMCID: PMC10787477 DOI: 10.1186/s12864-024-09965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Cytochrome P450 monooxygenases (CYP450s) play a crucial role in various biochemical reactions involved in the synthesis of antioxidants, pigments, structural polymers, and defense-related compounds in plants. As sweet potato (Ipomoea batatas L.) holds significant economic importance, a comprehensive analysis of CYP450 genes in this plant species can offer valuable insights into the evolutionary relationships and functional characteristics of these genes. RESULTS In this study, we successfully identified and categorized 95 CYP450 genes from the sweet potato genome into 5 families and 31 subfamilies. The predicted subcellular localization results indicate that CYP450s are distributed in the cell membrane system. The promoter region of the IbCYP450 genes contains various cis-acting elements related to plant hormones and stress responses. In addition, ten conserved motifs (Motif1-Motif10) have been identified in the IbCYP450 family proteins, with 5 genes lacking introns and only one exon. We observed extensive duplication events within the CYP450 gene family, which may account for its expansion. The gene duplication analysis results showed the presence of 15 pairs of genes with tandem repeats. Interaction network analysis reveals that IbCYP450 families can interact with multiple target genes and there are protein-protein interactions within the family. Transcription factor interaction analysis suggests that IbCYP450 families interact with multiple transcription factors. Furthermore, gene expression analysis revealed tissue-specific expression patterns of CYP450 genes in sweet potatoes, as well as their response to abiotic stress and plant hormones. Notably, quantitative real-time polymerase chain reaction (qRT‒PCR) analysis indicated the involvement of CYP450 genes in the defense response against nonbiological stresses in sweet potatoes. CONCLUSIONS These findings provide a foundation for further investigations aiming to elucidate the biological functions of CYP450 genes in sweet potatoes.
Collapse
Affiliation(s)
- Xiongjian Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Binquan Tang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhenqin Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Lei Shi
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hongbo Zhu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
5
|
Xiang F, Liu WC, Liu X, Song Y, Zhang Y, Zhu X, Wang P, Guo S, Song CP. Direct balancing of lipid mobilization and reactive oxygen species production by the epoxidation of fatty acid catalyzed by a cytochrome P450 protein during seed germination. THE NEW PHYTOLOGIST 2023; 237:2104-2117. [PMID: 36495066 DOI: 10.1111/nph.18669] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Fatty acid (FA) β-oxidation provides energy for oil seed germination but also produces massive byproduct reactive oxygen species (ROS), posing potential oxidative damage to plant cells. How plants overcome the contradiction between energy supply and ROS production during seed germination remains unclear. In this study, we identified an Arabidopsis mvs1 (methylviologen-sensitive) mutant that was hypersensitive to ROS and caused by a missense mutation (G1349 substituted as A) of a cytochrome P450 gene, CYP77A4. CYP77A4 was highly expressed in germinating seedling cotyledons, and its protein is localized in the endoplasmic reticulum. As CYP77A4 catalyzes the epoxidation of unsaturated FA, disruption of CYP77A4 resulted in increased unsaturated FA abundance and over accumulated ROS in the mvs1 mutant. Consistently, scavenging excess ROS or blocking FA β-oxidation could repress the ROS overaccumulation and hypersensitivity in the mvs1 mutant. Furthermore, H2 O2 transcriptionally upregulated CYP77A4 expression and post-translationally modified CYP77A4 by sulfenylating its Cysteine-456, which is necessary for CYP77A4's role in modulating FA abundance and ROS production. Together, our study illustrates that CYP77A4 mediates direct balancing of lipid mobilization and ROS production by the epoxidation of FA during seed germination.
