1
|
Farmer DT, Dukov JE, Chen HJ, Arata C, Hernandez-Trejo J, Xu P, Teng CS, Maxson RE, Crump JG. Cellular transitions during cranial suture establishment in zebrafish. Nat Commun 2024; 15:6948. [PMID: 39138165 PMCID: PMC11322166 DOI: 10.1038/s41467-024-50780-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
Cranial sutures separate neighboring skull bones and are sites of bone growth. A key question is how osteogenic activity is controlled to promote bone growth while preventing aberrant bone fusions during skull expansion. Using single-cell transcriptomics, lineage tracing, and mutant analysis in zebrafish, we uncover key developmental transitions regulating bone formation at sutures during skull expansion. In particular, we identify a subpopulation of mesenchyme cells in the mid-suture region that upregulate a suite of genes including BMP antagonists (e.g. grem1a) and pro-angiogenic factors. Lineage tracing with grem1a:nlsEOS reveals that this mid-suture subpopulation is largely non-osteogenic. Moreover, combinatorial mutation of BMP antagonists enriched in this mid-suture subpopulation results in increased BMP signaling in the suture, misregulated bone formation, and abnormal suture morphology. These data reveal establishment of a non-osteogenic mesenchyme population in the mid-suture region that restricts bone formation through local BMP antagonism, thus ensuring proper suture morphology.
Collapse
Affiliation(s)
- D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA.
| | - Jennifer E Dukov
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Hung-Jhen Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Claire Arata
- Eli and Edythe Broad Center for Regenerative Medicine, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jose Hernandez-Trejo
- Eli and Edythe Broad Center for Regenerative Medicine, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Pengfei Xu
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Camilla S Teng
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Robert E Maxson
- Department of Biochemistry, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - J Gage Crump
- Eli and Edythe Broad Center for Regenerative Medicine, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
2
|
Celik NB, Sezer A, Genel N, Savas-Erdeve S, Karaman İ, Cetinkaya S. Case report: An adolescent female with anosmic hypogonadotropic hypogonadism, intellectual disability, and papillary thyroid carcinoma: heterozygous deletion of TCF12. Front Endocrinol (Lausanne) 2024; 15:1426916. [PMID: 39036055 PMCID: PMC11257912 DOI: 10.3389/fendo.2024.1426916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Background Isolated hypogonadotropic hypogonadism is a heterogeneous clinical entity. There is a growing list of molecular defects that are associated with hypogonadotropic hypogonadism (HH). TCF12, a recently identified molecular defect, causes craniosynostosis and is suggested to be used as a biomarker for prognosis in various cancer types. Recently, TCF12 variants were shown in a cohort with HH. Case presentation A 15.3 years old female patient was referred to the endocrinology clinic for obesity. She had been gaining weight from mid-childhood. She had her first epileptic seizure at the age of 15.1 years and mildly elevated thyroid autoantibodies were detected during evaluation for etiology of seizures. She had not experienced menarche yet. She was operated for left strabismus at the age of 7 years. School performance was poor and she was receiving special education. Tanner stage of breast was 1 and pubic hair was 3. The endocrine workup revealed hypogonadotropic hypogonadism. Also, the Sniffin' Sticks test detected anosmia. Thyroid ultrasonography was performed due to the mildly elevated thyroid autoantibodies, and thyroid nodules with punctate calcifications were detected. Total thyroidectomy and central lymph node dissection were performed regarding the cytological findings of the nodules and multicentric papillary thyroid carcinoma with no lymph node metastasis was detected on pathology specimens. Regarding the phenotypic features of the patients, whole exome sequencing was performed and heterozygous deletion of exon 1 and exon 6-8 in TCF12 was detected. Conclusion Haploinsufficiency of TCF12 causes anosmic HH. Probably due to the incomplete penetrance and variable expressivity of the disease, patients could display variable phenotypic features such as intellectual disability, developmental delay, and craniosynostosis. Further description of new cases with TCF12 variations could enhance our understanding of craniosynostosis and its potential link to Kallmann syndrome associated with this gene.
