1
|
Dong MZ, Ouyang YC, Gao SC, Gu LJ, Guo JN, Sun SM, Wang ZB, Sun QY. Protein phosphatase 4 maintains the survival of primordial follicles by regulating autophagy in oocytes. Cell Death Dis 2024; 15:658. [PMID: 39245708 PMCID: PMC11381532 DOI: 10.1038/s41419-024-07051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
In mammalian ovary, the primordial follicle pool serves as the source of developing follicles and fertilizable ova. To maintain the normal length of female reproductive life, the primordial follicles must have adequate number and be kept in a quiescent state before menopause. However, the molecular mechanisms underlying primordial follicle survival are poorly understood. Here, we provide genetic evidence showing that lacking protein phosphatase 4 (PPP4) in oocytes, a member of PP2A-like subfamily, results in infertility in female mice. A large quantity of primordial follicles has been depleted around the primordial follicle pool formation phase and the ovarian reserve is exhausted at about 7 months old. Further investigation demonstrates that depletion of PPP4 causes the abnormal activation of mTOR, which suppresses autophagy in primordial follicle oocytes. The abnormal primordial follicle oocytes are eventually erased by pregranulosa cells in the manner of lysosome invading. These results show that autophagy prevents primordial follicles over loss and PPP4-mTOR pathway governs autophagy during the primordial follicle formation and dormant period.
Collapse
Affiliation(s)
- Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shi-Cai Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin-Jian Gu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Ni Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Si-Min Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
2
|
Li W, Hao Y. Polo-Like Kinase 1 and DNA Damage Response. DNA Cell Biol 2024; 43:430-437. [PMID: 38959179 DOI: 10.1089/dna.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Polo-like kinase 1 (Plk1), an evolutionarily conserved serine/threonine protein kinase, is a key regulator involved in the mitotic process of the cell cycle. Mounting evidence suggests that Plk1 is also involved in a variety of nonmitotic events, including the DNA damage response, DNA replication, cytokinesis, embryonic development, apoptosis, and immune regulation. The DNA damage response (DDR) includes activation of the DNA checkpoint, DNA damage recovery, DNA repair, and apoptosis. Plk1 is not only an important target of the G2/M DNA damage checkpoint but also negatively regulates the G2/M checkpoint commander Ataxia telangiectasia-mutated (ATM), promotes G2/M phase checkpoint recovery, and regulates homologous recombination repair by interacting with Rad51 and BRCA1, the key factors of homologous recombination repair. This article briefly reviews the function of Plk1 in response to DNA damage.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Nuclear and Radiation Damage, Characteristic Medical Center, PLA Rocket Force, Beijing, China
- Department of Disease Prevention and Control, Characteristic Medical Center, PLA Rocket Force, Beijing, China
| | - Yongjian Hao
- Department of Disease Prevention and Control, Characteristic Medical Center, PLA Rocket Force, Beijing, China
| |
Collapse
|
3
|
Gao SC, Dong MZ, Zhao BW, Liu SL, Guo JN, Sun SM, Li YY, Xu YH, Wang ZB. Fangchinoline inhibits mouse oocyte meiosis by disturbing MPF activity. Toxicol In Vitro 2024; 99:105876. [PMID: 38876226 DOI: 10.1016/j.tiv.2024.105876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Fangchinoline (FA) is an alkaloid derived from the traditional Chinese medicine Fangji. Numerous studies have shown that FA has a toxic effect on various cancer cells, but little is known about its toxic effects on germ cells, especially oocytes. In this study, we investigated the effects of FA on mouse oocyte maturation and its potential mechanisms. Our results showed that FA did not affect meiosis resumption but inhibited the first polar body extrusion. This inhibition is not due to abnormalities at the organelle level, such as chromosomes and mitochondrial, which was proved by detection of DNA damage and reactive oxygen species. Further studies revealed that FA arrested the oocyte at the metaphase I stage, and this arrest was not caused by abnormal kinetochore-microtubule attachment or spindle assembly checkpoint activation. Instead, FA inhibits the activity of anaphase-promoting complexes (APC/C), as evidenced by the inhibition of CCNB1 degeneration. The decreased activity of APC/C may be due to a reduction in CDC25B activity as indicated by the high phosphorylation level of CDC25B (Ser323). This may further enhance Maturation-Promoting Factor (MPF) activity, which plays a critical role in meiosis. In conclusion, our study suggests that the metaphase I arrest caused by FA may be due to abnormalities in MPF and APC/C activity.