Collapse
Affiliation(s)
- Fuyou Xiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, Henan, 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, Henan, 475004, China
| | - Xin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, Henan, 475004, China
| | - Yuwei Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, Henan, 475004, China
- College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Yu Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, Henan, 475004, China
| | - Xiaojing Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, Henan, 475004, China
| | - Pengtao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, Henan, 475004, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, Henan, 475004, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, Henan, 475004, China
| |
Collapse
|
6
|
The Metabolism of a Novel Cytochrome P450 (CYP77B34) in Tribenuron-Methyl-Resistant Descurainia sophia L. to Herbicides with Different Mode of Actions. Int J Mol Sci 2022; 23:ijms23105812. [PMID: 35628621 PMCID: PMC9147942 DOI: 10.3390/ijms23105812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Descurainia sophia L. (flixweeds) is a noxious broad-leaf weed infesting winter wheat fields in China that has evolved high resistance to tribenuron-methyl. In this work, a brand new gene CYP77B34 was cloned from tribenuron-methyl-resistant (TR) D. sophia and transferred into Arabidopsis thaliana, and the sensitivities of Arabidopsis with or without the CYP77B34 transgene to herbicides with a different mode of actions (MoAs) were tested. Compared to Arabidopsis expressing pCAMBIA1302-GFP (empty plasmid), Arabidopsis transferring pCAMBIA1302-CYP77B34 (recombinant plasmid) became resistant to acetolactate synthase (ALS)-inhibiting herbicide tribenuron-methyl, protoporphyrinogen oxidase (PPO)-inhibiting herbicides carfentrazone-ethyl and oxyfluorfen. Cytochrome P450 inhibitor malathion could reverse the resistance to tribenuron-methyl, carfentrazone-ethyl and oxyfluorfen in transgenic Arabidopsis plants. In addition, the metabolic rates of tribenuron-methyl in Arabidopsis expressing CYP77B34 were significantly higher than those in Arabidopsis expressing pCAMBIA1302-GFP. Other than that, the transgenic plants showed some tolerance to very-long-chain fatty acid synthesis (VLCFAs)-inhibiting herbicide pretilachlor and photosystem (PS) II-inhibiting herbicide bromoxynil. Subcellular localization revealed that the CYP77B34 protein was located in the endoplasmic reticulum (ER). These results clearly indicated that CYP77B34 mediated D. sophia resistance to tribenuron-methyl and may have been involved in D. sophia cross-resistance to carfentrazone-ethyl, oxyfluorfen, pretilachlor and bromoxynil.
Collapse
|
7
|
Pineau E, Sauveplane V, Grienenberger E, Bassard JE, Beisson F, Pinot F. CYP77B1 a fatty acid epoxygenase specific to flowering plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 307:110905. [PMID: 33902861 DOI: 10.1016/j.plantsci.2021.110905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/17/2021] [Accepted: 04/02/2021] [Indexed: 05/02/2023]
Abstract
Contrary to animals, little is known in plants about enzymes able to produce fatty acid epoxides. In our attempt to find and characterize a new fatty acid epoxygenase in Arabidopsis thaliana, data mining brought our attention on CYP77B1. Modification of the N-terminus was necessary to get enzymatic activity after heterologous expression in yeast. The common plant fatty acid C18:2 was converted into the diol 12,13-dihydroxy-octadec-cis-9-enoic acid when incubated with microsomes of yeast expressing modified CYP77B1 and AtEH1, a soluble epoxide hydrolase. This diol originated from the hydrolysis by AtEH1 of the epoxide 12,13-epoxy-octadec-cis-9-enoic acid produced by CYP77B1. A spatio-temporal study of CYP77B1 expression performed with RT-qPCR revealed the highest level of transcripts in flower bud while, in open flower, the enzyme was mainly present in pistil. CYP77B1 promoter-driven GUS expression confirmed reporter activities in pistil and also in stamens and petals. In silico co-regulation data led us to hypothesize that CYP77B1 could be involved in cutin synthesis but when flower cutin of loss-of-function mutants cyp77b1 was analyzed, no difference was found compared to cutin of wild type plants. Phylogenetic analysis showed that CYP77B1 is strictly conserved in flowering plants, suggesting a specific function in this lineage.