Collapse
Affiliation(s)
- Nur Berna Celik
- Department of Pediatrics, Division of Pediatric Endocrinology, Health Sciences University, Dr Sami Ulus Children’s Health and Disease, Health Implementation and Research Center, Ankara, Türkiye
| | - Abdullah Sezer
- Department of Genetics, Health Sciences University, Dr Sami Ulus Children’s Health and Disease, Health Implementation and Research Center, Ankara, Türkiye
| | - Nebiyye Genel
- Department of Pathology, Health Sciences University, Dr Sami Ulus Children’s Health and Disease, Health Implementation and Research Center, Ankara, Türkiye
| | - Senay Savas-Erdeve
- Department of Pediatrics, Division of Pediatric Endocrinology, Health Sciences University, Dr Sami Ulus Children’s Health and Disease, Health Implementation and Research Center, Ankara, Türkiye
| | - İbrahim Karaman
- Department of Pediatric Surgery, Health Sciences University, Dr Sami Ulus Children’s Health and Disease, Health Implementation and Research Center, Ankara, Türkiye
| | - Semra Cetinkaya
- Department of Pediatrics, Division of Pediatric Endocrinology, Health Sciences University, Dr Sami Ulus Children’s Health and Disease, Health Implementation and Research Center, Ankara, Türkiye
| |
Collapse
|
3
|
He J, Huo X, Pei G, Jia Z, Yan Y, Yu J, Qu H, Xie Y, Yuan J, Zheng Y, Hu Y, Shi M, You K, Li T, Ma T, Zhang MQ, Ding S, Li P, Li Y. Dual-role transcription factors stabilize intermediate expression levels. Cell 2024; 187:2746-2766.e25. [PMID: 38631355 DOI: 10.1016/j.cell.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/08/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Precise control of gene expression levels is essential for normal cell functions, yet how they are defined and tightly maintained, particularly at intermediate levels, remains elusive. Here, using a series of newly developed sequencing, imaging, and functional assays, we uncover a class of transcription factors with dual roles as activators and repressors, referred to as condensate-forming level-regulating dual-action transcription factors (TFs). They reduce high expression but increase low expression to achieve stable intermediate levels. Dual-action TFs directly exert activating and repressing functions via condensate-forming domains that compartmentalize core transcriptional unit selectively. Clinically relevant mutations in these domains, which are linked to a range of developmental disorders, impair condensate selectivity and dual-action TF activity. These results collectively address a fundamental question in expression regulation and demonstrate the potential of level-regulating dual-action TFs as powerful effectors for engineering controlled expression levels.
Collapse
Affiliation(s)
- Jinnan He
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiangru Huo
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Gaofeng Pei
- State Key Laboratory of Membrane Biology, Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Zeran Jia
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yiming Yan
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jiawei Yu
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Haozhi Qu
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yunxin Xie
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Junsong Yuan
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yuan Zheng
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yanyan Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Minglei Shi
- Bioinformatics Division, National Research Center for Information Science and Technology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Kaiqiang You
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tianhua Ma
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Michael Q Zhang
- Bioinformatics Division, National Research Center for Information Science and Technology, School of Medicine, Tsinghua University, Beijing 100084, China; Department of Biological Sciences, Center for Systems Biology, The University of Texas, Dallas, TX 75080-3021, USA
| | - Sheng Ding
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Pilong Li
- State Key Laboratory of Membrane Biology, Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China.