Collapse
Affiliation(s)
- Shi-Cai Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Bing-Wang Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Sai-Li Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Ni Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Si-Min Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yuan-Hong Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Yu T, Zhang C, Song W, Zhao X, Cheng Y, Liu J, Su J. Single-cell RNA-seq and single-cell bisulfite-sequencing reveal insights into yak preimplantation embryogenesis. J Biol Chem 2024; 300:105562. [PMID: 38097189 PMCID: PMC10821408 DOI: 10.1016/j.jbc.2023.105562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 01/13/2024] Open
Abstract
Extensive epigenetic reprogramming occurs during preimplantation embryonic development. However, the impact of DNA methylation in plateau yak preimplantation embryos and how epigenetic reprogramming contributes to transcriptional regulatory networks are unclear. In this study, we quantified gene expression and DNA methylation in oocytes and a series of yak embryos at different developmental stages and at single-cell resolution using single-cell bisulfite-sequencing and RNA-seq. We characterized embryonic genome activation and maternal transcript degradation and mapped epigenetic reprogramming events critical for embryonic development. Through cross-species transcriptome analysis, we identified 31 conserved maternal hub genes and 39 conserved zygotic hub genes, including SIN3A, PRC1, HDAC1/2, and HSPD1. Notably, by combining single-cell DNA methylation and transcriptome analysis, we identified 43 candidate methylation driver genes, such as AURKA, NUSAP1, CENPF, and PLK1, that may be associated with embryonic development. Finally, using functional approaches, we further determined that the epigenetic modifications associated with the histone deacetylases HDAC1/2 are essential for embryonic development and that the deubiquitinating enzyme USP7 may affect embryonic development by regulating DNA methylation. Our data represent an extensive resource on the transcriptional dynamics of yak embryonic development and DNA methylation remodeling, and provide new insights into strategies for the conservation of germplasm resources, as well as a better understanding of mammalian early embryonic development that can be applied to investigate the causes of early developmental disorders.
Collapse
Affiliation(s)
- Tong Yu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengtu Zhang
- Academician Zhang Yong Innovation Center, Xining Animal Disease Control Center, Xining, Qinghai, China
| | - Weijia Song
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyi Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuyao Cheng
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jianmin Su
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
5
|
Xu K, Qiao JY, Zhao BW, Dong MZ, Lei WL, Li YY, Ju Z, Schatten H, Wang ZB, Liu K, Sun QY. Maternal SMC2 is essential for embryonic development via participating chromosome condensation in mice. J Cell Physiol 2023; 238:2535-2545. [PMID: 37642322 DOI: 10.1002/jcp.31102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/16/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
During the oocyte growth, maturation and zygote development, chromatin structure keeps changing to regulate different nuclear activities. Here, we reported the role of SMC2, a core component of condensin complex, in oocyte and embryo development. Oocyte-specific conditional knockout of SMC2 caused female infertility. In the absence of SMC2, oocyte meiotic maturation and ovulation occurred normally, but chromosome condensation showed defects and DNA damages were accumulated in oocytes. The pronuclei were abnormally organized and micronuclei were frequently observed in fertilized eggs, their activity was impaired, and embryo development was arrested at the one-cell stage, suggesting that maternal SMC2 is essential for embryonic development.
Collapse
Affiliation(s)
- Ke Xu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Guangdong, China
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jing-Yi Qiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Bin-Wang Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Kui Liu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Guangdong, China
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|