1
|
Dong B, Li H, Guo H, Kou R, Liang C, Wang J, Jiang H. The gustatory receptor BdorGr43a mediated sucrose preference in the feeding of Bactrocera dorsalis. Int J Biol Macromol 2024; 282:136774. [PMID: 39442845 DOI: 10.1016/j.ijbiomac.2024.136774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/05/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
The feeding behavior of animals is pivotal for their reproductive success and energy acquisition. In our study, we found that the Bactrocera dorsalis had a pronounced preference for sucrose among six plant-derived sugars during feeding. Then, we searched the entire genome of B. dorsalis for the gustatory receptors (Grs) responsible for sucrose sensation. Putative gustatory receptors involved in the detection of sweetness, bitterness, CO2 and other unknown functions. Together with phylogenetic analysis, expression profiling, calcium imaging, and CRISPR/Cas9 mediated mutagenesis, we found that BdorGr43a is the key receptor responding to sucrose. Our study elucidated the molecular mechanism underlying the sucrose preferences in the feeding of B. dorsalis. Meanwhile, our results will serve as a reference for the understanding of gustatory sensing in insect. Furthermore, BdorGr43a may serve as an important target for the development of food attractants against the oriental fruit fly.
Collapse
Affiliation(s)
- Bao Dong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hongfei Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Huaiwang Guo
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ruohan Kou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Changhao Liang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jinjun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
2
|
Ohhara Y, Blick M, Park D, Yoon SE, Kim YJ, Pankratz MJ, O’Connor MB, Yamanaka N. A Neuropeptide Signaling Network That Regulates Developmental Timing and Systemic Growth in Drosophila. J Comp Neurol 2024; 532:e25677. [PMID: 39415613 PMCID: PMC11488662 DOI: 10.1002/cne.25677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/21/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Animals sense chemical cues such as nutritious and noxious stimuli through the chemosensory system and adapt their behavior, physiology, and developmental schedule to the environment. In the Drosophila central nervous system, chemosensory interneurons that produce neuropeptides called Hugin (Hug) peptides receive signals from gustatory receptor neurons and regulate feeding behavior. Because Hug neurons project their axons to the higher brain region within the protocerebrum where dendrites of multiple neurons producing developmentally important neuropeptides are extended, it has been postulated that Hug neurons regulate development through the neuroendocrine system. In this study, we show that Hug neurons interact with a subset of protocerebrum neurons that produce prothoracicotropic hormone (PTTH) and regulate the onset of metamorphosis and systemic growth. Loss of the hug gene and silencing of Hug neurons caused a delay in larval-to-prepupal transition and an increase in final body size. Furthermore, deletion of Hug receptor-encoding genes also caused developmental delay and body size increase, and the phenotype was restored by expressing Hug receptors in PTTH-producing neurons. These results indicate that Hug neurons regulate developmental timing and body size via PTTH-producing neurons. This study provides a basis for understanding how chemosensation is converted into neuroendocrine signaling to control insect growth and development.
Collapse
Affiliation(s)
- Yuya Ohhara
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Mikkal Blick
- Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Donghyun Park
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sung-Eun Yoon
- Korea Drosophila Resource Center (KDRC), Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Michael J. Pankratz
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, 53115 Bonn, Germany
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Naoki Yamanaka
- Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
3
|
Lu S, Qian CS, Grueber WB. Mechanisms of gas sensing by internal sensory neurons in Drosophila larvae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576342. [PMID: 38293088 PMCID: PMC10827222 DOI: 10.1101/2024.01.20.576342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Internal sensory neurons monitor the chemical and physical state of the body, providing critical information to the central nervous system for maintaining homeostasis and survival. A population of larval Drosophila sensory neurons, tracheal dendrite (td) neurons, elaborate dendrites along respiratory organs and may serve as a model for elucidating the cellular and molecular basis of chemosensation by internal neurons. We find that td neurons respond to decreases in O2 levels and increases in CO2 levels. We assessed the roles of atypical soluble guanylyl cyclases (Gycs) and a gustatory receptor (Gr) in mediating these responses. We found that Gyc88E/Gyc89Db were necessary for responses to hypoxia, and that Gr28b was necessary for responses to CO2. Targeted expression of Gr28b isoform c in td neurons rescued responses to CO2 in mutant larvae and also induced ectopic sensitivity to CO2 in the td network. Gas-sensitive td neurons were activated when larvae burrowed for a prolonged duration, demonstrating a natural-like feeding condition in which td neurons are activated. Together, our work identifies two gaseous stimuli that are detected by partially overlapping subsets of internal sensory neurons, and establishes roles for Gyc88E/Gyc89Db in the detection of hypoxia, and Gr28b in the detection of CO2.
Collapse
Affiliation(s)
- Shan Lu
- Zuckerman Mind Brain Behavior Institute, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
- Department of Biological Sciences, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
| | - Cheng Sam Qian
- Zuckerman Mind Brain Behavior Institute, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
| | - Wesley B. Grueber
- Zuckerman Mind Brain Behavior Institute, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
- Department of Physiology and Cellular Biophysics, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
- Department of Neuroscience, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
| |
Collapse
|