| | - Yinqing Li
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Feng S, Feng Q, Dong L, Lv Q, Mei S, Zhang Y. Periostin/Bone Morphogenetic Protein 1 axis axis regulates proliferation and osteogenic differentiation of sutured mesenchymal stem cells and affects coronal suture closure in the TWIST1 +/- mouse model of craniosynostosis. J Orthop Surg Res 2024; 19:146. [PMID: 38369459 PMCID: PMC10875791 DOI: 10.1186/s13018-024-04604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND AND OBJECTIVE The pathogenesis of coronal suture craniosynostosis is often attributed to the dysregulated cellular dynamics, particularly the excessive proliferation and abnormal osteogenic differentiation of suture cells. Despite its clinical significance, the molecular mechanims of this condition remain inadequately understood. This study is dedicated to exploring the influence of the Periostin/Bone Morphogenetic Protein 1 (BMP1) axis on the growth and osteogenic maturation of Suture Mesenchymal Stem Cells (SMSCs), which are pivotal in suture homeostasis. METHODS Neonatal TWIST Basic Helix-Loop-Helix Transcription Factor 1 heterozygous (TWIST1+/-) mice, aged one day, were subjected to adenoviral vector-mediated Periostin upregulation. To modulate Periostin/BMP1 levels in SMSCs, we employed siRNA and pcDNA 3.1 vectors. Histological and molecular characterizations, including hematoxylin and eosin staining, Western blot, and immunohistochemistry were employed to study suture closure phenotypes and protein expression patterns. Cellular assays, encompassing colony formation, 5-ethynyl-2'deoxyuridine, and wound healing tests were conducted to analyze SMSC proliferation and migration. Osteogenic differentiation was quantified using Alkaline Phosphatase (ALP) and Alizarin Red S (ARS) staining, while protein markers of proliferation and differentiation were evaluated by Western blotting. The direct interaction between Periostin and BMP1 was validated through co-immunoprecipitation assays. RESULTS In the TWIST1+/- model, an upregulation of Periostin coupled with a downregulation of BMP1 was observed. Augmenting Periostin expression mitigated craniosynostosis. In vitro, overexpression of Periostin or BMP1 knockdown suppressed SMSC proliferation, migration, and osteogenic differentiation. Periostin knockdown manifested an inverse biological impact. Notably, the suppressive influence of Periostin overexpression on SMSCs was effectively counteracted by upregulating BMP1. There was a direct interaction between Periostin and BMP1. CONCLUSION These findings underscore the significance of the Periostin/BMP1 axis in regulating craniosynostosis and SMSC functions, providing new insights into the molecular mechanisms of craniosynostosis and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- ShuBin Feng
- Department of Neurosurgery, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, Zhengzhou City, 450018, Henan Province, China
| | - Qiang Feng
- Department of Neurosurgery, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, Zhengzhou City, 450018, Henan Province, China
| | - LiuJian Dong
- Department of Neurosurgery, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, Zhengzhou City, 450018, Henan Province, China
| | - Qiang Lv
- Department of Neurosurgery, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, Zhengzhou City, 450018, Henan Province, China
| | - ShiYue Mei
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, No.33, Longhu Outer Ring East Road, Zhengdong New District, Zhengzhou City, 450018, Henan Province, China
| | - YaoDong Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, No.33, Longhu Outer Ring East Road, Zhengdong New District, Zhengzhou City, 450018, Henan Province, China.
| |
Collapse
|
5
|
Cabrera Pereira A, Dasgupta K, Ho TV, Pacheco-Vergara M, Kim J, Kataria N, Liang Y, Mei J, Yu J, Witek L, Chai Y, Jeong J. Lineage-specific mutation of Lmx1b provides new insights into distinct regulation of suture development in different areas of the calvaria. Front Physiol 2023; 14:1225118. [PMID: 37593235 PMCID: PMC10427921 DOI: 10.3389/fphys.2023.1225118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
The calvaria (top part of the skull) is made of pieces of bone as well as multiple soft tissue joints called sutures. The latter is crucial to the growth and morphogenesis of the skull, and thus a loss of calvarial sutures can lead to severe congenital defects in humans. During embryogenesis, the calvaria develops from the cranial mesenchyme covering the brain, which contains cells originating from the neural crest and the mesoderm. While the mechanism that patterns the cranial mesenchyme into bone and sutures is not well understood, function of Lmx1b, a gene encoding a LIM-domain homeodomain transcription factor, plays a key role in this process. In the current study, we investigated a difference in the function of Lmx1b in different parts of the calvaria using neural crest-specific and mesoderm-specific Lmx1b mutants. We found that Lmx1b was obligatory for development of the interfrontal suture and the anterior fontanel along the dorsal midline of the skull, but not for the posterior fontanel over the midbrain. Also, Lmx1b mutation in the neural crest-derived mesenchyme, but not the mesoderm-derived mesenchyme, had a non-cell autonomous effect on coronal suture development. Furthermore, overexpression of Lmx1b in the neural crest lineage had different effects on the position of the coronal suture on the apical part and the basal part. Other unexpected phenotypes of Lmx1b mutants led to an additional finding that the coronal suture and the sagittal suture are of dual embryonic origin. Together, our data reveal a remarkable level of regional specificity in regulation of calvarial development.