Collapse
Affiliation(s)
- Emmanuelle Pineau
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12 Rue du Général Zimmer, 67084, Strasbourg, France.
| | - Vincent Sauveplane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
| | - Etienne Grienenberger
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12 Rue du Général Zimmer, 67084, Strasbourg, France.
| | - Jean-Etienne Bassard
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12 Rue du Général Zimmer, 67084, Strasbourg, France.
| | - Frédéric Beisson
- Institut de Biosciences et Biotechnologies d'Aix-Marseille, CEA, CNRS, Aix Marseille Université, UMR 7265, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France.
| | - Franck Pinot
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12 Rue du Général Zimmer, 67084, Strasbourg, France.
| |
Collapse
|
8
|
Metabolic Control of Gametophore Shoot Formation through Arginine in the Moss Physcomitrium patens. Cell Rep 2021; 32:108127. [PMID: 32905770 DOI: 10.1016/j.celrep.2020.108127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/20/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Shoot formation is accompanied by active cell proliferation and expansion, requiring that metabolic state adapts to developmental control. Despite the importance of such metabolic reprogramming, it remains unclear how development and metabolism are integrated. Here, we show that disruption of ANGUSTIFOLIA3 orthologs (PpAN3s) compromises gametophore shoot formation in the moss Physcomitrium patens due to defective cell proliferation and expansion. Trans-omics analysis reveals that the downstream activity of PpAN3 is linked to arginine metabolism. Elevating arginine level by chemical treatment leads to stunted gametophores and causes Ppan3 mutant-like transcriptional changes in the wild-type plant. Furthermore, ectopic expression of AtAN3 from Arabidopsis thaliana ameliorates the defective arginine metabolism and promotes gametophore formation in Ppan3 mutants. Together, these findings indicate that arginine metabolism is a key pathway associated with gametophore formation and provide evolutionary insights into the establishment of the shoot system in land plants through the integration of developmental and metabolic processes.
Collapse
|
9
|
Kumar A, Kondhare KR, Malankar NN, Banerjee AK. The Polycomb group methyltransferase StE(z)2 and deposition of H3K27me3 and H3K4me3 regulate the expression of tuberization genes in potato. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:426-444. [PMID: 33048134 DOI: 10.1093/jxb/eraa468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Polycomb repressive complex (PRC) group proteins regulate various developmental processes in plants by repressing target genes via H3K27 trimethylation, and they function antagonistically with H3K4 trimethylation mediated by Trithorax group proteins. Tuberization in potato has been widely studied, but the role of histone modifications in this process is unknown. Recently, we showed that overexpression of StMSI1, a PRC2 member, alters the expression of tuberization genes in potato. As MSI1 lacks histone-modification activity, we hypothesized that this altered expression could be caused by another PRC2 member, StE(z)2, a potential H3K27 methyltransferase in potato. Here, we demonstrate that a short-day photoperiod influences StE(z)2 expression in the leaves and stolons. StE(z)2 overexpression alters plant architecture and reduces tuber yield, whereas its knockdown enhances yield. ChIP-sequencing using stolons induced by short-days indicated that several genes related to tuberization and phytohormones, such as StBEL5/11/29, StSWEET11B, StGA2OX1, and StPIN1 carry H3K4me3 or H3K27me3 marks and/or are StE(z)2 targets. Interestingly, we observed that another important tuberization gene, StSP6A, is targeted by StE(z)2 in leaves and that it has increased deposition of H3K27me3 under long-day (non-induced) conditions compared to short days. Overall, our results show that StE(z)2 and deposition of H3K27me3 and/or H3K4me3 marks might regulate the expression of key tuberization genes in potato.
Collapse
Affiliation(s)
- Amit Kumar
- Biology Division, Dr. Homi Bhabha Road, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra - 411008, India
| | - Kirtikumar R Kondhare
- Biology Division, Dr. Homi Bhabha Road, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra - 411008, India
| | - Nilam N Malankar
- Biology Division, Dr. Homi Bhabha Road, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra - 411008, India
| | - Anjan K Banerjee
- Biology Division, Dr. Homi Bhabha Road, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra - 411008, India
| |
Collapse
|