1
|
Subbiah A, Caswell DL, Turner K, Jaiswal A, Avidor-Reiss T. CP110 and CEP135 Localize Near the Proximal Centriolar Remnants of Mice Spermatozoa. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001083. [PMID: 38351906 PMCID: PMC10862134 DOI: 10.17912/micropub.biology.001083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
Centrioles form centrosomes that organize microtubules, assist in cell structure, and nucleate cilia that provide motility and sensation. Within the sperm, the centrosome consists of two centrioles (proximal and distal centriole) and a pericentriolar material known as the striated column and capitulum. The distal centriole nucleates the flagellum. Mice spermatozoa, unlike other mammal spermatozoa (e.g., human and bovine), have no ultra-structurally recognizable centrioles, but their neck has the centriolar proteins POC1B and FAM161A, suggesting mice spermatozoa have remnant centrioles. Here, we examine whether other centriolar proteins, CP110 and CEP135, found in the human and bovine spermatozoa centrioles are also found in the mouse spermatozoa neck. CP110 is a tip protein controlling ciliogenesis, and CEP135 is a centriole-specific structural protein in the centriole base of canonical centrioles found in most cell types. Here, we report that CP110 and CEP135 were both located in the mice spermatozoa neck around the proximal centriolar remnants labeled by POC1B, increasing the number of centriolar proteins found in the mice spermatozoa neck, further supporting the hypothesis that a remnant proximal centriole is present in mice.
Collapse
|
2
|
Turner KA, Kluczynski DF, Hefner RJ, Moussa RB, Slogar JN, Thekkethottiyil JB, Prine HD, Crossley ER, Flanagan LJ, LaBoy MM, Moran MB, Boyd TG, Kujawski BA, Ruble K, Pap JM, Jaiswal A, Shah TA, Sindhwani P, Avidor-Reiss T. Tubulin posttranslational modifications modify the atypical spermatozoon centriole. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000678. [PMID: 36444375 PMCID: PMC9700210 DOI: 10.17912/micropub.biology.000678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 01/25/2023]
Abstract
Sperm cells are transcriptionally and translationally silent. Therefore, they may use one of the remaining mechanisms to respond to stimuli in their environment, the post-translational modification of their proteins. Here we examined three post-translational modifications, acetylation, glutamylation, and glycylation of the protein tubulin in human and cattle sperm. Tubulin is the monomer that makes up microtubules, and microtubules constitute the core component of both the sperm centrioles and the axoneme. We found that the sperm of both species were labeled by antibodies against acetylated tubulin and glutamylated tubulin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Tomer Avidor-Reiss
- The University of Toledo, Toledo, Ohio, USA.
,
Correspondence to: Tomer Avidor-Reiss (
)
| |
Collapse
|
3
|
Wells JM. A renaissance for developmental biology driven by new in vitro platforms. Development 2022; 149:dev201365. [PMID: 36317796 DOI: 10.1242/dev.201365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- James M Wells
- Division of Developmental Biology, Cincinnati Children's Research Foundation, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| |
Collapse
|