Collapse
Affiliation(s)
- Angel Cabrera Pereira
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Krishnakali Dasgupta
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States
| | - Maria Pacheco-Vergara
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Julie Kim
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Niam Kataria
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Yaowei Liang
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Jeslyn Mei
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- Department of Psychology, Hunter College, City University of New York, New York, NY, United States
| | - Jinyeong Yu
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- Department of Biology, College of Arts and Sciences, New York University, New York, NY, United States
| | - Lukasz Witek
- Biomaterials Division, New York University College of Dentistry, New York, NY, United States
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States
| | - Juhee Jeong
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| |
Collapse
|
6
|
Liu W, Lin L, Yang Q, Jin S, Jiang H. Prkra Mutation Alters mRNA Expression During Embryonic External Ear Development. J Craniofac Surg 2023; 34:e387-e391. [PMID: 37185168 DOI: 10.1097/scs.0000000000009318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/16/2023] [Indexed: 05/17/2023] Open
Abstract
To understand the changes in mRNA expression during the embryonic development of the external mouse ear after the point mutation of the Prkra gene, Prkra short ear mouse model was used to study the development of the embryonic external ear. The tissues of the embryonic external ear were obtained when mouse embryos developed to E15.5 and E17.5. The changes in the mRNA expression profile were detected and analyzed. Find_circ and CIRI2 softwares were used to identify the upregulated and down-regulated expression of mRNA in the experimental and control groups. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional annotations were conducted on the differentially expressed mRNA, and the related signal pathways were analyzed after the upregulation and down-regulation of mRNA expression. This study aimed to understand the regulation of mRNA expression in Prkra short-ear mice during the external ear development in embryos. The results showed a correlation between abnormally expressed mRNA and signal pathways and the regulation of the development of the external ear of Prkra short-ear mice, and there were differences in some key regulatory mRNA changes after the Prkra gene point mutation. This study will provide a new clue for the mechanism of mRNA regulating the development of the external mouse ear. The change in mRNA expression profile can also provide clues for studying the biological regulation mechanism of external ear embryonic development.
Collapse
Affiliation(s)
- Wei Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | |
Collapse
|
7
|
Zhao X, Erhardt S, Sung K, Wang J. FGF signaling in cranial suture development and related diseases. Front Cell Dev Biol 2023; 11:1112890. [PMID: 37325554 PMCID: PMC10267317 DOI: 10.3389/fcell.2023.1112890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Suture mesenchymal stem cells (SMSCs) are a heterogeneous stem cell population with the ability to self-renew and differentiate into multiple cell lineages. The cranial suture provides a niche for SMSCs to maintain suture patency, allowing for cranial bone repair and regeneration. In addition, the cranial suture functions as an intramembranous bone growth site during craniofacial bone development. Defects in suture development have been implicated in various congenital diseases, such as sutural agenesis and craniosynostosis. However, it remains largely unknown how intricate signaling pathways orchestrate suture and SMSC function in craniofacial bone development, homeostasis, repair and diseases. Studies in patients with syndromic craniosynostosis identified fibroblast growth factor (FGF) signaling as an important signaling pathway that regulates cranial vault development. A series of in vitro and in vivo studies have since revealed the critical roles of FGF signaling in SMSCs, cranial suture and cranial skeleton development, and the pathogenesis of related diseases. Here, we summarize the characteristics of cranial sutures and SMSCs, and the important functions of the FGF signaling pathway in SMSC and cranial suture development as well as diseases caused by suture dysfunction. We also discuss emerging current and future studies of signaling regulation in SMSCs.
Collapse
Affiliation(s)
- Xiaolei Zhao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and UT Health Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, United States
| | - Kihan Sung
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and UT Health Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, United States
| |
Collapse
|
8
|
Zhai J, Xu Y, Wan H, Yan R, Guo J, Skory R, Yan L, Wu X, Sun F, Chen G, Zhao W, Yu K, Li W, Guo F, Plachta N, Wang H. Neurulation of the cynomolgus monkey embryo achieved from 3D blastocyst culture. Cell 2023; 186:2078-2091.e18. [PMID: 37172562 DOI: 10.1016/j.cell.2023.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/15/2022] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
Neural tube (NT) defects arise from abnormal neurulation and result in the most common birth defects worldwide. Yet, mechanisms of primate neurulation remain largely unknown due to prohibitions on human embryo research and limitations of available model systems. Here, we establish a three-dimensional (3D) prolonged in vitro culture (pIVC) system supporting cynomolgus monkey embryo development from 7 to 25 days post-fertilization. Through single-cell multi-omics analyses, we demonstrate that pIVC embryos form three germ layers, including primordial germ cells, and establish proper DNA methylation and chromatin accessibility through advanced gastrulation stages. In addition, pIVC embryo immunofluorescence confirms neural crest formation, NT closure, and neural progenitor regionalization. Finally, we demonstrate that the transcriptional profiles and morphogenetics of pIVC embryos resemble key features of similarly staged in vivo cynomolgus and human embryos. This work therefore describes a system to study non-human primate embryogenesis through advanced gastrulation and early neurulation.
Collapse
Affiliation(s)
- Jinglei Zhai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yanhong Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Haifeng Wan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Rui Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jing Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Robin Skory
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Long Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xulun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Fengyuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Gang Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wentao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Kunyuan Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Fan Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Nicolas Plachta
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
9
|
Ang PS, Matrongolo MJ, Zietowski ML, Nathan SL, Reid RR, Tischfield MA. Cranium growth, patterning and homeostasis. Development 2022; 149:dev201017. [PMID: 36408946 PMCID: PMC9793421 DOI: 10.1242/dev.201017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Craniofacial development requires precise spatiotemporal regulation of multiple signaling pathways that crosstalk to coordinate the growth and patterning of the skull with surrounding tissues. Recent insights into these signaling pathways and previously uncharacterized progenitor cell populations have refined our understanding of skull patterning, bone mineralization and tissue homeostasis. Here, we touch upon classical studies and recent advances with an emphasis on developmental and signaling mechanisms that regulate the osteoblast lineage for the calvaria, which forms the roof of the skull. We highlight studies that illustrate the roles of osteoprogenitor cells and cranial suture-derived stem cells for proper calvarial growth and homeostasis. We also discuss genes and signaling pathways that control suture patency and highlight how perturbing the molecular regulation of these pathways leads to craniosynostosis. Finally, we discuss the recently discovered tissue and signaling interactions that integrate skull and cerebrovascular development, and the potential implications for both cerebrospinal fluid hydrodynamics and brain waste clearance in craniosynostosis.
Collapse
Affiliation(s)
- Phillip S. Ang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Matt J. Matrongolo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | | | - Shelby L. Nathan
- Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Russell R. Reid
- Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Max A. Tischfield
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
10
|
Stanton E, Urata M, Chen JF, Chai Y. The clinical manifestations, molecular mechanisms and treatment of craniosynostosis. Dis Model Mech 2022; 15:dmm049390. [PMID: 35451466 PMCID: PMC9044212 DOI: 10.1242/dmm.049390] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Craniosynostosis is a major congenital craniofacial disorder characterized by the premature fusion of cranial suture(s). Patients with severe craniosynostosis often have impairments in hearing, vision, intracranial pressure and/or neurocognitive functions. Craniosynostosis can result from mutations, chromosomal abnormalities or adverse environmental effects, and can occur in isolation or in association with numerous syndromes. To date, surgical correction remains the primary treatment for craniosynostosis, but it is associated with complications and with the potential for re-synostosis. There is, therefore, a strong unmet need for new therapies. Here, we provide a comprehensive review of our current understanding of craniosynostosis, including typical craniosynostosis types, their clinical manifestations, cranial suture development, and genetic and environmental causes. Based on studies from animal models, we present a framework for understanding the pathogenesis of craniosynostosis, with an emphasis on the loss of postnatal suture mesenchymal stem cells as an emerging disease-driving mechanism. We evaluate emerging treatment options and highlight the potential of mesenchymal stem cell-based suture regeneration as a therapeutic approach for craniosynostosis.
Collapse
Affiliation(s)
- Eloise Stanton
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mark Urata
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90033, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|